Acessibilidade / Reportar erro

THE SYMMETRY BREAKING PHENOMENON IN 1,2,3-TRIOXOLENE AND C2Y3Z2 (Z= O, S, Se, Te, Z= H, F) COMPOUNDS: A PSEUDO JAHN-TELLER ORIGIN STUDY

1,2,3-Trioxolene (C2O3H2) is an intermediate in the acetylene ozonolysis reaction which is called primary ozonide intermediate. The symmetry breaking phenomenon were studied in C2O3H2 and six its derivatives then oxygen atoms of the molecule are substituted by sulphur, selenium, tellurium (C2Y3H2) and hydrogen ligands are replaced with fluorine atoms (C2Y3F2). Based on calculation results, all seven C2Y3Z2 considered in the series were puckered from unstable planar configuration with C2v symmetry to a Cs symmetry stable geometry. The vibronic coupling interaction between the 1A1 ground state and the first excited state 1B1 via the (1A1+1B1) ⊗b1 pseudo Jahn-Teller effect problem is the reason of the breaking symmetry phenomenon and un-planarity of the C2Y3 ring in the C2Y3Z2 series.

Keywords:
symmetry breaking in five-member rings; PJTE; 1,2,3-trioxolene derivatives; non-planarity in rings; vibronic coupling constant


Sociedade Brasileira de Química Secretaria Executiva, Av. Prof. Lineu Prestes, 748 - bloco 3 - Superior, 05508-000 São Paulo SP - Brazil, C.P. 26.037 - 05599-970, Tel.: +55 11 3032.2299, Fax: +55 11 3814.3602 - São Paulo - SP - Brazil
E-mail: quimicanova@sbq.org.br