ESPECIFICAÇÃO DE UM MODELO DE CRESCIMENTO E PRODUÇÃO FLORESTAL¹

Carlos Pedro Boechat Soares², Helio Garcia Leite², Marcio Leles Romarco de Oliveira³ e Andrelino Carvalho⁴

RESUMO – Este trabalho foi realizado com o objetivo de especificar um modelo de crescimento e produção, em que a produção volumétrica é função da área basal por hectare e da altura média de plantios de eucalipto. Para isso, foram utilizados dados de parcelas permanentes, localizadas na Bahia, com idades entre 28 e 89 meses. Após as análises, verificou-se que o modelo proposto forneceu estimativas volumétricas mais precisas do que o modelo de Clutter (1963) para povoamentos jovens, independentemente da classe de produtividade. No entanto, o modelo proposto forneceu estimativas volumétricas menos precisas nas idades técnicas de colheita (ITC), na menor e maior classes de produtividade.

Palavras-chave: Modelo de crescimento e produção, índice de local e eucalipto.

SPECIFYING A MODEL OF FOREST GROWTH AND YIELD

ABSTRACT – The objective of this work was to specify a growth and yield model in that volumetric yield is a function of the basal area per hectare and mean height of the eucalyptus plantations. Thus, data of permanent plots located in the state of Bahia-Brazil were used, with ages ranging from 28 to 89 months. After analysis, it was verified that the proposed model provided more precise volumetric estimates than the Clutter model (1963) for young plantations, independently of the productivity class. However, the proposed model provided less precise volumetric estimates in the technical cut age (ITC) for smaller and larger productivity classes.

Key words: Growth and yield model, site index, eucalypt.

1. INTRODUÇÃO

Segundo Davis e Johnson (1987), a produtividade de uma floresta é definida em termos da quantidade produzida em dado período de tempo. Nesse sentido, quanto melhor a qualidade de um local, maior a produtividade da floresta, desde que esta apresente densidade populacional em grau de ocupação adequado.

As palavras "bom" e "ruim" são freqüentemente

utilizadas para indicar a qualidade de um local e, simplesmente, implicam alto e baixo potencial produtivo, respectivamente (CLUTTER et al., 1983). Devido à sua subjetividade, tais expressões não são as melhores para indicar "o quanto" o local é apropriado ou não para a produção de madeira, por exemplo.

A maneira mais apropriada para verificar a qualidade de um local é através da quantificação do material produzido em um período de tempo. Porém,

⁴ COPENER LORESTAL Ltda.

¹ Recebido em 07.11.2002 e aceito para publicação em 10.08.2004.

² Departamento de Engenharia Florestal da UFV. E-mail: <csoares@ufv.br> e <hgleite@ufv.br>. CEP 36570-000 Viçosa-MG.

³ Programa de Pós-Graduação em Ciência Florestal na UFV. E- mail: <marciol@vicosa.ufv.br>.

SOARES, C.P.B. et al.

acontecimentos ao longo desse período de tempo, por exemplo ataques de insetos e pragas e incêndios, entre outros, podem reduzir a produção e mascarar a real capacidade produtiva do local. Diante disso, vários métodos foram desenvolvidos para determinar a qualidade de um local, entre eles os que se baseiam em características ambientais (solo, precipitação etc.), na vegetação local e na relação entre a altura e a idade das árvores. Os dois primeiros métodos apresentam alta complexidade devida às interações ambientais. O último, por sua vez, tem sido amplamente empregado, aparecendo como o mais prático e consistente indicador da qualidade do local e, conseqüentemente, da capacidade produtiva (JONES, 1969).

A altura média das árvores dominantes em uma idade específica define o chamado índice de local (CAMPOS e LEITE, 2002). De acordo com Davis e Johnson (1987), o índice de local não é perfeito, porém, como as árvores dominantes estão crescendo livres de competição no estrato superior, elas estão fortemente correlacionadas com o volume do povoamento e não são afetadas, dentro de certos limites, pela densidade populacional, apresentando vantagens em comparação com os outros métodos. Além disso, assume-se que os indivíduos dominantes conseguem captar os recursos ambientais a eles oferecidos, expressando isso em seu desenvolvimento, isto é, em suas alturas.

A utilização do índice de local permite ao manejador avaliar diferentes alternativas de manejo quando associadas a um modelo de crescimento e produção. Um exemplo clássico de modelo, em nível de povoamento, que permite simular diversas opções de manejo é o de Clutter (1963), cujas relações funcionais são:

$$lnV_2 = \beta_0 + \beta_1.(1/I_2) + \beta_2.S + \beta_3.lnB_2 + \varepsilon$$

$$lnB_2 = lnB_1.(I_1/I_2) + \beta_4.(1-I_1/I_2) + \beta_5.(1-I_1/I_2) .S + \varepsilon$$

em que ln = logaritmo neperiano; V_2 = volume futuro por hectare; I_2 = idade futura; I_1 = idade presente; B_2 = área basal futura por hectare; B_1 = área basal presente por hectare; S = índice de local; β_0 ... β_5 = parâmetros do modelos; e ε = erro aleatório.

Do ponto de vista teórico, esse modelo está corretamente especificado, pela inclusão de variáveis do povoamento relacionadas à produção volumétrica (idade, índice de local e área basal). Observa-se, contudo, no modelo anterior, que o índice de local é uma variável independente na equação que projeta a produção

volumétrica. Conceitualmente, isso conflita com o mencionado por Spurr (1952), uma vez que, segundo esse autor, a produção volumétrica de uma floresta é função da área basal por hectare e da altura média das árvores (\overline{H}) e não da altura média das árvores dominantes, em que se fundamenta o índice de local.

Como complemento, Leary (1988) mostrou, através de uma matriz de variáveis relacionadas à produção volumétrica, que a altura média das árvores de uma floresta é função da idade e da capacidade produtiva do local. Esse comportamento da variável altura média permite inferir sobre a possibilidade de especificação de um modelo de crescimento e produção, composto por um sistema de equações, em que a produção volumétrica de uma floresta seja função de variáveis como idade, área basal por hectare e altura média das árvores, tendo o índice de local como uma variável diferenciadora da produção.

Diante desses argumentos, este trabalho teve por objetivo especificar um modelo de crescimento e produção, composto por um sistema de equações, tendo como referência o modelo de Clutter (1963).

2. MATERIAL E MÉTODOS

Os dados utilizados neste estudo foram provenientes de 160 parcelas permanentes de plantios de *Eucalyptus grandis* W. Hill ex Maiden x *E. urophylla* S. T. Blake, localizados no município de Entre Rios, Estado da Bahia, pertencentes à empresa COPENER Florestal Ltda. Esses dados compreenderam plantios com idades entre 28 e 89 meses, área basal entre 2,11 e 35,89 m²/ha, volume total com casca variando de 18,86 a 489,18 m³/ha e índice de local entre 12,48 e 36,06 m.

Para a classificação da capacidade produtiva dos plantios, através do índice de local, utilizou-se a seguinte equação:

lnHd = 3,625923 - 26,3768.(1/I); Idade-índice de 60 meses R² = 52,64%

em que:

ln = logaritmo neperiano;

Hd = altura média das árvores dominantes, em m; e I = idade, em meses.

Inicialmente, utilizando o método dos Mínimos Quadrados em Dois Estágios (MQ2E), foi ajustado o modelo de Clutter, na sua forma original, conforme

descrito anteriormente. A escolha desse modelo baseouse no seu amplo emprego no setor florestal e, em especial, por ser um modelo compatível e consistente.

A precisão das equações foi verificada analisandose os coeficientes de determinação (R^2) e os coeficientes de variação (CV), na unidade original (m^3/ha) , e a exatidão das estimativas, através do comportamento dos gráficos dos valores estimados em relação aos valores observados.

Em seguida, foram realizadas e testadas modificações no modelo, adequando-o ao uso coerente das variáveis altura média das árvores do povoamento (média aritmética - \overline{H}) e do índice de local, mantendo a propriedade de compatibilidade e consistência. Após as modificações, o modelo proposto foi ajustado utilizando-se a mesma base de dados e comparado com o ajuste do modelo original de Clutter.

3. RESULTADOS E DISCUSSÃO

Ao ajustar o modelo de Clutter (1963) na sua forma original, obteve-se:

$$\begin{split} lnV_2 = &1,679631 - 21,57754.(1/I_2) + 0,019446.S + 1,169825.lnB_2 \\ R^2 = &98,97\%; \ CV = \pm 9,67\% \\ lnB_2 = &lnB_1 .(I_f/I_2) + 2,807449.(1-I_f/I_2) + 0,026929.(1-I_f/I_2) .S \\ R^2 = &94,82\%; \ CV = \pm 7,18\% \end{split}$$

Pela análise da Figura 1, relacionando os volumes estimados em função dos volumes observados, verificouse a exatidão das estimativas da produção volumétrica, haja vista a tendência apresentada (45°, passando pela origem). No entanto, cabe ressaltar a leve tendência de subestimação em plantios com maior produção volumétrica (acima de 350 m³/ha).

Utilizando três classes de produtividade (S=15, S=23 e S=31), projetaram-se as áreas basais e os volumes com casca por hectare até a idade de 90 meses, bem como foram calculados os respectivos incrementos médios mensais em volume (IMM), visando obter as idades técnicas de colheita (ITC) para as classes de produtividade consideradas (Quadro 1). As áreas basais iniciais, aos 28 meses, nas três classes de produtividade, foram obtidas pela média aritmética das áreas basais nessa idade.

Verifica-se, no Quadro 1, que as idades técnicas de colheita nas classes de local 15, 23 e 31 foram, respectivamente, iguais a 76, 60 e 58 meses, com apenas dois meses de diferença entre as ITC, nas classes 23 e 31.

Considerando a forma estrutural do modelo de Clutter (1963) e as tendências apresentadas no trabalho de Leary (1988), foram feitas modificações no modelo original, definindo a seguinte forma estrutural para o modelo proposto:

$$\begin{split} & \ln V_2 = \beta_0 + \beta_1.(1/I_2) + \beta_2.LnB_2 + \beta_3. \ ln \ \overline{H}_2 + \varepsilon \\ & \ln B_2 = \ln B_1.(I_1/I_2) + \beta_4.(1-I_1/I_2) + \beta_5.(1-I_1/I_2) .S + \varepsilon \\ & \ln \overline{H}_2 = \ln \overline{H}_1.(I_1/I_2) + \beta_6.(1-I_1/I_2) + \beta_7.(1-I_1/I_2) .S + \varepsilon \end{split}$$

em que V_2 = volume total com casca futuro, em m³/ha; I_2 = idade futura, em meses; I_1 = idade presente, em meses; B_2 = área basal futura, em m²/ha; B_1 = área basal presente, em m²/ha; \overline{H}_2 = altura média futura, em metros; \overline{H}_1 = altura média presente, em metros; S = índice de local, em metros; S_1 = parâmetros do modelos; e S_2 = erro aleatório. Dessa forma, quando S_1 for igual a S_2 , \overline{H}_2 = \overline{H}_1 e S_2 = S_1 .

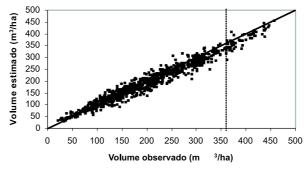


Figura 1 – Volumes observados e estimados por hectare pelo modelo de Clutter (1963). Figure 1 – Observed and estimated volumes per hectare obtained by the Clutter model (1963).

SOARES, C.P.B. et al.

Quadro 1 – Estimativas de área basal por hectare (B), volume por hectare (Vol) e incremento médio mensal em volume (IMM), nas três classes de índices de locais (S), obtidas pelo modelo de Clutter (1963)

Table 1 – Estimates of basal area per hectare (B), volume per hectare (Vol) and mean monthly increment (IMM) in volume, for three site index classes (S), obtained by Clutter model (1963)

	Classe de Produtividade III (S=15)			Classe	de Produtivi	dade II	Classe de Produtividade I		
				(S=23)			(S=31)		
Idade	В	Vol.	IMM	В	Vol.	IMM	В	Vol.	IMM
	(m²/ha)	(m³/ha)	(m³/ha.ano)	(m²/ha)	(m³/ha)	(m³/ha.ano)	(m²/ha)	(m³/ha)	(m³/ha.ano)
28	4,6471	20,0420	0,7158	9,3941	53,3442	1,9051	12,4419	86,5772	3,0920
30	5,1962	24,0431	0,8014	10,1675	61,6018	2,0534	13,4075	99,4695	3,3156
32	5,7296	28,1941	0,8811	10,8963	69,8694	2,1834	14,3137	112,3157	3,5099
34	6,2455	32,4480	0,9544	11,5826	78,0810	2,2965	15,1640	125,0216	3,6771
36	6,7430	36,7653	1,0213	12,2289	86,1871	2,3941	15,9621	137,5175	3,8199
38	7,2216	41,1127	1,0819	12,8376	94,1507	2,4776	16,7118	149,7531	3,9409
40	7,6813	45,4633	1,1366	13,4113	101,9451	2,5486	17,4165	161,6932	4,0423
42	8,1224	49,7950	1,1856	13,9525	109,5519	2,6084	18,0798	173,3145	4,1265
44	8,5453	54,0900	1,2293	14,4634	116,9585	2,6581	18,7046	184,6026	4,1955
46	8,9507	58,3342	1,2681	14,9462	124,1576	2,6991	19,2939	195,5499	4,2511
48	9,3392	62,5168	1,3024	15,4029	131,1453	2,7322	19,8504	206,1544	4,2949
50	9,7115	66,6290	1,3326	15,8353	137,9209	2,7584	20,3766	216,4177	4,3284
52	10,0682	70,6647	1,3589	16,2453	144,4856	2,7786	20,8746	226,3445	4,3528
54	10,4103	74,6190	1,3818	16,6344	150,8423	2,7934	21,3466	235,9415	4,3693
56	10,7383	78,4887	1,4016	17,0040	156,9951	2,8035	21,7945	245,2169	4,3789
58	11,0529	82,2718	1,4185	17,3555	162,9489	2,8095	22,2199	254,1802	4,3824
60	11,3549	85,9670	1,4328	17,6901	168,7094	2,8118	22,6244	262,8413	4,3807
62	11,6449	89,5739	1,4447	18,0090	174,2825	2,8110	23,0095	271,2106	4,3744
64	11,9235	93,0927	1,4546	18,3131	179,6743	2,8074	23,3765	279,2986	4,3640
66	12,1913	96,5240	1,4625	18,6036	184,8912	2,8014	23,7266	287,1161	4,3502
68	12,4488	99,8690	1,4687	18,8811	189,9395	2,7932	24,0608	294,6735	4,3334
70	12,6965	103,1289	1,4733	19,1465	194,8255	2,7832	24,3803	301,9812	4,3140
72	12,9351	106,3054	1,4765	19,4007	199,5555	2,7716	24,6859	309,0491	4,2923
74	13,1648	109,4001	1,4784	19,6442	204,1354	2,7586	24,9785	315,8873	4,2687
76	13,3862	112,4151	1,4791	19,8777	208,5711	2,7444	25,2590	322,5050	4,2435
78	13,5998	115,3522	1,4789	20,1018	212,8685	2,7291	25,5279	328,9115	4,2168
80	13,8058	118,2135	1,4777	20,3170	217,0330	2,7129	25,7861	335,1155	4,1889
82	14,0046	121,0010		20,5239	221,0699	2,6960	26,0341	341,1254	4,1601
84	14,1966	123,7169	1,4728	20,7229	224,9844	2,6784	26,2724	346,9493	4,1303
86	14,3822	126,3633	1,4693	20,9144	228,7813	2,6602	26,5018	352,5950	4,0999
88	14,5616	128,9421	1,4653	21,0988	232,4654	2,6417	26,7226	358,0696	4,0690
90	14,7351	131,4555	1,4606	21,2766	236,0412	2,6227	26,9353	363,3804	4,0376

Utilizando a mesma base de dados, ajustou-se o modelo proposto empregando o método dos Mínimos Quadrados em Dois Estágios (MQ2E), resultando em:

$$lnV_2 = -0.253687 - 4.748820.(1/I_2) + 1.032913.lnB_2 + 0.837185.ln\overline{H}_2$$

$$R^2 = 99,69\%$$
; C.V = $\pm 1,15\%$

$$lnB_2 = lnB_1 \cdot (I_1/I_2) + 2,807449 \cdot (1 - I_1/I_2) + 0,026929 \cdot (1 - I_1/I_2) \cdot S$$

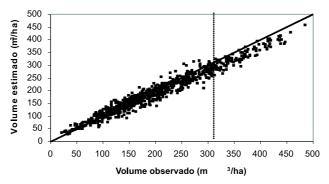
 $R^2 = 94,82\%$; C.V = ± 7,18%

$$ln\overline{H}_2 = ln\overline{H}_1 \cdot (I_1/I_2) + 3,062917 \cdot (1-I_1/I_2) + 0,014519 \cdot (1-I_1/I_2) \cdot S$$

 $R^2 = 93,49\%$; C.V = ± 4,27%

em que todos os coeficientes foram significativos em nível de 1% de significância, pelo teste "t" (Student).

Pelo valor do coeficiente de determinação (R^2) da equação que projeta a produção volumétrica, verificou-


se que o modelo proposto apresentou-se mais preciso do que o modelo original de Clutter (1963). No entanto, verificou-se novamente uma tendência de subestimação dos volumes nos povoamentos acima de 300 m³/ha (Figura 2).

Considerando as idades técnicas de colheita (ITC) de 78, 60 e 54 meses (Quadro 2), nas quais as projeções volumétricas são menores que 300 m³/ha, notou-se que a tendência de subestimação não invalida o uso do modelo proposto, uma vez que os plantios estariam sendo colhidos antes da idade em que se verifica tal tendenciosidade.

Comparando os dois modelos em termos de idade técnica de colheita (ITC), observa-se, na Figura 3, que o modelo proposto propicia um aumento da ITC nos locais com menores produtividades e diminuição da

ITC em plantios de maiores produtividades. Na prática, como a colheita de plantios leva alguns meses para ser efetuada, a diferença entre as idades técnicas de colheita obtidas pelo modelo de Clutter (1963) e pelo modelo proposto pode ser considerada não-significativa.

Figura 2 – Volumes observados e estimados por hectare, obtidos pelo modelo proposto. **Figure 2** – Observed and estimated volumes per hectare obtained by the proposed model.

Quadro 2 – Estimativas de área basal por hectare (B), altura média (Ht), volume por hectare (V) e incremento médio mensal em volume (IMM), nas três classes de produtividade (S), obtidas pelo modelo proposto

Table 2 – Estimates of basal area per hectare (B), mean height (Ht), volume per hectare (Vol) and mean monthly increment (IMM) in volume, for three site indexes classes (S), obtained by the proposed model

	Classe de Produtividade III (S=15)			Classe de Produtividade II (S=23)				Classe de Produtividade I (S=31)				
Idade	В	Ht	Vol.	IMM	В	Ht	Vol.	IMM	В	Ht	Vol.	IMM
	(m²/ha)	(m)	(m³/ha)	(m³/ha.ano)	(m²/ha)	(m)	(m³/ha)	(m³/ha.ano)	(m²/ha)	(m)	(m³/ha) (m³/ha.ano)
28	4,6471	9,31	20,7299	0,7404	9,3941	12,49	54,8281	1,9581	12,4419	15,88	89,6124	3,2004
30	5,1962	9,99	24,9482	0,8316	10,1675	13,24	63,1747	2,1058	13,4075	16,69	102,0802	3,4027
32	5,7296	10,62	29,3377	0,9168	10,8963	13,93	71,5139	2,2348	14,3137	17,43	114,4046	3,5751
34	6,2455	11,21	33,8480	0,9955	11,5826	14,57	79,7816	2,3465	15,1640	18,12	126,5090	3,7209
36	6,7430	11,76	38,4360	1,0677	12,2289	15,16	87,9297	2,4425	15,9621	18,75	138,3396	3,8428
38	7,2216	12,27	43,0657	1,1333	12,8376	15,71	95,9231	2,5243	16,7118	19,33	149,8596	3,9437
40	7,6813	12,76	47,7075	1,1927	13,4113	16,22	103,7366	2,5934	17,4165	19,87	161,0456	4,0261
42	8,1224	13,21	52,3369	1,2461	13,9525	16,70	111,3530	2,6513	18,0798	20,37	171,8841	4,0925
44	8,5453	13,64	56,9341	1,2940	14,4634	17,15	118,7612	2,6991	18,7046	20,84	182,3690	4,1447
46	8,9507	14,04	61,4833	1,3366	14,9462	17,57	125,9548	2,7381	19,2939	21,28	192,4997	4,1848
48	9,3392	14,42	65,9721	1,3744	15,4029	17,96	132,9311	2,7694	19,8504	21,68	202,2799	4,2142
50	9,7115	14,78	70,3907	1,4078	15,8353	18,33	139,6901	2,7938	20,3766	22,07	211,7159	4,2343
52	10,0682	15,11	74,7316	1,4371	16,2453	18,68	146,2338	2,8122	20,8746	22,43	220,8162	4,2465
54	10,4103	15,43	78,9892	1,4628	16,6344	19,00	152,5658	2,8253	21,3466	22,76	229,5909	4,2517
56	10,7383	15,74	83,1597	1,4850	17,0040	19,31	158,6907	2,8338	21,7945	23,08	238,0508	4,2509
58	11,0529	16,02	87,2403	1,5041	17,3555	19,61	164,6141	2,8382	22,2199	23,38	246,2072	4,2450
60	11,3549	16,30	91,2292	1,5205	17,6901	19,88	170,3418	2,8390	22,6244	23,66	254,0717	4,2345
62	11,6449	16,56	95,1258	1,5343	18,0090	20,15	175,8804	2,8368	23,0095	23,93	261,6562	4,2203
64	11,9235	16,80	98,9298	1,5458	18,3131	20,40	181,2362	2,8318	23,3765	24,18	268,9721	4,2027
66	12,1913	17,04	102,6418	1,5552	18,6036	20,63	186,4159	2,8245	23,7266	24,43	276,0309	4,1823
68	12,4488	17,26	106,2626	1,5627	18,8811	20,86	191,4261	2,8151	24,0608	24,65	282,8436	4,1595
70	12,6965	17,48	109,7933	1,5685	19,1465	21,07	196,2732	2,8039	24,3803	24,87	289,4209	4,1346
72	12,9351	17,68	113,2356	1,5727	19,4007	21,28	200,9637	2,7912	24,6859	25,08	295,7732	4,1080
74	13,1648	17,88	116,5911	1,5756	19,6442	21,47	205,5038	2,7771	24,9785	25,28	301,9104	4,0799
76	13,3862	18,07	119,8616		19,8777	21,66	209,8995		25,2590	25,47	307,8420	4,0506
78	13,5998	18,25	123,0492		20,1018	21,84	214,1567		25,5279	25,65	313,5771	4,0202
80	13,8058	18,42	126,1559	1,5769	20,3170	22,01	218,2810	2,7285	25,7861	25,82	319,1244	3,9891
82	14,0046	18,59	129,1838	1,5754	20,5239	22,18	222,2778	2,7107	26,0341	25,99	324,4922	3,9572
84	14,1966	18,74	132,1351	1,5730	20,7229	22,33	226,1522		26,2724	26,14	329,6882	3,9249
86	14,3822	18,90	135,0118	1,5699	20,9144	22,49	229,9094		26,5018	26,30	334,7201	3,8921
88	14,5616	19,05	137,8162	1,5661	21,0988	22,63	233,5539		26,7226	26,44	339,5948	3,8590
90	14,7351	19,19	140,5504	1,5617	21,2766	22,77	237,0905		26,9353	26,58	344,3192	3,8258

SOARES, C.P.B. et al.

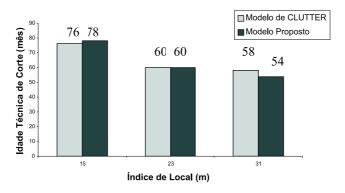


Figura 3 – Idades técnicas de corte (ITC's) pelo modelo de Clutter (1963) e pelo modelo proposto, nas três classes de produtividade (S=15, S=23 e S=31).

Figure 3 – Technical cut ages (ITC) for the proposed and CLUTTER model (1963) considering three site index classes (S=15, S=23 e S=31).

Analisando os volumes nas idades técnicas de colheita (ITC), apresentados no Quadro 3, verificouse que o modelo de Clutter (1963) projetou volumes menores nas classes iguais a 15 e 23. Na classe 31, observou-se o contrário.

Para verificar a precisão das estimativas volumétricas obtidas pelos modelos ajustados em relação aos volumes observados, foram calculadas as médias dos desvios

Quadro 3 – Diferenças entre os volumes projetados pelo modelo de Clutter (C) e pelo modelo proposto (P), nas idades técnicas de colheita (ITC)

Table 3 – Differences between projected volumes by CLUTTER (C) and proposed (P) models in the technical cut age (ITC)

	ITC (meses)	V. (1	Diferença (%)	
S (m)	-	Clutter (C)	Proposto (P)	P-C
15	76	112,4151	119,8616	6,62
15	78	115,3522	123,0492	6,67
23	60	168,7094	170,3418	0,97
31	54	235,9415	229,5909	-2,69
31	58	254,1802	246,2072	-3,13

4. CONCLUSÕES

Com base nos resultados deste estudo, concluiuse que:

a) O modelo proposto apresentou-se mais preciso do que o de Clutter (1963), em idades menores do que as idades técnicas de colheita (ITC), independentemente da classe de produtividade. porcentuais por classe de idade, nas três classes de produtividades (Quadro 4). O modelo proposto apresentou-se mais preciso em plantios até 77 meses, na classe igual a 15, e até 47 meses na classe 31. Nas idades técnicas de colheita (ITC) nas duas classes, as estimativas foram menos precisas (valores sublinhados). Apenas na classe igual a 23 o modelo proposto propiciou estimativas mais precisas na ITC.

Quadro 4 – Médias dos desvios porcentuais por classe de idade, nas três classes de produtividade

Table 4 – Average of the percent deviations for ages and productivity classes

	S =	15	S =	23	S = 31		
Idade	Clutter	Proposto	Clutter	Proposto	Clutter	Proposto	
(meses)							
28 - 37	29,42	28,52	3,11	4,22	5,88	5,45	
38 - 47	0,40	-0,05	-1,13	0,45	4,26	3,67	
48 - 57	0,74	-0,54	-1,25	-0,48	0,13	<u>-1,85</u>	
58 - 67	8,27	6,85	<u>-1,43</u>	<u>-1,39</u>	-0,91	-2,99	
68 - 77	1,74	-0,36	-7,48	-7,59	-5,77	-9,21	
≥ 78	<u>3,62</u>	<u>4,91</u>	-2,21	-2,33	-1,93	-5,16	

b) Nas idades técnicas de colheita (ITC), o modelo proposto apresentou-se menos preciso na menor e maior classe de produtividade.

5. REFERÊNCIAS BIBLIOGRÁFICAS

CAMPOS, J.C.C.; LEITE, H.G. Mensuração florestal. Viçosa, MG: UFV, 2002. 407p.

CLUTTER, J.L. Compatible growth and yield models for lobolly pine. **Forest Science**, v.9, n.3, p.354-371, 1963.

CLUTTER, J.L. et al. **Timber management:** a quantitative approach. New York: John Wiley & Sons, 1983. 333p.

DAVIS,L.S.; JOHNSON, K.N. **Forest management**. 3.ed. New York: McGraw-Hill, 1987. 789p.

JONES, J.R. Review and comparison of site evaluation methods. Rocky Mountain For. Exp. Station, USDA: Forest Service, 1969. 27p. (Research Paper, RM-51)

LEARY, R. A. Some factors that will affect the next generation of forest growth models. In: FOREST Growth Modelling and Prediction Conference, 1., 1987, Minneapolis, Minnesota, USA: **Proceedings...** Minneapolis: United States Departament of Agriculture, North Central Forest Experiment Station, v.1, p. 22-32, 1988. (General Technical Report NC – 120).

SPURR, S. **Forest inventory**. New York: Ronald Press, 1952. 476p.

