Acessibilidade / Reportar erro

ALLOMETRIC MODELS TO ESTIMATE ABOVEGROUND BIOMASS OF SMALL TREES IN WET TROPICAL FORESTS OF COLOMBIAN PACIFIC AREA

MODELOS ALOMÉTRICOS PARA ESTIMAR A BIOMASA AÉREA DE ÁRVORES PEQUENAS EM BOSQUES HÚMIDOS TROPICAIS DO PACÍFICO COLOMBIANO

ABSTRACT

World wet tropical forests, and especially the ones in the Colombian Pacific area, are the target of a small tree (minor diameter) selective harvest process, used in short-cycle industries, such as bioenergy. This situation generates a reduction in stored carbon and biomass, and becomes an emission of greenhouse gases (GHG). Allometric models for aboveground biomass are few, despite being an important tool of carbon calculation. The goal of this study was to develop multi-species allometric models for small trees aboveground biomass in wet tropical forests. A total of 61 individuals (diameter at breast height -DBH- < 12 cm) was measured, cut and weighed to estimate their biomass. The model with the best adjustment was selected considering criteria of determination coefficient (R2) and adjusted R2, mean quadratic error of prediction, Akaike and Bayesian Information Criteria and the biological logic of the model. Best-fit allometric model (R2= 0,72) was with DBH and total height as independent variables, considering that it is a multi-species model coming from forests with a high diversity.

Keywords:
Forest harvest; Carbon; Mitigation

RESUMO

Os bosques do trópico húmido no mundo e, especialmente os do Pacífico Colombiano, estão a ser submetidos a um aproveitamento selectivo de árvores de diâmetros menores, utilizados em indústrias de ciclos curtos, tal como a bioenergía. Esta situação gera uma redução na biomasa e o carbono alojado e constitui-se numa emissão de gases de efeito invernadero (GEI). Os modelos alométricos para a estimativa da biomasa acima do solo de árvores pequenas são escassos, apesar de ser uma importante ferramenta para o cálculo do carbono. O objectivo do estudo foi desenvolver modelos alométricos multi-espécies para estimar a biomasa acima do solo em bosques húmidos tropicais. Seleccionaram-se 61 indivíduos (diâmetro à altura do peito -DAP- < 12 cm), que eles foram medidos, cortado e pesado para estimar a sua biomassa. Seleccionou-se o modelo de melhor ajuste considerando critérios de coeficiente de determinação (R2) e R2 ajustado, erro quadrático médio de predição, Critérios de Akaike e Bayesiano de Informação e a lógica biológica do modelo. Alométrica modelo melhor ajuste (R2 = 0,72) foi a DAP e altura total como variáveis independentes, considerando que é um multi-espécies de florestas com um modelo de elevada diversidade.

Palavras-Chave:
Aproveitamento florestal; Carbono; Mitigação

1. INTRODUCTION

Forests play a specific and very important role in the global carbon-cycle, absorbing carbon dioxide during photosynthesis and storing it above and belowground (Ilyas, 2013Ilyas S. Allometric equation and carbon sequestration of Acacia mangium willd. in coal mining reclamation areas. Civil and Environmental Research. 2013;3(1):8-16.). A mechanism of mitigation and adaptation to climate change are the projects of Reduction of Emissions from Deforestation and Forest Degradation (REDD+) as a political-effective option. One of its goals is to estimate the carbon reserves stored in the forests (Field et al, 2014Field CB, Maccracken S, Mastrandrea MD, Levy AN, Bilir TE, Barros VR, et al. Cambio climático 2014 Impactos, adaptación y vulnerabilidad. Suiza: IPCC; 2014.). The existence of local allometric models to estimate biomass in different land uses is a fundamental part of the carbon inventories, and these are a basic requirement to develop forest projects for greenhouse gases (GHG) mitigation. Forest biomass has been studied with different purposes, among which is the nutrient cycle, for energetic purposes, in forest growth assessment, for forest management purposes, environmental impact mitigation, and obtaining economic incentives for forest preservation and the reduction of such gases (Sanquetta et al., 2014Sanquetta CR, Behling A, Dalla A, Augusto S, Pscheidt H, Ruza M, et al. Estoques de biomassa e carbono em povoamentos de acácia-negra em diferentes idades no Rio Grande do Sul. Scientia Forestalis. 2014;42(103):361-370.). Being aware that forest cover is the main carbon sink, these ecosystems are considered as a climatic change mitigation strategy at global level (FAO, 2010FAO. “La gestión de los bosques ante el cambio climático,” 2010. [En línea]. Disponible en: http://www.fao.org/ docrep/014/i1960s/i1960s00.pdf
http://www.fao.org/ docrep/014/i1960s/i1...
; Banco Mundial, 2018Banco Mundial. “Por qué los bosques son fundamentales para el clima, el agua, la salud y los medios de subsistencia,” marzo 2016. [En línea]. Disponible en: http://www.bancomundial.org/es/news/feature/2016/03/18/whyforests-are-key-to-climate-water-health-and-livelihoods
http://www.bancomundial.org/es/news/feat...
). The main threat to conservation of forests in Bajo Calima, Valle del Cauca and Colombian Pacific is the indiscriminate tree harvest of the commercial species most appreciated by the community (Programa de las Naciones Unidas para el Desarrollo [United Nations Development Program] PNUD, 2010Programa de las Naciones Unidas para el Desarrollo - PNUD. Los afrocolombianos frente a los objetivos de desarrollo del milenio, 2010b. [acceso en: 17 sep 2016]. Disponible en: http://www.undp.org/content/dam/colombia/docs/ODM/undp-co-odmafrocolombianos-2012.pdf.
http://www.undp.org/content/dam/colombia...
), which has caused forest destruction and a modification in the landscape that may start biodiversity degradation (Martínez, 2007Martínez H. Análisis ecológico silvicultural, con fines de manejo, del bosque secundario de la vereda Las Brisas, Buenaventura [tesis] Valle del Cauca, Colombia. Santiago de Cali: Universidad del Valle; 2007.).

The Bajo Calima population, mostly of African-descending and organized into Community Councils, is searching for sustainable alternatives for their forests protection. This population, just like many others in the Colombian Pacific, due to its environmental and socio-economic characteristics, are mainly dependent on wood products such as beams, poles and posts of minor diameters that are used in mines and for their sustenance as firewood (Programa de las Naciones Unidas para el Desarrollo - PNUD, 2010Programa de las Naciones Unidas para el Desarrollo - PNUD. Los afrocolombianos frente a los objetivos de desarrollo del milenio, 2010b. [acceso en: 17 sep 2016]. Disponible en: http://www.undp.org/content/dam/colombia/docs/ODM/undp-co-odmafrocolombianos-2012.pdf.
http://www.undp.org/content/dam/colombia...
). From 2013, A REDD+ project was started in Bajo Calima and Bahía Malaga with the purpose of reducing climatic change and contribute to the conservation of biodiversity, increasing sustainable development of the local communities (Verified Carbon Standard -VCS-, 2015Verified Carbon Standard - VCF. Proyecto REDD+Bajo Calima y Bahía Málaga, Versión 3, 2015. [acceso en: 17 sep 2016]. Disponible en: http://www.v-c-s.org/sites/cs.org/files/BCBM%20PDD_Spanish %20Summary_v1.6.pdf.
http://www.v-c-s.org/sites/cs.org/files/...
).

Allometric models allow estimating biomass based on variables measured in forest inventories (diameter at breast height -1,3 m from ground, DBH - and total height - TH - or at canopy base - CBH) (Andrade et al., 2014Andrade H, Segura M, Forero L. Desarrollo de modelos alométricos para volumen de madera, biomasa y carbono en especies leñosas perennes: Conceptos básicos, métodos y procedimientos. Ibagué: Sello Editorial Universidad del Tolima; 2014.). However, biomass models are specific for each type of ecosystem, life zone, species or group of species (Segura and Kanninen, 2005Segura M, Kanninen M. Allometric models for tree volume and total aboveground biomass in a tropical humid forest in Costa Rica. Biotropica. 2005;37(1):2-8.; Picard et al., 2012Picard N, Saint-André L, Henry M. Manual for building tree volume and biomass allometric equations: from field measurement to prediction. Rome: Food and Agricultural Organization of the United Nations and Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement; 2012. 215p.; Andrade et al., 2014Andrade H, Segura M, Forero L. Desarrollo de modelos alométricos para volumen de madera, biomasa y carbono en especies leñosas perennes: Conceptos básicos, métodos y procedimientos. Ibagué: Sello Editorial Universidad del Tolima; 2014.). Therefore, local models are a good practice according to IPCC (2006)Intergovernmental Panel on Climate Change - IPCC. Guidelines for National Greenhouse Gas Inventories. Tokio: National Greenhouse Gas Inventories Programme; 2006.. Allometric models by Chave et al. (2005)Chave J, Andalo C, Brown S, Cairns M, Chambers J, Eamus D, et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecología. 2005;145(1):87-99. and Álvarez et al. (2012)Álvarez E, Duque A, Saldarriaga J, Cabrera K, De Las Salas G, Del Valle I, et al. Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. Forest Ecology and Management. 2012;267(1):297-308. comprise a good approximate to estimate aboveground biomass of tropical forests in regions where no models have been developed, since these are few or non-existent in the Colombian Pacific.

Multi-species allometric models, developed with representative species of a forest, in order to estimate biomass in individuals of minor diameters (DBH < 10 cm) are more scarce than for trees (DBH > 10 cm), such as the ones developed by Álvarez et al. (2012)Álvarez E, Duque A, Saldarriaga J, Cabrera K, De Las Salas G, Del Valle I, et al. Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. Forest Ecology and Management. 2012;267(1):297-308. for Colombian natural forests and the ones by Brown et al. (1989)Brown S, Gillespie A, Lugo A. Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Science. 1989;35(4):881-902., Chave et al. (2005)Chave J, Andalo C, Brown S, Cairns M, Chambers J, Eamus D, et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecología. 2005;145(1):87-99. and Nelson et al., (2014)Nelson A, Weiskittel A, Wagner R, Saunders M. Development and evaluation of aboveground small tree biomass models for naturally regenerated and planted species in eastern Maine, U.S.A. Biomass and Bioenergy. 2014;68:215-227. for tropical forests. A few models for minor individuals include the ones produced by Andrade et al., (2008)Andrade H, Segura M, Somarriba E, Villalobos M. Valoración biofísica y financiera de la fijación de carbono por uso del suelo en fincas cacaoteras indígenas de Talamanca, Costa Rica. Revista Agroforestería en las Américas. 2008;(46):45-50. for saplings and seedlings (0,3 cm < DBH < 10 cm) in high fallows in the tropical zone in Talamanca, Costa Rica and by Hughes et al., (1999)Hughes RF, Kauffman JB, Jaramillo VJ. Biomass, carbon, and nutrient dynamics of secondary forest in a humid tropical region of México. Ecology. 1999;80(6):1892-1907. for trees with DBH < 10 cm in secondary forests on wet tropics in Tuxtla, México.

The goal of this research was to develop a multi-species allometric model to estimate total aboveground biomass of minor diameter individuals (DBH < 12 cm) in forests intervened in Bajo Calima, and the Colombian Pacific.

2. MATERIALS AND METHODS

2.1. Area of study.

The research was carried out in the Consejo Comunitario de la Cuenca del Bajo Calima (CCCBC), more specifically in the communities of La Estrella, Las Brisas, El Crucero km 9, Villa Estela and San Isidro. CCCBC is located in the coordinates 03º 57´ 12,7´´ N and 76º 59´ 26,6´´ W, at an altitude of 50 m and at approximately 20 km from the Municipality of Buenaventura. The area of study is characterized for presenting an annual mean temperature and precipitation of 26ºC and 7184 mm, respectively, a mean relative humidity of 88% and a 966 h/year of sunlight (Instituto de Hidrología, Meteorología y Estudios Ambientales [Hydrology, Meteorology and Environmental Studies Institute] -(IDEAM, 2016)Instituto de Hidrología. Meteorología y Estudios Ambientales - IDEAM. Sistemas de información. Petición Información Radicado 20160418171008. 2016..

2.2. Selection of species and individuals.

The species selected for the construction of the multi-species allometric models were the ones with the highest commercial use in the zone. According to Lozano and González (2011)Lozano L, Gonzalez J. Bajo Calima: riqueza biológica y cultura afectada por la extracción de maderas tropicales. Lebret. 2011(3):205-220., the major timber products obtained from these secondary forests are around woods in shapes of beams, poles, logs and posts, whose commercialization is focused mainly in small individuals (4 to 5 years old) with a DBH between 8 and 15 cm.

A total of 61 individuals were sampled, which were harvested by the communities, and belonging to 25 species and 17 families: Protium colombianum Cuatrec. (Burseraceae), Calophyllum mariae Planch. & Triana (Clusiaceae), Mabea chocoensis Croizat and Tetrorchidium ochroroleucum Cuatrec. (Euphorbiaceae), Casearia oblongifolia Cambess. (Saliacaceae), Goupia glabra Aubl. (Goupiaceae), Humiria sp (Humiriaceae), Ocotea cernua (Nees) Mez y Ocotea sp (Lauraceae), Eschweilera sp (Lecythidaceae), Abarema sp and Inga chocoensis T.S. Elias (Leguminoseae), Pterygota excelsa (Standl. & L.O. Williams) Kosterm; and Sterculia pilosa Ducke (Malvaceae), Miconia lepidota Schrank & Mart. ex DC. And Miconia sp (Melastomataceae), Otoba lehmannii (A.C. Sm.) A.H. Gentry and Virola sp (Myristicaceae), Ogcodeia ulei (Warb.) J.F. Macbr., Chrysophyllum sp and Pouteria sp (Sapotaceae), Simarouba amara Aubl. (Simaroubaceae), Pourouma aspera Trécul (Urticaceae), Qualea lineata Stafleu and Vochysia ferruginea Mart. (Vochysiaceae). The individuals selected were classified as seedlings (DBH < 5 cm and TH > 0,3 m), saplings (5 < DBH < 10 cm) and trees (10 < DBH < 12 cm).

2.3. Measuring and biomass estimation.

Once the sampled trees were selected and taxonomically identified, its DBH, TH and CBH were measured. The individuals were cut and separated in three components: stem, large branches (diameter > 2 cm), small branches (diameter < 2 cm) and leaves, every one of each was weighed by taking two sub-samples (of approximately 250 g each) to estimate dry matter (60 ºC until constant weight). Then, total aboveground biomass (Bt) per individual, adding the biomass of all components, was estimated.

2.4. Allometric model selection.

Pearson correlation coefficient (r) between the dependent (Bt) and independent variables (DBH, TH and CBH) was calculated. Then, linear regression analysis with and without logarithm transformations were carried out. The best models were selected considering the criteria of: highest determination coefficient (R2) and adjusted R2, lowest mean quadratic error of prediction (ECMP), Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) and the models biological logic (Clutter et al., 1983Clutter J, Fortson J, Pienaar L, Brister G, Bailey R. Timber management: A quantitative approach. New York: Wiley; 1983.; Segura and Andrade, 2008Segura MA, Andrade HJ. ¿Cómo construir modelos de volumen, biomasa o carbono en especies leñosas perennes? Agroforestería en las Américas. 2008(46):89-96.; Andrade et al., 2014Andrade H, Segura M, Forero L. Desarrollo de modelos alométricos para volumen de madera, biomasa y carbono en especies leñosas perennes: Conceptos básicos, métodos y procedimientos. Ibagué: Sello Editorial Universidad del Tolima; 2014.). Just the same, an analysis of estimated vs observed and residuals was carried out for the selected models.

The models with the best adjustment were compared with the ones developed in tropical wet and very wet forests of America, Asia and Oceania used for Colombia with DBH > 10 cm (Eq. 1; Chave et al., 2005Chave J, Andalo C, Brown S, Cairns M, Chambers J, Eamus D, et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecología. 2005;145(1):87-99.) and or those for DBH < 10 cm developed in Costa Rica (Eq. 2; Andrade et al., 2008Andrade H, Segura M, Somarriba E, Villalobos M. Valoración biofísica y financiera de la fijación de carbono por uso del suelo en fincas cacaoteras indígenas de Talamanca, Costa Rica. Revista Agroforestería en las Américas. 2008;(46):45-50.) and Mexico (Eq. 3; Hughes et al., 1999Hughes RF, Kauffman JB, Jaramillo VJ. Biomass, carbon, and nutrient dynamics of secondary forest in a humid tropical region of México. Ecology. 1999;80(6):1892-1907.).

[Eq. 1] Ln Bt = 3 , 08 + 1 , 007 * Ln DBH 2 * TH * g

[Eq. 2] Log Bt = 1 , 27 + 2 , 2 * Log DBH

[Eq. 3] Ln Bt = 4 , 94 + 1 , 06 * Ln DBH 2 * 1 , 14 / 1000

Where; Ln: natural logarithm; Log: base-10 logarithm; Bt: total aboveground biomass (kg/tree); DBH: diameter at breast height (cm); TH : total height (m); g: specific gravity of wood (g/cm3).

Specific gravity was used per species or genus reported in the wood density global database Zanne et al. (2009)Zanne AE, Lopez-Gonzalez G, Coomes DA, Ilic J, Jansen S, Lewis SL, et al. Global wood density database, Dryad, 2009. [acceso en: 17 feb 2017]. Disponible en: http://hdl.handle.net/10255/dryad.235.
http://hdl.handle.net/10255/dryad.235...
; while for the rest of the species, a value of 0,6 g/cm3, recommended by IPCC (2006)Intergovernmental Panel on Climate Change - IPCC. Guidelines for National Greenhouse Gas Inventories. Tokio: National Greenhouse Gas Inventories Programme; 2006. for tropical America, was used.

3. RESULTS

3.1. Features of sampled individuals.

Sampled individuals showed a DBH range from 2,0 to 12,0 cm, a TH of 3,9 to 15,3 m and a Bt that varied between 0,8 and 42,6 kg/tree. Calophyllum mariae, Abarema sp, Miconia sp and Chrysophyllum sp are represented in all diametric classes (Table 1), which probably explains their high natural regeneration natural and the strong harvest pressure to which are being object of. Sampled trees showed a mean Bt of 17,9 kg/tree, from which 60% was found in the stems (Table 1). In contrast, leaf biomass from the sampled trees varied between 0,1 and 10,7 kg/tree, making the 15% of the Bt (Table 1).

Table 1
Dasometric and taxonomic characteristics and biomass of the sampled trees for the development of biomass models for small trees (DBH < 12 cm) in forests of the Bajo Calima, Buenaventura, Colombia.
Tabela 1
Características dasométricas, taxonómicas e biomasa dos indivíduos muestreados para o desenvolvimento de modelos de biomasa para árvores pequenas (DAP < 12 cm) em bosques de o Bajo Calima, Buenaventura, Colombia.

3.2. Correlation between variables.

Bt was best correlated with TH and DBH than with CBH (r = 0,77; r = 0,69 and r = 0,52, respectively; Figure 1). Just as expected, stem biomass was better explained by DBH than by TH or CBH (r = 0,78; r = 0,76 and r = 0,55, respectively).

Figure 1
Relationship between total aboveground biomass and the independent variables (a: DBH; b: TH; c: CBH) of small trees (DBH < 12 cm) in the Consejo Comunitario de la Cuenca del Bajo Calima, Buenaventura, Valle del Cauca, Colombia. DBH: diameter at breast height; TH: total height; CBH: canopy base height.
Figura 1
Relação entre a biomasa aérea total e as variáveis independentes (A: DAP; B: HT; C: HBC) de árvores pequenas (DAP < 12 cm) em o Consejo Comunitario de la Cuenca del Bajo Calima, Buenaventura, Valle del Cauca, Colombia.

3.3. Model adjustment.

The best fit multi-species models to estimate Bt are based on TH, DBH, or in the combination of these two variables (Table 2). These models turned out to be the best according to the statistics used and were logical from the biologic point of view. The best multi-species model includes the combination of TH and DBH as independent variables (R2= 0,72); meanwhile those with only one variable show adjusted R2for DBH and TH (R2 = 0,63; R2= 0,65, respectively) (Table 2) for the sizes of the sampled trees.

Table 2
The best-fit alometric models for estimating total aboveground biomass of small trees (DBH < 12 cm) in forests of the Consejo Comunitario de la Cuenca del Bajo Calima, Buenaventura, Valle del Cauca, Colombia.
Tabela 2
Modelos alométricos de melhor ajuste para a estimativa da biomasa aérea total de árvores pequenas (DAP < 12 cm) em bosques de o Consejo Comunitario de la Cuenca del Bajo Calima, Buenaventura, Valle del Cauca, Colombia.

Despite the models fit a variety of species in forests with a structural diversity, these equations show good adjustments (0,63 < R2< 0,72) and the estimates are relatively similar to observed biomass (Figure 2). However, AIC and BIC criteria allow verifying a good model adjustment. The comparative analysis of estimated vs observed biomass, along the statistics, indicate that the best-adjustment model was the one that includes DBH and TH variables (Eq. 4; Figure 2), which estimates sampled trees biomass with a higher precision than those based exclusively on one of these variables. Figure 2 shows the best-fit models in each of the independent variables separately and one with both together, whose error distribution can be detailed in the corresponding residual graphics.

Figure 2
Relationship between estimated and observed (measured) total aboveground biomass with the best-fit models in small trees (DBH < 12 cm) in forests of the Consejo Comunitario de la Cuenca del Bajo Calima, Buenaventura, Valle del Cauca, Colombia. Bt: total aboveground biomass; DBH: diameter at breast height. a) Eq. 4; b) Eq. 5; c) Eq. 6.
Figura 2
Relação entre a biomasa aérea total estimada e observada (medida) dos modelos de melhor ajuste em árvores pequenas (DAP < 12 cm) em bosques do Consejo Comunitario de la Cuenca del Bajo Calima, Buenaventura, Valle del Cauca, Colombia. Bt: biomasa aérea total; A) Ec. 4; B) Ec. 5; C) Ec. 6.

Chave et al. (2005)Chave J, Andalo C, Brown S, Cairns M, Chambers J, Eamus D, et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecología. 2005;145(1):87-99., Andrade et al. (2014)Andrade H, Segura M, Forero L. Desarrollo de modelos alométricos para volumen de madera, biomasa y carbono en especies leñosas perennes: Conceptos básicos, métodos y procedimientos. Ibagué: Sello Editorial Universidad del Tolima; 2014. and Hughes et al. (1999)Hughes RF, Kauffman JB, Jaramillo VJ. Biomass, carbon, and nutrient dynamics of secondary forest in a humid tropical region of México. Ecology. 1999;80(6):1892-1907. equations underestimate aboveground biomass of small-diameter trees sampled (Figure 3). In the case of the second model mentioned, estimations are far below the data observed of the sampled trees. However, first model estimates are closer to those carried out with the model of the Eq. 4, which was generated in this study.

Figure 3
Comparison between observed and estimated total aboveground biomass (Bt) in small trees (DBH < 12 cm) in forests of the Consejo Comunitario de la Cuenca del Bajo Calima, Buenaventura, Valle del Cauca, Colombia. a) This study (Eq. 4); b) Chave et al. (2005)Chave J, Andalo C, Brown S, Cairns M, Chambers J, Eamus D, et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecología. 2005;145(1):87-99. (Eq. 1); c) Andrade et al. (2008)Andrade H, Segura M, Somarriba E, Villalobos M. Valoración biofísica y financiera de la fijación de carbono por uso del suelo en fincas cacaoteras indígenas de Talamanca, Costa Rica. Revista Agroforestería en las Américas. 2008;(46):45-50. (Eq. 2) and d) Hughes et al. (1999)Hughes RF, Kauffman JB, Jaramillo VJ. Biomass, carbon, and nutrient dynamics of secondary forest in a humid tropical region of México. Ecology. 1999;80(6):1892-1907. (Eq. 3).
Figura 3
Comparação entre a biomasa aérea total (Bt) observada e estimada em árvores pequenas (DAP < 12 cm) em bosques do Conselho Comunitário da Bacia do Baixo Calima, Buenaventura, Vale do Cauca, Colômbia. A) Este estudo (Ec. 4); B) Chave et al. (2005)Chave J, Andalo C, Brown S, Cairns M, Chambers J, Eamus D, et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecología. 2005;145(1):87-99. (Ec. 1); C) Andrade et al. (2008)Andrade H, Segura M, Somarriba E, Villalobos M. Valoración biofísica y financiera de la fijación de carbono por uso del suelo en fincas cacaoteras indígenas de Talamanca, Costa Rica. Revista Agroforestería en las Américas. 2008;(46):45-50. (Ec. 2) e D) Hughes et al. (1999)Hughes RF, Kauffman JB, Jaramillo VJ. Biomass, carbon, and nutrient dynamics of secondary forest in a humid tropical region of México. Ecology. 1999;80(6):1892-1907. (Ec. 3).

4. DISCUSSION

Commonly, a high correlation between DBH and stem and large branches biomass is expected in established and well-formed individuals. It is not the case between DBH and leaves or small branches biomass in small individuals (DBH < 15 cm) (Segura and Andrade, 2008Segura MA, Andrade HJ. ¿Cómo construir modelos de volumen, biomasa o carbono en especies leñosas perennes? Agroforestería en las Américas. 2008(46):89-96.). This implies that the models to be developed must include TH or DBH as independent variable, depending on the size of the trees and the dependent variable (biomass components). In general, and as shown in some previous research, DBH is the variable that best correlates and predicts biomass (Brown et al., 1989Brown S, Gillespie A, Lugo A. Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Science. 1989;35(4):881-902.; Chave et al., 2005Chave J, Andalo C, Brown S, Cairns M, Chambers J, Eamus D, et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecología. 2005;145(1):87-99.; Segura and Kanninen, 2005Segura M, Kanninen M. Allometric models for tree volume and total aboveground biomass in a tropical humid forest in Costa Rica. Biotropica. 2005;37(1):2-8.). Besides, this variable is easy to measure and registers in most forestry inventories (Segura and Kanninen, 2005Segura M, Kanninen M. Allometric models for tree volume and total aboveground biomass in a tropical humid forest in Costa Rica. Biotropica. 2005;37(1):2-8.; Fonseca et al., 2009Fonseca W, Alice F, Rey J. Modelos para estimar la biomasa de especies nativas en plantaciones y bosques secundarios en la zona Caribe de Costa Rica. Bosque. 2009;30(1):36-47.). However, in small individuals, total biomass can also be very well explained by TH, just as found on this study.

On this study, a slight improvement in the model adjustment was presented when including both independent variables (TH and DBH) than in those that have it separated. On the other hand, models involving only one of them show a higher practicality in their usage. Thus, the usage of the model that employs only TH as independent variable is more convenient, considering that it can be measured more easily in this kind of trees, consequently reducing the error. Therefore, it is possible a wider usage of the model for biomass and carbon estimation in carbon inventories and nutrient dynamics.

Many models have been developed by transforming logarithmically the dependent and independent variables, which matches these findings (Hughes et al., 1999Hughes RF, Kauffman JB, Jaramillo VJ. Biomass, carbon, and nutrient dynamics of secondary forest in a humid tropical region of México. Ecology. 1999;80(6):1892-1907.; Chave et al., 2005Chave J, Andalo C, Brown S, Cairns M, Chambers J, Eamus D, et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecología. 2005;145(1):87-99.; Segura and Kanninen, 2005Segura M, Kanninen M. Allometric models for tree volume and total aboveground biomass in a tropical humid forest in Costa Rica. Biotropica. 2005;37(1):2-8.; Andrade et al., 2008Andrade H, Segura M, Somarriba E, Villalobos M. Valoración biofísica y financiera de la fijación de carbono por uso del suelo en fincas cacaoteras indígenas de Talamanca, Costa Rica. Revista Agroforestería en las Américas. 2008;(46):45-50.). This procedure allows linearizing data and avoiding variance heteroscedasticity, being an obvious and reasonable tool for such purposes (Mascaro et al., 2014Mascaro J, Litton CM, Hughes RF, Uowolo A, Schnitzer SA. Is logarithmic transformation necessary in allometry? Ten, one-hundred, one-thousand-times yes. Biological Journal of the Linnean Society. 2014;111:230-233.). In the development of models, R2 is valid as a measure of adjustment or predictive value if the model is right as much in its deterministic aspect as its random part. However, this statistic must not be the only one to be considered, given that since an adjustment could be incorrect and result in a high R2(Clutter et al., 1983Clutter J, Fortson J, Pienaar L, Brister G, Bailey R. Timber management: A quantitative approach. New York: Wiley; 1983.; Sit and Poulin-Costello, 1994Sit V, Poulin-Costello M. Catalogue of curves for fitting. Biometrics Information. Handbook Province of British Columbia: Forest Science Research Branch Ministry of Forests; 1994.; Di Rienzo et al., 2009Di Rienzo J, Casanoves F, González L, Tablada E, Díaz M, Robledo C, et al. Estadística para las ciencias agropecuarias. Córdoba: Brujas; 2009. 372p.; Mascaro et al., 2011Mascaro J, Litton CM, Hughes FR, Uowolo A, Schnitzer SA. Minimizing bias in biomass allometry: model selection and log-transformation of data. Biotropica. 2011;43:649-653.; Andrade et al., 2014Andrade H, Segura M, Forero L. Desarrollo de modelos alométricos para volumen de madera, biomasa y carbono en especies leñosas perennes: Conceptos básicos, métodos y procedimientos. Ibagué: Sello Editorial Universidad del Tolima; 2014.).

The comparison of the model with the best adjustment of the current study with others from specialized literature permits to see its applicability, considering that some of these models are recommended as general and could be applied to the conditions of tropical wet forests of the Colombian Pacific. The development of local models to estimate aboveground biomass is a valuable tool for GHG mitigation projects (Brown et al., 1989Brown S, Gillespie A, Lugo A. Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Science. 1989;35(4):881-902.; IPCC, 2006Intergovernmental Panel on Climate Change - IPCC. Guidelines for National Greenhouse Gas Inventories. Tokio: National Greenhouse Gas Inventories Programme; 2006.; Segura and Andrade , 2008Segura MA, Andrade HJ. ¿Cómo construir modelos de volumen, biomasa o carbono en especies leñosas perennes? Agroforestería en las Américas. 2008(46):89-96.), such as REDD+, since it allows improving estimations and increase carbon credits (IPCC, 2006Intergovernmental Panel on Climate Change - IPCC. Guidelines for National Greenhouse Gas Inventories. Tokio: National Greenhouse Gas Inventories Programme; 2006.; van Breugel et al., 2011van Breugel M, Ransijn JM, Craven D, Bongers F, Hall J. Estimating carbon stock in secondary forests: Decisions and uncertainties associated with allometric biomass models. Forest Ecology and Management. 2011;262:1648-1657.).

The model generated on this study, for small-diameter individuals (DBH < 12 cm), complements the biomass and carbon estimations in very wet tropical forests that use models such as the ones from Chave et al. (2005)Chave J, Andalo C, Brown S, Cairns M, Chambers J, Eamus D, et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecología. 2005;145(1):87-99. for individuals with DBH > 12 cm. Specificity in the use of these multi-species models permits to improve reserve and carbon flux estimations of these forests that are highly diverse. Local multi-species allometric models for forests are scarcely reported, usually some are found but for big trees, just like the one by Fonseca et al. (2009)Fonseca W, Alice F, Rey J. Modelos para estimar la biomasa de especies nativas en plantaciones y bosques secundarios en la zona Caribe de Costa Rica. Bosque. 2009;30(1):36-47., who developed it using 35 species from secondary forests in the Caribbean area of Costa Rica and the one by Segura and Kanninen (2005)Segura M, Kanninen M. Allometric models for tree volume and total aboveground biomass in a tropical humid forest in Costa Rica. Biotropica. 2005;37(1):2-8., which involved seven species from wet tropical forest. The model generated in this study allows estimating locally the total biomass of the minor-diameter trees in the conditions of the Bajo Calima, which is a useful tool that contributes to biomass and carbon fixation studies as option for climate change mitigation and nutrient cycling.

5. CONCLUSIONS

Dasometric variables of TH and DBH obtained a high correlation with aboveground biomass, which grated the development of allometric models with good adjustment. In the case of small trees, model based exclusively on TH show significant practical advantages in their applicability, given that the measurement of this variable has little error and is easier to perform.

The comparison of the models developed in this study to those ones found on previous scientific literature ratifies the importance of generating such tools at a local scale. Multi-species allometric models generated are an important tool in order to quantify the stock of aboveground biomass and carbon of these forests in a more reliable way and formulate strategies and projects of sustainable land use.

6. ACKNOWLEGEMENTS

The authors express their most sincere thanks to the Comité Central de Investigaciones de la Universidad del Tolima for the financial support granted to the Project No,1050213 from the “Producción Ecoamigable de Cultivos Tropicales (PROECUT)” Research Group. Also, to the communities of the Consejo Comunitario de la Cuenca del Bajo Calima for their attendance and assistance to carry out this study.

7. REFERENCES

  • Álvarez E, Duque A, Saldarriaga J, Cabrera K, De Las Salas G, Del Valle I, et al. Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. Forest Ecology and Management. 2012;267(1):297-308.
  • Andrade H, Segura M, Somarriba E, Villalobos M. Valoración biofísica y financiera de la fijación de carbono por uso del suelo en fincas cacaoteras indígenas de Talamanca, Costa Rica. Revista Agroforestería en las Américas. 2008;(46):45-50.
  • Andrade H, Segura M, Forero L. Desarrollo de modelos alométricos para volumen de madera, biomasa y carbono en especies leñosas perennes: Conceptos básicos, métodos y procedimientos. Ibagué: Sello Editorial Universidad del Tolima; 2014.
  • Banco Mundial. “Por qué los bosques son fundamentales para el clima, el agua, la salud y los medios de subsistencia,” marzo 2016. [En línea]. Disponible en: http://www.bancomundial.org/es/news/feature/2016/03/18/whyforests-are-key-to-climate-water-health-and-livelihoods
    » http://www.bancomundial.org/es/news/feature/2016/03/18/whyforests-are-key-to-climate-water-health-and-livelihoods
  • Brown S, Gillespie A, Lugo A. Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Science. 1989;35(4):881-902.
  • Chave J, Andalo C, Brown S, Cairns M, Chambers J, Eamus D, et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecología. 2005;145(1):87-99.
  • Clutter J, Fortson J, Pienaar L, Brister G, Bailey R. Timber management: A quantitative approach. New York: Wiley; 1983.
  • Di Rienzo J, Casanoves F, González L, Tablada E, Díaz M, Robledo C, et al. Estadística para las ciencias agropecuarias. Córdoba: Brujas; 2009. 372p.
  • FAO. “La gestión de los bosques ante el cambio climático,” 2010. [En línea]. Disponible en: http://www.fao.org/ docrep/014/i1960s/i1960s00.pdf
    » http://www.fao.org/ docrep/014/i1960s/i1960s00.pdf
  • Field CB, Maccracken S, Mastrandrea MD, Levy AN, Bilir TE, Barros VR, et al. Cambio climático 2014 Impactos, adaptación y vulnerabilidad. Suiza: IPCC; 2014.
  • Fonseca W, Alice F, Rey J. Modelos para estimar la biomasa de especies nativas en plantaciones y bosques secundarios en la zona Caribe de Costa Rica. Bosque. 2009;30(1):36-47.
  • Hughes RF, Kauffman JB, Jaramillo VJ. Biomass, carbon, and nutrient dynamics of secondary forest in a humid tropical region of México. Ecology. 1999;80(6):1892-1907.
  • Ilyas S. Allometric equation and carbon sequestration of Acacia mangium willd. in coal mining reclamation areas. Civil and Environmental Research. 2013;3(1):8-16.
  • Instituto de Hidrología. Meteorología y Estudios Ambientales - IDEAM. Sistemas de información. Petición Información Radicado 20160418171008. 2016.
  • Intergovernmental Panel on Climate Change - IPCC. Guidelines for National Greenhouse Gas Inventories. Tokio: National Greenhouse Gas Inventories Programme; 2006.
  • Lozano L, Gonzalez J. Bajo Calima: riqueza biológica y cultura afectada por la extracción de maderas tropicales. Lebret. 2011(3):205-220.
  • Martínez H. Análisis ecológico silvicultural, con fines de manejo, del bosque secundario de la vereda Las Brisas, Buenaventura [tesis] Valle del Cauca, Colombia. Santiago de Cali: Universidad del Valle; 2007.
  • Mascaro J, Litton CM, Hughes FR, Uowolo A, Schnitzer SA. Minimizing bias in biomass allometry: model selection and log-transformation of data. Biotropica. 2011;43:649-653.
  • Mascaro J, Litton CM, Hughes RF, Uowolo A, Schnitzer SA. Is logarithmic transformation necessary in allometry? Ten, one-hundred, one-thousand-times yes. Biological Journal of the Linnean Society. 2014;111:230-233.
  • Nelson A, Weiskittel A, Wagner R, Saunders M. Development and evaluation of aboveground small tree biomass models for naturally regenerated and planted species in eastern Maine, U.S.A. Biomass and Bioenergy. 2014;68:215-227.
  • Picard N, Saint-André L, Henry M. Manual for building tree volume and biomass allometric equations: from field measurement to prediction. Rome: Food and Agricultural Organization of the United Nations and Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement; 2012. 215p.
  • Programa de las Naciones Unidas para el Desarrollo - PNUD. Los afrocolombianos frente a los objetivos de desarrollo del milenio, 2010b. [acceso en: 17 sep 2016]. Disponible en: http://www.undp.org/content/dam/colombia/docs/ODM/undp-co-odmafrocolombianos-2012.pdf
    » http://www.undp.org/content/dam/colombia/docs/ODM/undp-co-odmafrocolombianos-2012.pdf
  • Sanquetta CR, Behling A, Dalla A, Augusto S, Pscheidt H, Ruza M, et al. Estoques de biomassa e carbono em povoamentos de acácia-negra em diferentes idades no Rio Grande do Sul. Scientia Forestalis. 2014;42(103):361-370.
  • Segura M, Kanninen M. Allometric models for tree volume and total aboveground biomass in a tropical humid forest in Costa Rica. Biotropica. 2005;37(1):2-8.
  • Segura MA, Andrade HJ. ¿Cómo construir modelos de volumen, biomasa o carbono en especies leñosas perennes? Agroforestería en las Américas. 2008(46):89-96.
  • Sit V, Poulin-Costello M. Catalogue of curves for fitting. Biometrics Information. Handbook Province of British Columbia: Forest Science Research Branch Ministry of Forests; 1994.
  • van Breugel M, Ransijn JM, Craven D, Bongers F, Hall J. Estimating carbon stock in secondary forests: Decisions and uncertainties associated with allometric biomass models. Forest Ecology and Management. 2011;262:1648-1657.
  • Verified Carbon Standard - VCF. Proyecto REDD+Bajo Calima y Bahía Málaga, Versión 3, 2015. [acceso en: 17 sep 2016]. Disponible en: http://www.v-c-s.org/sites/cs.org/files/BCBM%20PDD_Spanish %20Summary_v1.6.pdf
    » http://www.v-c-s.org/sites/cs.org/files/BCBM%20PDD_Spanish %20Summary_v1.6.pdf
  • Zanne AE, Lopez-Gonzalez G, Coomes DA, Ilic J, Jansen S, Lewis SL, et al. Global wood density database, Dryad, 2009. [acceso en: 17 feb 2017]. Disponible en: http://hdl.handle.net/10255/dryad.235
    » http://hdl.handle.net/10255/dryad.235

Publication Dates

  • Publication in this collection
    18 Oct 2018
  • Date of issue
    2018

History

  • Received
    02 June 2017
  • Accepted
    02 May 2018
Sociedade de Investigações Florestais Universidade Federal de Viçosa, CEP: 36570-900 - Viçosa - Minas Gerais - Brazil, Tel: (55 31) 3612-3959 - Viçosa - MG - Brazil
E-mail: rarvore@sif.org.br