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INTRODUCTION

Campylobacteriosis is one of the most common foodborne diseases 
in the world. It is considered the most frequently reported foodborne 
illness in the European Union (EU) and one of the most important 
in the United States (US) (EFSA & ECDC, 2018; CDC, 2019a; WHO, 
2019). Poultry is known to be the major reservoir and an important 
source for pathogen transmission to humans (Kaakoush et al., 2015). 
Campylobacteriosis is most often associated with the consumption of 
raw and undercooked poultry or the cross-contamination of other foods 
by these items (CDC, 2019a). Although Brazil is a leading supplier of 
the world’s poultry meat (ABPA, 2018), Brazil’s official data does not 
report Campylobacter infections. 

Resistance in foodborne pathogens presents the potential for their 
transmission to humans through the food chain (Wang et al., 2013). 
Campylobacteriosis is generally a self-limiting disease. However, in 
some patients, Campylobacter infection can result in a systemic disease 
requiring the use of antimicrobials (CDC, 2019b). Erythromycin is 
considered the first-line treatment, but fluoroquinolones are also 
frequently used due to their broad-spectrum activity against enteric 
pathogens (Engberg et al., 2001). Recently, however, multidrug-
resistant Campylobacter strains have been detected in poultry and 
several other sources around the world (Szczepanska et al., 2017; Du 
et al., 2018; Montgomery et al., 2018).

In the EU, Campylobacter isolated from human and poultry sources 
have shown high to extremely high resistance to ciprofloxacin and 
tetracycline (EFSA & ECDC 2018), and both substances have been 
widely used in Brazilian poultry production in recent decades (Machinski 
Júnior et al., 2005). Ciprofloxacin resistance in Campylobacter strains is 
usually related to the Tre-86-Ile mutation in the quinolone resistance-
determining region (QRDR) of the gyrA gene, which results in the 
replacement of the amino acid threonine by isoleucine (Frasao et al., 
2015a). Resistance to tetracycline is usually related to the presence 
of the tetO gene (Pratt & Korolik, 2005). Our aim was to assess the 
minimum inhibitory concentrations (MICs) for Campylobacter jejuni 
strains and determine their molecular resistance profiles to tetracycline 
and ciprofloxacin.

MATERIALS AND METHODS
Bacterial strains and growth conditions

A total of 54 C. jejuni strains were selected for this study (Table 1). 
Isolates were obtained from broiler carcass samples collected between 
2011 and 2012 from different Brazilian poultry slaughterhouses 
according to criteria described by the International Organization for 
Standardization (ISO 10272-1:2017). The bacterial isolates were stored 
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Table 1 – Campylobacter jejuni strains: identification, source of isolation, phenotypic resistance profiles and molecular 
resistance profile.

Identification Source of isolation

Phenotypic resistance profile Molecular resistance profile

CLSI breakpoints a EUCAST 
breakpoints

tetracycline 
(tetO)b

ciprofloxacin (mutation in gyrA)c

Ter-86-Ile Val-149-Ile silent mutations

1 cooled carcass CIP, TET, NAL CIP, TET - + +
His-81-His, Ser-119-Ser, Ala-120-Ala, Ser-
157-Ser, Val-161-Val 

2 cooled carcass * * NA NA NA  

3 cooled carcass CIP, TET, NAL
CIP, TET, 

NAL
+ + -

His-81-His, Ser-119-Ser, Ala-120-Ala, Ser-
157-Ser, Val-161-Val, Pro-186-Pro

4 cooled carcass CIP, TET, NAL
CIP, TET, 

NAL
+ NA NA  

5
carcass after 
washing

CIP, TET, NAL, ERY
CIP, TET, 
NAL, ERY

+ + +
His-81-His, Ser-119-Ser, Ala-120-Ala, Ser-
157-Ser, Val-161-Val 

6 cooled carcass CIP, TET, NAL, ERY
CIP, ERY, 

NAL
NA NA NA NA

7
carcass before 
scalding

CIP, TET, NAL, ERY
CIP, ERY, 

NAL
NA NA NA NA

8
frozen carcass (60 
days)

CIP, TET, NAL, ERY
CIP, TET, 
NAL, ERY

+ NA NA NA

9
carcass after 
plucking

NAL TET - NA NA NA

10 cooled carcass CIP, TET, NAL, ERY
CIP, TET, 
NAL, ERY

+ + +
His-81-His, Ser-119-Ser, Ala-120-Ala, Ser-
157-Ser, Val-161-Val 

11 cooled carcass CIP, TET, NAL, ERY
CIP, TET, 
NAL, ERY

+ + +
His-81-His, Ser-119-Ser, Ala-120-Ala, Ser-
157-Ser, Val-161-Val 

12 cooled carcass CIP, TET, NAL
CIP, TET, 

NAL
+ + -

His-81-His, Ser-119-Ser, Ala-120-Ala, Ser-
157-Ser, Val-161-Val, Pro-186-Pro

13 cooled carcass CIP, TET, NAL
CIP, TET, 

NAL
- + -

His-81-His, Ser-119-Ser, Ala-120-Ala, Ser-
157-Ser, Val-161-Val 

14 cooled carcass CIP, TET, NAL
CIP, TET, 

NAL
- NA NA NA

15 cooled carcass CIP, TET, NAL
CIP, TET, 

NAL
- + -

His-81-His, Ser-119-Ser, Ala-120-Ala, Ser-
157-Ser, Val-161-Val 

16 cooled carcass CIP, TET, NAL
CIP, TET, 

NAL
- + -

His-81-His, Ser-119-Ser, Ala-120-Ala, Ser-
157-Ser, Val-161-Val 

17 cooled carcass CIP, TET, NAL
CIP, TET, 

NAL
+ + -

His-81-His, Ser-119-Ser, Ala-120-Ala, Ser-
157-Ser, Val-161-Val 

18 cooled carcass CIP, TET, NAL, ERY
CIP, TET, 
NAL, ERY

+ + +
His-81-His, Ser-119-Ser, Ala-120-Ala, Ser-
157-Ser, Val-161-Val 

19 cooled carcass CIP, TET, NAL, ERY
CIP, TET, 
NAL, ERY

- NA NA NA

20 carcass after chiller CIP, TET, NAL
CIP, TET, 

NAL
- NA NA NA

21 chicken cuts CIP, ERY, NAL
CIP, ERY, 

NAL
NA + -

His-81-His, Ser-119-Ser, Ala-120-Ala, Ser-
157-Ser, Val-161-Val 

22 chicken cuts CIP, ERY, NAL
CIP, ERY, 

NAL
NA + -

His-81-His, Ser-119-Ser, Ala-120-Ala, Ser-
157-Ser, Val-161-Val, Pro-186-Pro

23 chicken cuts CIP, ERY, NAL
CIP, ERY, 

NAL
NA + -

His-81-His, Ser-119-Ser, Ala-120-Ala, Ser-
157-Ser, Val-161-Val 

24 chicken cuts CIP, ERY, NAL
CIP, ERY, 

NAL
NA + -

His-81-His, Ser-119-Ser, Ala-120-Ala, Ser-
157-Ser, Val-161-Val 

25 chicken cuts CIP, ERY, NAL
CIP, ERY, 

NAL
NA + -

His-81-His, Ser-119-Ser, Ala-120-Ala, Ser-
157-Ser, Val-161-Val 

26 cloacal swab CIP, TET, NAL
CIP, TET, 

NAL
- NA NA NA

27 chicken cuts CIP, ERY, NAL
CIP, ERY, 

NAL
NA NA NA NA

28 chicken cuts CIP, NAL CIP, NAL NA + -
His-81-His, Ser-119-Ser, Ala-120-Ala, Ser-
157-Ser, Val-161-Val, Pro-186-Pro, Gli-110-
Gli

29 chicken cuts CIP, NAL CIP, NAL NA NA NA NA
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Table 1 – Campylobacter jejuni strains: identification, source of isolation, phenotypic resistance profiles and molecular 
resistance profile.

Identification Source of isolation

Phenotypic resistance profile Molecular resistance profile

CLSI breakpoints a EUCAST 
breakpoints

tetracycline 
(tetO)b

ciprofloxacin (mutation in gyrA)c

Ter-86-Ile Val-149-Ile silent mutations

30 chicken cuts CIP, NAL CIP, NAL NA + -
His-81-His, Ser-119-Ser, Ala-120-Ala, Ser-
157-Ser, Val-161-Val, Pro-186-Pro, Gli-110-
Gli

31 chicken cuts CIP, NAL CIP, NAL NA + -
His-81-His, Ser-119-Ser, Ala-120-Ala, Ser-
157-Ser, Val-161-Val, Pro-186-Pro, Gli-110-
Gli

32 chicken cuts CIP, NAL CIP, NAL NA + -
His-81-His, Ser-119-Ser, Ala-120-Ala, Ser-
157-Ser, Val-161-Val, Gli-110-Gli

33 cooled carcass CIP, ERY, NAL
CIP, ERY, 

NAL
NA NA NA NA

34
frozen carcass (60 
days)

CIP, TET, NAL
CIP, TET, 

NAL
- + -

His-81-His, Ser-119-Ser, Ala-120-Ala, Ser-
157-Ser, Val-161-Val 

35 chicken cuts CIP, TET, NAL CIP, TET - NA NA NA

36 chicken cuts CIP, TET, NAL, ERY
CIP, TET, 
NAL, ERY

+ + -
His-81-His, Ser-119-Ser, Ala-120-Ala, Ser-
157-Ser, Val-161-Val 

37
carcass after 
evisceration

CIP, TET, NAL CIP, TET + + -
His-81-His, Ser-119-Ser, Ala-120-Ala, Ser-
157-Ser, Val-161-Val 

38 cloacal swab TET, NAL TET, NAL - NA NA NA

39
carcass after 
plucking

CIP, TET, NAL
CIP, TET, 

NAL
- + -

His-81-His, Ser-119-Ser, Ala-120-Ala, Ser-
157-Ser, Val-161-Val 

40 chiller water CIP, TET, NAL
CIP, TET, 

NAL
- + -

His-81-His, Ser-119-Ser, Ala-120-Ala, Ser-
157-Ser, Val-161-Val 

41 cloacal swab CIP, TET, NAL
CIP, TET, 

NAL
+ + -

His-81-His, Ser-119-Ser, Ala-120-Ala, Ser-
157-Ser, Val-161-Val 

42 pre chiller water CIP, ERY, NAL
CIP, ERY, 

NAL
NA NA NA NA

43
carcass after 
evisceration

CIP, NAL
CIP, ERY, 

NAL
NA NA NA NA

44 carcass after chiller CIP, ERY, NAL
CIP, TET, 
NAL, ERY

- NA NA NA

45
carcass after 
evisceration

CIP, ERY, NAL
CIP, NAL, 

ERY
NA + -

His-81-His, Ser-119-Ser, Ala-120-Ala, Ser-
157-Ser, Val-161-Val 

46 cooled carcass CIP, ERY CIP, ERY NA + -
His-81-His, Ser-119-Ser, Ala-120-Ala, Ser-
157-Ser, Val-161-Val 

47 chicken cuts CIP, ERY, NAL
CIP, ERY, 

NAL
NA + -

His-81-His, Ser-119-Ser, Ala-120-Ala, Ser-
157-Ser, Val-161-Val 

48 chicken cuts CIP, ERY, NAL
CIP, TET, 
NAL, ERY

- + -
His-81-His, Ser-119-Ser, Ala-120-Ala, Ser-
157-Ser, Val-161-Val 

49 chicken cuts CIP, NAL CIP NA NA NA NA

50 cooled carcass CIP, NAL CIP, NAL NA NA NA NA

51 chicken cuts CIP, NAL CIP, ERY NA + -
His-81-His, Ser-119-Ser, Ala-120-Ala, Ser-
157-Ser, Val-161-Val, Pro-186-Pro, Gli-110-
Gli

52
carcass after 
plucking

CIP, NAL
CIP, ERY, 

NAL
NA NA NA NA

53
carcass after 
plucking

CIP CIP NA NA NA NA

54 chiller water CIP, ERY, NAL
CIP, ERY, 

NAL
NA NA NA NA

Antimicrobial agents: ciprofloxacin (CIP), erythromycin (ERY), nalidixic acid (NAL), tetracycline (TET). 
a Intermediate strains were also classified as non-susceptible.
b Molecular characterization performed only if MIC ≥ 2 mg/L. Other strains are identified as “Not Applicable” (NA).
c Molecular characterization performed only if MIC ≥ 4 mg/L. Other strains are identified as “Not Applicable” (NA).
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at −80 °C in ultra-high temperature-processed milk 
and were reactivated on blood base agar (Oxoid, 
Hampshire UK) supplemented with 5% defibrinated 
sheep blood. The plates were incubated within a jar at 
42 ± 1 °C under microaerobic conditions.

Phenotypic characterization of antimicro-
bial resistance

As described by the Clinical and Laboratory Standards 
Institute (CLSI) (CLSI, 2013b), a broth microdilution test 
was performed to determine the MIC for six clinically 
relevant antibiotics (Sigma-Aldrich): chloramphenicol 
(0.25–128 mg/L), ciprofloxacin (0.007–16 mg/L), 
erythromycin (0.064–128 mg/L), gentamicin (0.064–
32 mg/L), nalidixic acid (1–256 mg/L), and tetracycline 
(0.064–64 mg/L). The strains were classified as 
susceptible or non-susceptible (including intermediate 
strains) according to the breakpoints described in the 
CLSI standards (CLSI, 2013a; El-Adawy et al., 2015). 
The strains were also classified as wild type or non-
wild type (nWT) based on their epidemiological MIC 
cut-off (ECOFFs), which were determined according to 
the EUCAST guidelines available at the time of data 
analysis (January, 2019) (EUCAST, 2019). A C. jejuni 
reference strain (ATCC 33560) was selected to ensure 
the validity of the tests. Strains that were resistant to 
three or more classes of antimicrobials were classified 
as multidrug resistant (MDR) strains (Schwarz et al., 
2010). The multiple antibiotic resistance (MAR) index 
was determined as previously described (Krumperman, 
1983). 

Molecular characterization of antimicrobi-
al resistance

Thermal extraction of DNA was performed as 
described (Sambrook & Russel, 2012). The strains 
with tetracycline MICs ≥2 mg/L were selected for 
PCR detection of the tetO gene. The primers were 
designed by Bacon et al. (2000). All PCR reactions (25 
μL) contained 10X PCR buffer, 2.5 mM dNTPs, 10 pmol 
primer, 2 mM MgCl2, 5 U Taq DNA polymerase, and 2 
μL template DNA. The cycling program consisted of 30 
cycles of 94 °C for 30 s, 54 °C for 30 s, and 72 °C for 
1 min. The amplified products (559 bp) were separated 
by electrophoresis in a 1% agarose gel stained with 
ethidium bromide, which was photographed under 
UV illumination. A total of 31 strains with ciprofloxacin 
MICs ≥4 mg/L were selected to characterize their 
molecular resistance. First, the QRDR in the gyrA gene 
was detected by PCR with primers designed by Price et 
al. (2005). All PCR reactions (25 μL) contained 10X PCR 

buffer, 1 mM dNTPs, 10 pmol primer, 2 mM MgCl2, 1 
U Taq DNA polymerase, and 5 μL template DNA. The 
cycling program consisted of 35 cycles of 94 °C for 30 
s, 55 °C for 30 s, and 72 °C for 1 min. The amplified 
products (454 bp) were separated by electrophoresis 
in a 1% agarose gel, stained with ethidium bromide, 
and photographed under UV illumination. All reactions 
were repeated three times. A PCR control containing 
the PCR mixture without the addition of the template 
DNA was included with all reactions.

The amplified products of gyrA were then sequenced 
in triplicate in an automated sequencer (ABI-PRISM 
3500® Genetic Analyzer; Applied Biosystems) with 50 
cm capillaries and polymer POP7 (Applied Biosystems). 
The sequences obtained in the chromatograms 
were processed using Chromas Lite (Technelysium) 
and Geneious (Biomatters) software. To confirm the 
presence of the mutation, the sequence of strain C. 
jejuni (L04566.1), obtained from GenBank, was used 
as a ciprofloxacin-sensitive strain standard.

Statistical analysis

The data were subjected to a descriptive statistical 
analysis using PASW Statistics software. The kappa 
index (Landis & Koch, 1977) was determined to 
evaluate the concordance between the classifications 
based on the CLSI breakpoints and ECOFF values. 

RESULTS

The phenotypic antimicrobial resistance profiles 
and MIC results are described in Tables 1 and 2. Only 
one strain was susceptible to all substances and all 
strains were clinically susceptible to gentamicin and 
chloramphenicol, regardless of the breakpoint (CLSI 
or EUCAST) evaluated. Resistance for tetracycline and 
erythromycin was higher when EUCAST parameters 
were applied. 46.3% (25/54) of the strains were 
classified as non-susceptible and 51.8% (28/54) as 
nWT for tetracycline, and 42.6% (23/54) of the strains 
were classified as non-susceptible and 48.1% (26/54) 
as nWT for erythromycin. Resistance to ciprofloxacin 
was equal for both parameters, and 94.4% (51/54) 
of the strains were classified as non-susceptible or 
nWT. Regarding resistance for nalidixic acid, 94.4% 
(51/54) of the strains were non-susceptible according 
to the CLSI breakpoints and 83.3% (45/54) were nWT 
according to EUCAST breakpoint. CLSI also classifies 
the strains as “intermediate”, which were considered 
as non-susceptible in the present study (Borges et al., 
2019) due to their uncertain therapeutic effect in vivo 
(CLSI, 2013b).
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The molecular antimicrobial resistance profiles are 
described in Table 1. Only 42.8% (12/28) of tetracycline 
non-susceptible strains presented the gene tetO. All 
strains tested for the presence of mutations in the 
QRDR fragment of the gyrA gene showed a threonine 
to isoleucine (Thr-86-Ile) mutation at codon 86 and 
16,1% (5/31) of them presented a second mutation at 
codon 149 (Val-149-Ile). The silent mutations His-85-
His, Ser-119-Ser, Ala-120-Ala, and Val-161-Val were 
observed in all the analyzed strains, while 22.6% (7/31) 
and 12.9% (4/31) also contained the silent mutations 
Pro-186-Pro and Gly-110-Gly, respectively.

DISCUSSION

Antimicrobial resistance is a complex challenge and 
a major problem for global public health. Each year, 
about 25,000 patients in the EU and 23,000 in the US 
die from infections caused by multiresistant bacteria, 
with annual treatment costs of approximately 1.5 
billion euros and 20 billion dollars, respectively (WHO, 
2014). The Brazilian government does not have an 
integrated program for monitoring antimicrobial 
resistance in the primary human and production animal 
pathogens such as Salmonella spp. and C. jejuni, 
making the adoption of new measures to control and 
restrict the use of antimicrobials difficult (Borges et al., 
2019). In addition, unlike European countries, Brazil 
has no specific legislation mandating the analysis of 
campylobacteriosis. Therefore, studies addressing 
antimicrobial resistance are essential for characterizing 
the circulating C. jejuni strains in the Brazilian poultry 
production chain. 

Although similar, the results based on the ECOFF 
values showed a great number of nWT strains (non-
susceptible). Considering that MIC determinations 
depend on breakpoints and that MIC results affect 
clini-cal decisions and official data reports (Kassim 
et al., 2016), changes in the breakpoint parameters 
can result in significant changes in the final MIC. The 
breakpoints are set by three international agencies: 
the U.S. Food and Drug Administration Center for 
Drug Evaluation and Research (USDA-CDER), the 
CLSI, and the European Committee on Antimicrobial 
Susceptibility Testing (EUCAST) (Humphries et al., 
2019). The guidelines proposed by CLSI are some of 
the most used worldwide and are based on the drugs’ 
properties and mechanisms of resistance (Kassim et 
al., 2016), whereas EUCAST bases its breakpoints on 
the drugs’ properties and ECOFFs (EUCAST, 2019). We 
compared the results for both interpretative criteria 

through kappa analysis. It showed perfect agreement 
for ciprofloxacin, gentamicin and chloramphenicol, 
almost perfect agreement for tetracycline (κ = 0.889) 
and erythromycin (κ = 0.888) and fair agreement for 
nalidixic acid (κ = 0.400). Comparisons among studies 
is challenging due to the wide variation in interpretative 
techniques and parameters. The agreement seen 
between the EUCAST and CLSI guidelines not only 
provides important information about antimicrobial 
susceptibility, it indicates that international data on C. 
jejuni resistance could be compared, thus allowing the 
establishment of more specific control measures for 
this species in the poultry production chain. 

The use of chloramphenicol in production animals 
has been banned in Brazil since 2003 (MAPA, 2003) 
and the use of gentamicin in poultry production is 
restricted (Giacomelli et al., 2014). These are probably 
the reasons for the absence of non-susceptible strains 
in our study.

Our results indicate that almost 50% of the strains 
were resistant to erythromycin, which is higher than the 
previously published data (Bolinger & Kathariou, 2017; 
Szczepanska et al., 2017). These results are a public 
health concern, because this agent is the treatment of 
choice for Campylobacteriosis (Engberg et al., 2001). 
These high rates may be associated with the wide 
use of this drug in animal production up until 2012, 
when erythromycin was banned as a food additive in 
Brazil (MAPA, 2012). Higher erythromycin resistance 
rates can also be related to the several mechanisms 
by which Campylobacter acquires resistance to these 
antimicrobial agents (Bolinger & Kathariou, 2017).

We also observed a high level of resistance to 
tetracycline. Tetracycline resistance in Campylobacter 
has been previously reported in strains isolated 
from animal products (Abdi-Hachesoo et al., 2014; 
Giacomelli et al., 2014; Hungaro et al., 2015; Sierra-
Arguello et al., 2015). Over the past decade, the 
tetracycline compound class has been used in farm 
animal production as a growth promoter and for the 
treatment of diseases. The high resistance levels suggest 
that the overuse of tetracycline may have selected 
resistant strains. The majority of tetracycline resistance 
determinants confer increased resistance to the other 
compounds from the same class, though it is also 
possible that the use of oxitetracycline and doxycycline 
has also caused tetracycline resistance (Fairchild et 
al., 2005). A high level of tetracycline resistance in 
Campylobacter is usually associated with the presence 
of the tetO gene. This gene encodes the TetO protein, 
which protects ribosomes from the inhibitory effects 
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of tetracycline (Connel et al., 2003). A total of 28 
isolates had tetracycline MICs ≥2 mg/L, and 42.8% of 
them carried the gene. Reports from Brazil have shown 
lower frequencies of this gene than in other countries 
(Sierra-Arguello et al., 2015; Du et al., 2018). This gene 
can be present in conjugative plasmids containing 
resistance genes for other antimicrobials that continue 
to undergo selective pressure. The tetO gene can also 
be found as a chromosomal element. In this case, the 
stability of the chromosomal location ensures the gene 
replicates from generation to generation, even in the 
absence of the drug (Avrain et al., 2004; Crespo et al., 
2012).

Fluoroquinolones are considered the second-line 
treatment against Campylobacter infection in humans 
(Engberg et al., 2001). Campylobacter strains showed 
high resistance to fluoroquinolones, with the CLSI 
breakpoints and ECOFF values indicating that 90.7% 
and 81.5% of the strains, respectively, were resistant 
to both ciprofloxacin and nalidixic acid. These high 
fluoroquinolone resistance rates have been previously 
described in Brazilian poultry sources (Sierra-Arguello 
et al., 2016) and are likely due to the large use of 
this antimicrobial class in poultry production (Iovine 
& Blaser, 2004). Although ciprofloxacin is more 
commonly used in humans, it is structurally related 
to enrofloxacin (WHO, 2011), which has been widely 
used in poultry production (Garcia-Migura et al., 
2014), and previous studies have demonstrated 
that resistance for ciprofloxacin and enrofloxacin is 
developed through the same mechanisms (Frasao et al., 
2015b). Campylobacter resistance to fluoroquinolones 

is usually related to a mutation in the QRDR region of 
the gyrA gene (Frasao et al., 2015b). This gene codes 
for the ‘A’ subunit of the enzyme DNA gyrase and 
confers a decreased susceptibility to fluoroquinolones 
(Wilson et al., 2000). All strains tested for the presence 
of mutations in the QRDR fragment of the gyrA gene 
showed a threonine to isoleucine (Thr-86-Ile) mutation 
at codon 86 (Table 1). This result confirms that this 
substitution is always related to high fluoroquinolone 
MICs. A second mutation at codon 149 (Val-149-Ile) 
was observed in 19.3% of the strains. As these amino 
acids belong to the same class, the replacement may 
not lead to any significant conformational modifications 
of the protein. Consequently, its function probably 
remains unmodified (Taylor, 1986). Other mutations 
associated with an intermediate level of resistance to 
quinolones such as Asp-90-Asn and Ala-70-Thr (Iovine, 
2013) were not encountered in this study. Mutation in 
QRDR of gene gyrA is the main resistance mechanism 
to fluoroquinolones. However, chromosomal efflux 
pumps, especially those codified by cmeA, cmeB and 
cmeC genes, are important factors to antimicrobial 
in Campylobacter species (Wieczorek & Osek, 2013; 
Nascimento et al., 2019). Previous studies have 
demonstrated that almost all strains of Campylobacter 
jejuni isolated in Brazil presented these three genes 
(Nascimento et al., 2019).

Since 2000, several Latin American countries 
are part of the Pan American Health Organization 
Network for Monitoring/Surveillance of Antibiotic 
Resistance. However, very few of them are conducting 
surveillance for Campylobacter species. In this context, 

Table 2 – Minimum inhibitory concentration (MIC) results: non susceptible strains (CLSI breakpoints) and non-wildtype 
(ECOFF values).

Antimicrobial 
agenta

Minimum inhibitory concentration (MIC) - n (%)b

≤0.007 0.016 0.031 0.062 0.125 0.25 0.5 1 2 4 8 16 32 64 128 ≥256

CHL
6 

(11.1)
23 

(42.6)
22 

(40.7)
2 (3.7) 1 (1.8) 0 0 0 0 0

CIP 2 (3.7) 1 (1.8) 0 0 0 0 0 0 5 (9.2)
16 

(29.6)
20 
(37)

10 
(18.5)

ERY
15 

(27.7)
5 (9.2) 4 (7.4) 2 (3.7) 1 (1.8) 1 (1.8) 0 1 (1.8) 2 (3.7) 4 (7.4)

9 
(16.6)

10 
(18.5)

GEN
16 

(29.6)
22 

(40.7)
13 
(24)

3 (5.5) 0 0 0 0 0 0 0 0

NAL 2 (3.7) 0 0 1 (1.8)
6 

(11.1)
26 

(48.1)
19 

(35.9)
0 0

TET
22 

(40.7)
2 (3.7) 1 (1.8) 1 (1.8) 2 (3.7) 1 (1.8) 3 (5.5) 7 (13)

9 
(16.6)

6 
(11.1)

aChloramphenicol (CHL), ciprofloxacin (CIP), erytromycin (ERY), gentamycin (GEN), nalidixic acid (NAL), tetracycline (TET).
b MIC breakpoints, according to CLSI guidelines, also include “intermediate” strains, which are considered non-susceptible.

Continuous lines indicate CLSI breakpoints.

Dotted lines indicate ECOFF values (EUCAST breakpoints).

Shaded areas indicate the tested concentrations.
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data of Campylobacter resistance are mainly published 
by academic research groups (Fernández & Pérez-
Pérez, 2016). Available data shows that antimicrobial 
resistance in Campylobacter jejuni varies among Latin 
American countries. The higher rates are described 
for fluorquinolones in several countries besides Brazil, 
including Ecuador, Argentina and Peru (Pollett et 
al., 2012; Zbrum et al., 2015; Fernández & Pérez-
Pérez, 2016; Vinueza-Burgos et al., 2017). Resistance 
to aminoglycosides is usually lower among these 
countries (Zbrum et al., 2015; Vinueza-Burgos et 
al., 2017; Toledo et al., 2018). Resistance rates for 
erythromycin and tetracycline is variable according to 
the country (Pollett et al., 2012; Zbrum et al., 2015; 
Vinueza-Burgos et al., 2017).

The individual maximum and minimum multiple-
antibiotic resistance (MAR) indices for the isolates 
were 0.7 and 0.2, respectively, with an average index 
of 0.5, regardless of the interpretative criteria used. 
According to Proroga et al. (2011), the MAR index 
is a good risk assessment tool and can be applied to 
differentiate low- (MAR < 0.2) and high-risk (MAR > 
0.2) regions where antibiotics are overused. Our results 
(overall MAR = 0.5) may indicate high antibiotic usage 
and high selective pressure in the poultry chain, but 
the practical significance of this finding may be lost, 
because antibiotic use is widespread in developing 
countries, including Brazil (Davis & Brown, 2016). 

Based on the CLSI results, 13% (7/54) of the strains 
were multidrug-resistant (MDR), whereas 16.7% 
(9/54) of the strains were classified as MDR using the 
ECOFF values. Emerging resistance to the antimicrobial 
agents of choice for treating Campylobacter infections 
is becoming a serious threat to public health (Du et 
al., 2018). The frequency of MDR strains found in 
this study is similar to that in previous reports from 
Brazil (Sierra-Arguello et al., 2015). Given such results, 
Brazilian authorities should consider establishing an 
integrated surveillance network for antibiotic resistance 
in Campylobacter. 

Considering that poultry is the major source 
of human Campylobacter spp. infection and that 
antimicrobial-resistant strains can be easily transmitted 
to humans via the food chain, our results show the 
need for the implementation of prudent antimicrobial-
use policies in the Brazilian food production chain.
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