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Sodium chloride is used in the cheese salting process as it promotes sensory changes and food preservation. However, in excess can 
cause hypertension problems, and for this reason, it has been partially replaced by potassium chloride. In the present work, Prato 
cheese was subjected to joint diffusion of NaCl and KCl by immersion in static and stirred brine. The salt concentration values on 
the cheese surface were determined as a function of time. They were tabulated and presented to the self-organizing map (SOM)-type 
neural networks and the multilayer perceptron (MLP) for analysis and modeling of the film formed on the surface of the cheese 
during static and dynamic salting. The SOM network showed that the behavior of the diffusive process, on the surface of the cheese, 
depends on the analyzed position and that the points in which occupy similar positions, concerning the distance from the edge, have 
similar behavior. Regression models for NaCl and KCl were significant at the 5% level and can be used for predictive purposes.
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INTRODUCTION

Cheese is an important food with high nutritional value and 
is part of the daily diet around the world. Among the various 
types of cheese available on the market, Prato cheese stands out 
for its nutritional value.1,2 Among the components involved in its 
production, sodium chloride has an outstanding role, as in addition 
to providing flavor, it participates in aroma development. It also 
controls moisture, microbial growth, and activity, the activity 
of various enzymes, and act on product conservation and whey 
expulsion. Therefore, salting is an important operation in cheese 
making, generally occurring between the end of pressing and the 
beginning of ripening.3–5

Cheese consumption represents a major contribution to sodium 
intake and when consumed in excess can lead to increased blood 
pressure. To minimize this risk, many consumers have been looking 
for products with lower sodium chloride content.6 Therefore, the 
production of Prato cheeses with a reduction or with a partial 
replacement of this salt is necessary, as long as it maintains the 
quality in the product’s sensory characteristics. KCl can be used as 
a partial substitute in up to 30% without affecting physicochemical 
or sensory characteristics due to its similar properties to NaCl, and 
it is also considered an antihypertensive.7–11

Among the various salting processes is immersion in brine. 
The factors that most influence the salt absorption by the cheese 
are the gradient concentration, cheese geometry, salting time, brine 
temperature, and cheese moisture content.7,12 During salting, the 
dominant mass transport process is diffusion, due to the difference 
in salt concentration between the brine and the Prato cheese.3

The solute gain and water loss models are based on the fact that 
mass transfer can be described by Fick’s diffusion law.13 In the mass 
transfer between the cheese and the brine, a film is formed on the 
surface and the salt flow must pass through this stationary resistive 
layer.14,15 To assess the resistance of the film formed on the surface 

and the factors that interfere with the diffusion, some data analysis 
tools, which employ unconventional statistics, can be used.15,16

Two of these tools are the multi-layer perceptron (MLP) and 
self-organizing map (SOM) artificial neural networks (ANN) used 
for modeling and classifying samples.17 They have been applied to 
solve various types of problems in different areas of science, such 
as engineering, medicine, chemistry, bioenergy, etc.17–21 The MLP 
uses the error-correction learning rule, performing training in a 
supervised way, applying the error back-propagation algorithm.16 
SOM-type networks are based on competitive learning characterized 
by unsupervised learning with the formation of a topological map of 
input patterns, which can be one- or two-dimensional.16,22

The objective of this work was to investigate the formation, 
influence, and behavior of the film during multicomponent diffusion 
of NaCl and KCl, in static and dynamic brine of Prato cheese, applying 
ANN (MLP and SOM) with 3D computational modeling, using the 
Finite Element Method (FEM).

EXPERIMENTAL PART

Prato cheese

It was used 3 kg of Prato cheese with rectangular geometry, 
provided by Laticínios Campina Alta (Manoel Ribas, Paraná - Brazil). 
The cheese was divided into standardized geometry samples of 
0.04 m x 0.04 m x 0.02 m (Figure 1).

Prato cheese brine

A solution containing 15 L of brine with 5% (mass/volume) of 
salts was prepared. The salt composition was divided into 30% of 
KCl (KCl, Synth, Diadema, Brazil) and 70% of NaCl (NaCl, Panreac, 
Barcelona, Spain), according to Borsato et al.23 The samples were 
arranged in a holder, composed of nylon wires, and submerged 
since the Prato cheese was denser than the brine. The diffusion 
processes were performed in stirred and dynamic brine, the latter 
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with a solution flow of 520 L h-1, at a constant temperature of 20 °C 
(± 1 °C), according to Bordin et al.9

Determination of sodium and potassium chloride

The concentration of sodium and potassium chloride in the 
Prato cheese samples was measured according to Bordin et al.,9 with 
modifications, using the Micronal photometer, model B-462 (São 
Paulo, Brazil, Micronal), with an air pressure of 0.8 kgf cm-2 and 
1.5 kgf cm-2 air pump pressure, using butane gas.

Finite element method simulation

The simulation was performed using the COMSOL Multiphysics® 
software version 5.2 (COMSOL, Inc., Burlington, MA).24 The 
parameters used in the simulation were: main coefficients 
(D11NaCl  =  0.50  × 10-9 m2 s-1 and D22KCl  =  0.30  ×  10-9 m2 s-1), 
cross diffusion coefficients (D12NaCl  =  1.27  ×  10-10  m2 s-1 and 
D21KCl  =  0.70 ×  10-10 m2 s-1), mass transfer coefficients for static 
brine (hNaCl = 5.14 × 10-7 m s-1 and hKCl = 3.10 10-7 m s-1) and mass 
transfer coefficients for dynamic brine (hNaCl = 2.10 10-6 m s-1 and 
hKCl = 1.26 × 10-6 m s-1).8,15 In the simulation, salting times ranged 
from 0 to 28 hours.

Figure 1 presents the solid generated automatically by 
the software, showing part of the tetrahedral mesh used, and 
the equidistant points chosen for the study of NaCl and KCl 
diffusion on the surface of the film formed in the Prato cheese.

Artificial Neural Networks 

The self-organizing map (SOM) proposed by Kohonen22 was used 
to evaluate the influence and behavior of NaCl and KCl concentrations 
in the Prato cheese surface. The neural network routine developed by 
our research group was applied according to the algorithm described 
by Haykin16 and processed in the Matlab® R2007b software.25

For the salting time modeling, the multilayer perceptron 
network (MLP) of the artificial neural network module of 
the Statistica 13.426 software was used. The salting time 
(hours) was chosen as the continuous target variable, the salt 
concentrations (g 100-1 g of solution) at points P1-P7 and 
P13-P18 (Figure 1) were selected as dependent variables, and 
the static (Z = 1) and dynamic (Z = 2) system were chosen as 
categorical variables.

For the network MLP training, 200 epochs, a learning rate of 
0.05, and a random subdivision of the samples were used, in three 
groups: 70% for training, 15% for testing, and 15% for validation.16,26 

The algorithms used for activating the hidden layer and the output 
were selected by the application among those that make up its library 
for the module used, that is, identity, logistic (logistic sigmoid), 
hyperbolic tangent, sine, and exponential.26

RESULTS AND DISCUSSION

Samples of Prato cheese (Figure 1) were subjected to a diffusion 
process in brine containing NaCl and KCl, with and without stirring. 
Samples were collected at different times varying from 0 to 28 hours 
and the salt concentrations, diffusion coefficients, and film coefficients 
were determined.

Applying the physicochemical parameters obtained, diffusion 
simulations were performed by the finite element method (FEM) to 
determine the salts concentrations on the cheese surface.

Tables 1 and 2 show the values of times (h) and NaCl and KCl 
concentrations, respectively, in g 100-1 g of solution, on the surface of 
Prato cheese during the simulation of the immersion salting process 
using static (Z =1) and dynamic (Z=2) brine.

The concentration at P1 and P13 are the same because they 
are at the same point (Figure 1). During the diffusion process, the 
concentration values at each point increase being higher at the 
extremities (P1 and P13) and lower at the center of the surface and 
in the cheese’s sides (P7 and P18). As expected, at the same salting 
points and times, the concentration values are higher when using 
brine with stirring.

As the concentration of NaCl and KCl in the initial brine is 70% 
and 30%, respectively, the values observed for NaCl on the cheese 
surface are higher than those of KCl. Furthermore, equilibrium 
concentrations are reached more quickly when using stirred brine 
due to the smaller influence of the physical barrier of the film that is 
formed on the cheese surface during salting by immersion.

To analyze the influence and behavior of the film at the chosen 
points (Figure 1), the data in Tables 1 and 2 were processed using the 
SOM-type ANN routine, inserted in the Matlab® R2007b software25 
to obtain the topological maps. The applied network presented a 5 x 
5 hexagonal topology with 8000 training epochs, with learning rate 
training starting at 0.2 and exponentially decaying with the training 
epochs to 6.71 × 10-5, and with the initial neighborhood relation of 
3.5 decaying to 0.045.

Figure 2 shows the topological maps for the points located on the 
upper and side cheese surfaces (Figure 1), during the multicomponent 
diffusion process of NaCl and KCl in static and dynamic systems. 
The map describes the similarity of the points as a function of the 
neurons-distances (hexagons) in which they are located. For both salts 
and systems, points P1 and P13 are on the same neuron, indicating 
that they have the same diffusion behavior over time. The same 
happens with points P6 and P7, and P17 and P18 except for KCl in 
the dynamic system.

Furthermore, the points classified into neighboring neurons, 
surrounded in Figure 2, are part of the same group, which means 
that they present similarity in terms of concentration variation. 
According to Figure 2, it is possible to observe the formation of 
4 groups for both salts and systems. One of them is formed by 
points P1 and P13, which are similar points located on the edges 
of the faces. These are also the points that present the highest 
concentrations of salts, because due to their position they are 
exposed to a greater number of shocks and, consequently, greater 
diffusion speed. A second group is formed by points from P4 to 
P7 and a third one is formed by points from P15 to P18 plus P3. 

Figure 1. Solid automatically generated by the software and the positions 
used in the simulation
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In the two cases, P2 is included. Nevertheless, in the two cases 
where P2 was not part of this third group, it is located close to it, 
still indicating a certain behavior similarity. Point P14 makes up 
the fourth and last group, but it is located close to the third group 
in all cases, indicating, as well as P2, a certain behavior similarity.

With these results, it can be concluded that the points that occupy 
similar positions concerning the distance from the edge present similar 
behavior. It is important to note that the side and surface have different 
lengths, so the spacing of the points is in different scales (Figure 1).

 For this reason, the points in the center of the upper face (group 
2), were not classified as the same group of the side face center (group 
4). A more detailed analysis shows that points P6 and P7, which do 
not have equivalents on the lateral face, are furthest from the points 
of group 3. On the other hand, P4 is part of group 2 but is closer to 
the samples of group 3, which corroborates the direct dependence of 
diffusion to the distance with the solid edge suggested above.

To model the diffusion of sodium chloride and potassium chloride 
on the Prato cheese surface during the salting process, using static and 
dynamic brine, the values presented in Tables 1 and 2 were tabulated 
and presented to the neural network regression module of Statistica 
software 13.4.26

In the regression module, the multilayer perceptron neural 
network (MLP) was used, testing 5 to 20 hidden layers. The networks 
were trained with 70% of the samples for the training group, 15% 
for testing, and 15% for validation. The choice of samples in each 
group was performed randomly to avoid that the successive examples 
presented to the network at an epoch, rarely belong to the same class.16 
The test and validation stages aim to verify the ability of the trained 
network to perform generalizations.16,17,27

In the MLP modeling, 200 networks were trained and the 5 best 
ones were selected by the software used. The most recommended and 
applied algorithm to train neural networks is the BFGS, individually 

Table 1. Salting time and concentration in x and z-axis positions (Figure 1) studied for NaCl diffusion in Prato cheese

Z Time (h)

x-axis z-axis

P1 P2 P3 P4 P5 P6 P7 P13 P14 P15 P16 P17 P18

Static system (g 100-1g)

1 0.25 2.78 1.89 1.90 1.88 1.89 1.90 1.89 2.78 1.89 1.89 1.89 1.88 1.89

1 0.42 2.98 2.12 2.13 2.12 2.13 2.13 2.12 2.98 2.18 2.12 2.12 2.12 2.12

1 0.50 3.04 2.21 2.21 2.20 2.21 2.21 2.21 3.04 2.28 2.21 2.21 2.20 2.20

1 0.58 3.09 2.28 2.28 2.27 2.28 2.28 2.27 3.09 2.37 2.27 2.27 2.27 2.27

1 0.75 3.16 2.40 2.38 2.38 2.38 2.38 2.38 3.16 2.51 2.39 2.38 2.38 2.38

1 1.00 3.23 2.54 2.50 2.49 2.50 2.50 2.50 3.23 2.67 2.51 2.50 2.50 2.50

1 1.50 3.30 2.72 2.65 2.65 2.65 2.65 2.65 3.31 2.87 2.69 2.65 2.65 2.65

1 2.00 3.35 2.85 2.75 2.75 2.75 2.75 2.75 3.35 2.99 2.81 2.76 2.75 2.75

1 2.50 3.37 2.94 2.83 2.82 2.82 2.82 2.82 3.37 3.07 2.90 2.84 2.82 2.82

1 4.50 3.43 3.14 3.02 2.98 2.98 2.98 2.98 3.43 3.24 3.11 3.03 3.00 2.99

1 5.00 3.43 3.17 3.05 3.01 3.00 3.00 3.00 3.43 3.26 3.14 3.07 3.03 3.02

1 6.00 3.44 3.22 3.10 3.05 3.04 3.04 3.04 3.44 3.30 3.19 3.12 3.08 3.07

1 7.50 3.45 3.27 3.16 3.11 3.09 3.09 3.09 3.45 3.34 3.24 3.18 3.14 3.13

1 15.00 3.48 3.38 3.31 3.26 3.24 3.23 3.22 3.48 3.42 3.37 3.33 3.31 3.30

1 18.00 3.48 3.41 3.35 3.30 3.28 3.27 3.26 3.48 3.44 3.40 3.37 3.35 3.34

1 24.00 3.49 3.44 3.40 3.37 3.34 3.33 3.33 3.49 3.46 3.43 3.41 3.40 3.40

1 28.00 3.49 3.45 3.42 3.40 3.38 3.37 3.36 3.49 3.47 3.45 3.43 3.43 3.42

Dynamic system (g 100-1g)

2 0.250 3.49 2.97 2.97 2.96 2.97 2.97 2.97 3.48 2.97 2.96 2.97 2.96 2.97

2 0.42 3.50 3.08 3.08 3.07 3.08 3.08 3.08 3.49 3.11 3.08 3.08 3.08 3.08

2 0.50 3.50 3.11 3.11 3.11 3.11 3.11 3.11 3.50 3.15 3.11 3.11 3.11 3.11

2 0.58 3.50 3.14 3.14 3.14 3.14 3.14 3.14 3.50 3.19 3.14 3.14 3.14 3.14

2 0.75 3.50 3.19 3.18 3.18 3.18 3.18 3.18 3.50 3.24 3.18 3.18 3.18 3.18

2 1.00 3.50 3.24 3.22 3.22 3.22 3.22 3.22 3.50 3.29 3.23 3.22 3.22 3.22

2 1.50 3.50 3.30 3.27 3.27 3.27 3.27 3.27 3.50 3.35 3.29 3.27 3.27 3.27

2 2.00 3.50 3.34 3.30 3.30 3.30 3.30 3.30 3.50 3.39 3.33 3.31 3.30 3.30

2 2.50 3.50 3.37 3.33 3.32 3.32 3.32 3.32 3.50 3.41 3.35 3.33 3.32 3.32

2 4.50 3.50 3.42 3.38 3.37 3.37 3.37 3.37 3.50 3.45 3.41 3.39 3.37 3.37

2 5.00 3.50 3.43 3.39 3.38 3.37 3.37 3.37 3.50 3.45 3.42 3.39 3.38 3.38

2 6.00 3.50 3.44 3.40 3.39 3.39 3.39 3.39 3.50 3.46 3.43 3.41 3.40 3.39

2 7.50 3.50 3.45 3.42 3.40 3.40 3.40 3.40 3.50 3.47 3.44 3.42 3.41 3.41

2 15.00 3.50 3.48 3.46 3.44 3.44 3.43 3.43 3.50 3.48 3.47 3.46 3.46 3.45

2 18.00 3.50 3.48 3.47 3.45 3.45 3.45 3.44 3.50 3.49 3.48 3.47 3.47 3.46
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proposed by Broyden-Fletcher-Goldfarb-Shanno.27 This method 
has a better performance than more traditional algorithms such as 
the gradient method, but it uses more memory and requires more 
computational time. However, this technique may require fewer 
iterations to train a neural network due to its fast convergence 
rate.16,27 Before starting the MLP network, the BFGS algorithms and 
the sum-of-squares (SOS) error function were selected, which is the 
most suitable for regression problems.28 In addition, a learning rate 
of 0.05 was applied with a maximum number of epochs equal to 200. 
The strategy to create the predictive model was to use the automated 
network search of the Statistica 13.4 software.26

Figure 3 provides a general indication of how training and 
testing are progressing. It shows the number of epochs used to 
train and test the network with the best performance, revealing that 
the network needed only 20 epochs to reach training stability for 

the NaCl concentration data, and 156 epochs to train the network 
with KCl concentration data on the cheese surface. Before error 
stabilization an oscillation was also observed, being greater for 
the NaCl data.

Table 3 shows the 5 networks selected by the software for 
modeling each salting component, the performance of training, 
test, and validation. The BFGS and SOS algorithms were fixed and 
the others were chosen by the automatic module of the Statistica 
software.26

Sensitivity analysis of the data allows the assessment of the 
contribution of each independent variable in the construction of the 
predictive model. Thus, considering the 5 trained networks chosen 
as the best, it was possible to stipulate an order of importance for 
each input variable in the general model adjustment. Table 4 shows 
the importance of each parameter, in percentage, obtained from the 

Table 2. Salting time and concentration in x and z-axis positions studied for KCl diffusion in Prato cheese

Z Time (h)

x-axis z-axis

P1 P2 P3 P4 P5 P6 P7 P13 P14 P15 P16 P17 P18

Static system (g 100-1g)

1 0.25 1.05 0.74 0.75 0.74 0.75 0.75 0.75 1.05 0.75 0.75 0.75 0.74 0.75

1 0.42 1.16 0.83 0.83 0.83 0.83 0.83 0.83 1.16 0.85 0.83 0.83 0.83 0.83

1 0.50 1.19 0.86 0.87 0.86 0.87 0.87 0.86 1.19 0.89 0.86 0.86 0.86 0.86

1 0.58 1.22 0.89 0.89 0.89 0.89 0.89 0.89 1.22 0.93 0.89 0.89 0.89 0.89

1 0.75 1.26 0.94 0.94 0.93 0.94 0.94 0.93 1.26 0.99 0.94 0.93 0.93 0.93

1 1.00 1.31 1.00 0.99 0.98 0.99 0.99 0.98 1.31 1.06 0.99 0.98 0.98 0.98

1 1.50 1.36 1.08 1.05 1.05 1.05 1.05 1.05 1.36 1.15 1.07 1.05 1.05 1.05

1 2.00 1.39 1.14 1.10 1.10 1.10 1.10 1.10 1.39 1.21 1.13 1.10 1.10 1.10

1 2.50 1.41 1.19 1.14 1.13 1.13 1.13 1.13 1.41 1.25 1.17 1.14 1.13 1.13

1 4.50 1.44 1.29 1.23 1.22 1.21 1.21 1.21 1.44 1.34 1.28 1.24 1.22 1.22

1 5.00 1.45 1.31 1.25 1.23 1.23 1.23 1.23 1.45 1.35 1.29 1.26 1.24 1.23

1 6.00 1.46 1.33 1.27 1.25 1.25 1.25 1.25 1.46 1.38 1.32 1.28 1.26 1.26

1 7.50 1.46 1.36 1.30 1.28 1.27 1.27 1.27 1.47 1.40 1.35 1.31 1.30 1.29

1 15.00 1.48 1.43 1.39 1.36 1.35 1.34 1.34 1.48 1.45 1.42 1.40 1.39 1.38

1 18.00 1.49 1.44 1.41 1.38 1.37 1.37 1.36 1.49 1.46 1.43 1.42 1.41 1.40

1 24.00 1.49 1.46 1.44 1.42 1.41 1.40 1.40 1.49 1.47 1.46 1.44 1.44 1.43

1 28.00 1.49 1.47 1.45 1.43 1.42 1.42 1.42 1.49 1.48 1.47 1.46 1.45 1.45

Dynamic system (g 100-1g)

2 0.25 1.47 1.21 1.21 1.20 1.21 1.21 1.21 1.47 1.21 1.21 1.21 1.21 1.21

2 0.42 1.48 1.27 1.27 1.26 1.27 1.27 1.27 1.48 1.28 1.27 1.27 1.27 1.27

2 0.50 1.49 1.29 1.29 1.28 1.29 1.29 1.28 1.49 1.30 1.28 1.28 1.28 1.28

2 0.58 1.49 1.30 1.30 1.30 1.30 1.30 1.30 1.49 1.32 1.30 1.30 1.30 1.30

2 0.75 1.49 1.33 1.32 1.32 1.32 1.32 1.32 1.49 1.35 1.32 1.32 1.32 1.32

2 1.00 1.49 1.35 1.34 1.34 1.34 1.34 1.34 1.49 1.38 1.35 1.34 1.34 1.34

2 1.50 1.50 1.39 1.37 1.37 1.37 1.37 1.37 1.50 1.41 1.38 1.37 1.37 1.37

2 2.00 1.50 1.41 1.39 1.39 1.39 1.39 1.39 1.50 1.43 1.40 1.39 1.39 1.39

2 2.5º 1.50 1.42 1.40 1.40 1.40 1.40 1.40 1.50 1.44 1.42 1.40 1.40 1.40

2 4.50 1.50 1.45 1.43 1.43 1.43 1.43 1.43 1.50 1.47 1.45 1.43 1.43 1.43

2 5.00 1.50 1.46 1.44 1.43 1.43 1.43 1.43 1.50 1.47 1.45 1.44 1.43 1.43

2 6.00 1.50 1.46 1.44 1.44 1.44 1.44 1.44 1.50 1.48 1.46 1.45 1.44 1.44

2 7.50 1.50 1.47 1.45 1.44 1.44 1.44 1.44 1.50 1.48 1.47 1.46 1.45 1.45

2 15.00 1.50 1.49 1.47 1.47 1.46 1.46 1.46 1.50 1.49 1.48 1.48 1.47 1.47

2 18.00 1.50 1.49 1.48 1.47 1.47 1.47 1.47 1.50 1.49 1.49 1.48 1.48 1.48

2 24.00 1.50 1.49 1.49 1.48 1.48 1.48 1.48 1.50 1.50 1.49 1.49 1.49 1.49
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average value of each network used. The most important parameters in 
the construction of the model to estimate the salting time of NaCl were 
P14 > Z > P1 > P13 > P2 and for the KCl model was P14 > Z > P2.

The performance of neural networks is measured by their ability 
to predict unseen data, that is, values that were not used during 

training. Thus, test samples randomly chosen by the software were 
used to verify the performance of the model and its generalization 
ability. To avoid just a coincidence of test results, a set of unseen 
validation data was used as well as an extra verification of the model’s 
performance.16,27,28

Figure 2. Topological maps for the diffusion of NaCl and KCl

Figure 3. Error stabilization and the number of epochs used for the network train and test of NaCl and KCl

Table 3. Summary of active networks for NaCl and KCl data

MLP Name
Training 

Perf.
Test 
Perf.

Validation   
Perf.

Training 
Algorithm

Error 
Function

Hidden 
Activation

Output 
Activation

Active networks for NaCl diffusion
15-19-1 0.999 0.999 0.999 BFGS SOS Exponential Exponential
15-14-1 0.999 0.999 1.000 BFGS SOS Tanh Logistic
15-8-1 0.999 0.999 1.000 BFGS SOS Logistic Logistic

15-14-1 0.999 0.999 1.000 BFGS SOS Exponential Exponential
15-15-1 0.999 0.999 1.000 BFGS SOS Exponential Exponential

Active networks for KCl diffusion
15-5-1 0.999 1.000 1.000 BFGS SOS Tanh Identity

15-14-1 0.999 1.000 0.999 BFGS SOS Exponential Exponential
15-19-1 0.999 0.999 0.999 BFGS SOS Tanh Exponential
15-7-1 0.999 1.000 0.999 BFGS SOS Exponential Exponential
15-19-1 0.999 1.000 0.999 BFGS SOS Exponential Exponential
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According to Tables 5 and 6, the Tukey test showed no significant 
difference, at the 5% level, between the averages of the times 
obtained by the 5 networks with the best performance for NaCl and 
KCl, showing that the model can be used for predictive purposes. 
Standard deviation and standard error values were low, making the 
statistical test very rigorous since the average values are very close 
to the times used in salting.

For the dependent variable (target), the variance analysis of the 
absolute deviation values of the respective mean times was performed 
using Levene’s test. For all cases analyzed, the values were not 
significant, indicating that the hypothesis of homogeneous variances 
should not be rejected.

Figure 4 shows the low dispersion between predicted and 
experimental values of the salting time, during the training of the 5 

Table 4. Sensitivity analysis of the parameters used by the models for the samples chosen for training, test, and validation

NaCl model (%)

P14 Z P1 P13 P2 P15 P18 P7 P6 P5 P17 P4 P3 P16

32.78 17.07 12.50 11.92 8.80 2.97 2.37 2.23 2.17 1.87 1.71 1.67 0.98 0.95

KCl model (%)

P14 Z P2 P13 P1 P5 P6 P7 P4 P18 P17 P3 P15 P16

76.80 7.45 4.66 2.27 2.14 1.14 1.12 1.01 0.77 0.70 0.60 0.54 0.44 0.35

Table 5. NaCl salting time in hours, mean of predicted times, standard deviation (StdD), standard error (StdE), p statistic of the Tukey and Levene’s tests

Sample Time (h)
Mean of predicted 

times (h)
StdD StdE Tukey test Levene’s test

Static System

Test 0.250 0.265 0.023 0.010 0.625 0.342

Train 0.417 0.410 0.028 0.013 0.844 0.371

Test 0.500 0.496 0.009 0.004 0.682 0.357

Train 0.583 0.578 0.017 0.007 0.784 0.413

Train 0.750 0.753 0.027 0.012 0.914 0.407

Train 1.000 1.015 0.022 0.010 0.562 0.200

Train 1.500 1.513 0.017 0.008 0.516 0.174

Train 2.000 2.000 0.002 0.001 0.964 0.147

Train 2.500 2.488 0.012 0.005 0.403 0.356

Train 4.500 4.493 0.011 0.005 0.588 0.394

Train 5.000 5.002 0.005 0.002 0.696 0.164

Validation 6.000 6.022 0.009 0.004 0.077 0.085

Train 7.500 7.536 0.018 0.008 0.153 0.285

Train 15.000 14.958 0.020 0.009 0.126 0.163

Train 18.000 17.986 0.014 0.006 0.421 0.374

Train 24.000 24.073 0.029 0.013 0.083 0.242

Train 28.000 27.958 0.021 0.009 0.139 0.321

Dynamic System

Train 0.250 0.289 0.026 0.012 0.248 0.347

Validation 0.417 0.431 0.011 0.005 0.313 0.119

Test 0.500 0.510 0.011 0.005 0.420 0.356

Train 0.583 0.594 0.010 0.004 0.389 0.393

Validation 0.750 0.759 0.013 0.006 0.539 0.470

Train 1.000 1.008 0.012 0.006 0.573 0.368

Train 1.500 1.503 0.008 0.003 0.706 0.157

Train 2.000 1.997 0.012 0.005 0.831 0.250

Test 2.500 2.488 0.012 0.005 0.417 0.220

Train 4.500 4.483 0.006 0.003 0.063 0.234

Train 5.000 4.992 0.005 0.002 0.168 0.367

Train 6.000 6.002 0.011 0.005 0.860 0.063

Train 7.500 7.512 0.015 0.007 0.488 0.099

Validation 15.000 14.994 0.016 0.007 0.744 0.435

Train 18.000 17.998 0.005 0.002 0.737 0.075
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Table 6. KCl salting time in hours, mean of predicted times, standard deviation (StdD), standard error (StdE), p statistic of the Tukey and Levene’s tests

Sample Time (h)
Mean of predicted 

times (h)
StdD StdE Tukey test Levene’s test

Static System

Train 0.250 0.278 0.024 0.011 0.357 0.248

Train 0.417 0.407 0.033 0.015 0.804 0.343

Train 0.500 0.492 0.013 0.006 0.611 0.361

Train 0.583 0.583 0.015 0.006 1.000 0.326

Train 0.750 0.755 0.030 0.014 0.895 0.350

Train 1.000 0.999 0.013 0.006 0.932 0.351

Test 1.500 1.499 0.005 0.002 0.867 0.174

Test 2.000 2.005 0.005 0.002 0.385 0.439

Validation 2.500 2.507 0.006 0.003 0.351 0.388

Train 4.500 4.508 0.011 0.005 0.530 0.350

Validation 5.000 5.010 0.009 0.004 0.361 0.301

Validation 6.000 6.011 0.006 0.003 0.361 0.368

Train 7.500 7.509 0.008 0.004 0.164 0.084

Train 15.000 14.964 0.024 0.011 0.364 0.450

Test 18.000 17.989 0.012 0.005 0.461 0.397

Train 24.000 24.056 0.036 0.016 0.222 0.390

Train 28.000 27.969 0.019 0.009 0.211 0.344

Dynamic System

Train 0.250 0.300 0.026 0.011 0.149 0.358

Test 0.417 0.431 0.018 0.008 0.517 0.454

Train 0.500 0.507 0.018 0.008 0.731 0.371

Train 0.583 0.587 0.018 0.008 0.873 0.355

Validation 0.750 0.752 0.016 0.007 0.900 0.392

Train 1.000 1.001 0.011 0.005 0.912 0.221

Train 1.500 1.501 0.008 0.003 0.955 0.430

Train 2.000 1.994 0.016 0.007 0.745 0.403

Train 2.500 2.490 0.020 0.009 0.683 0.367

Train 4.500 4.489 0.016 0.007 0.571 0.365

Train 5.000 4.990 0.012 0.005 0.469 0.282

Train 6.000 6.009 0.010 0.005 0.450 0.112

Train 7.500 7.499 0.010 0.004 0.941 0.407

Train 15.000 14.986 0.023 0.010 0.612 0.347

Train 18.000 18.035 0.025 0.011 0.266 0.084

Figure 4. Dispersion graphics between predicted and experimental values for salting time and training of the top 5 networks
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best neural networks of the MLP type, which is a quality indication 
of the regression models.

CONCLUSIONS

In this work, the salting of Prato cheese by immersion in 
aqueous solution with and without stirring was studied, with 
partial replacement of sodium chloride by potassium salt, using 
computational tools such as 3D modeling by the finite element 
method (FEM) and neural networks of the SOM and MLP types, to 
evaluate the films formation on the cheese surface and to demonstrate 
its influence on mass transfer and diffusion time. The combination of 
these tools can be interesting to improve food processing techniques 
and help industries in cheese production.

The analysis using SOM and MLP networks showed that the film 
formed on the surface behaves differently during diffusion, depending 
on the analyzed position, and that the discrete variable Z, which 
represents the agitation condition of the system, influences the time of 
salting. The applied statistical tests showed that the regression model 
that estimates the salting time can be used for predictive purposes.
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