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ABSTRACT

An artificial neural network (ANN) was compared with a multiple
linear regression statistical method to predict hatchability in an artificial
incubation process. A feedforward neural network architecture was
applied. Network trainings were made by the backpropagation algorithm
based on data obtained from industrial incubations. The ANN model
was chosen as it produced data that fit better the experimental data as
compared to the multiple linear regression model, which used coefficients
determined by minimum square method. The proposed simulation results
of these approaches indicate that this ANN can be used for incubation
performance prediction.

INTRODUCTION

Poultry production is the most technologically advanced activity in
Brazilian poultry production (Furtado et al., 2006). The state of Santa
Catarina is outstanding in this scenario, hosting important poultry
companies, particularly in the west. The poultry industry heavily invests
in equipment, technology, innovations, management, and health
(Denardin, 2004).

The artificial neural network (ANN), an artificial intelligence technique,
is a potential tool for modeling data in poultry production. Roush et al.
(1997) used an ANN to make a probabilistic prediction of ascitis in broilers,
with no need of post-mortem examinations or other procedures.
According to the authors, the developed models improved ascitis
diagnosis in broilers. Salle et al. (2001) studied the possibility of using
ANN methodology to estimate production parameters of developing
broiler breeders, and found that this method allowed the simulation of
the consequences of management decisions, determining the
contribution of each variable to the studied phenomenon.

During embryo development, the nutrients, energy, and water used
by the embryo are inside the egg. Embryo development also requires
egg heating, proper air oxygen, steam, and carbon dioxide transport
rates, which are necessary for cell metabolism during different incubation
steps. Temperature and humidity are the main factors involved in embryo
survival during incubation (Boleli, 2003). Low relative humidity levels
increase the incubation period (Muraroli et al. 2003) and embryo late
mortality (Decuypere et al., 2003). A mere increase of 0.2 ºC during
incubation may also reduce the incubation period and affect embryo
livability (Christensen et al., 2001). The biggest problem in artificial
incubation is to control all these factors, as many are not well-known,
and others are difficult to control. During artificial incubations, egg
hatchability is a measure of embryo livability, and it is directly related to
the combined action of a large number of factors.

The present study aimed at comparing the use artificial neural
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networks with a multiple linear regression model to
estimate the hatchability of artificially incubated eggs.

MATERIALS AND METHODS

Experimental unit
After lay and collection, eggs remained in the farm

for approximately seven hours at environment
temperature (T) and air relative humidity (RH) until eight
groups were formed. Eggs were then transported to
the local hatchery, where they were stored under
controlled T and RH (20ºC and 60% respectively). T
and air RH influences were evaluated with the period
of one and two days of egg storage.

A total number of 41.280 ovos of the Gallus gallus
species were distributed in eight incubators (CASP/ Mg
124) with a capacity of 5.160 eggs each, thereby
characterizing eight experiments (lots). All eggs derived
from the same 39-week-old Cobb 500 broiler breeder
flock. Temperature sensors (four units) were distributed
inside each incubator and hatcher, and were placed
one meter above the eggs. The other sensors (one unit
each) that measured relative humidity, and carbon
dioxide and oxygen levels were placed at the central
upper part of the incubators and hatchers. The
specifications of the used sensors were: temperature
(Pt100), relative humidity (Novus/RHT), monitor with
infrared sensor for carbon dioxide level with de 0-5%
detection range (Vulcain/90DM3A), and monitor with
electrochemical sensor for oxygen, with a 0-30%
detection range (ISC/AirWare). Data from the sensors
were collected in a electronic data logger (Novus/
Fieldlogger), set up to collect parameter samples every
two minutes. At the end of each day, data were
transmitted and saved in a computer.

The multiple-stage incubators were planned to keep
a dry-bulb temperature of 37.0 ±0.5ºC and air relative
humidity of 50.0±5%. After 18 days of incubation, eggs
were transferred to the hatchers, with controlled
temperature and humidity of 36.5±0.5ºC and
60.0±5%, respectively, where they remained until the
21st day (496 hours) for hatching.

Artificial neural networks
In the field of artificial intelligence, artificial neural

networks are non-linear parametric models that mimick
human brain processing mechanism (Santos et al.,
2005). ANNs are computational techniques, which
model is inspired in the neural structure of intelligent
beings, and that acquire knowledge by experience or
learning.

i) McCulloch’s Boolean Neuron – ANNs present
knots or processing units. Each unit is connected
to other units, which receive and send signals.
Each unit has a local memory. These units simulate
neurons, receiving and transmitting information.
Inputs correspond to an input vector

[ ]T
nxxxX ,..., 21= of n dimension. Each x

i
  input

receives a synaptic weight corresponding to w
i

in neuron input. The sum of x
i
 inputs weighted by

the corresponding w
i
 weight is called linear output

u, where ∑= ii xwu . The y output of the

neuron, designated as activation output, is
obtained by the application of a f function to u

linear output, indicated by ( )ufy = . The f

function is called the activation function, and may
present different forms, which usually are non-
linear (linear, step, sigmoid or hyperbolic tangent).

ii) Learning – As previously mentioned, ANNs are
characterized by learning through examples. For
a certain data set, the learning algorithm must
be responsible for adapting the network
parameters to allow, in a finite number of
algorithm interactions, convergence for a solution.
The convergence criterion varies according to the
algorithm and the learning paradigm.

A neural network typically consists of a set of
processing units, which compose the input layer, one
or more hidden layers, and the output layer. The input
signal is propagated forward through the network,
layer by layer. These neural networks are usually called
multi-layer perceptrons (MLP) (Haykin, 2001).

The general architecture of the neural system used
here consisted of a multi-layer perceptron network.
The backpropagation learning algorithm was applied,
and network neuron weight fit and learning rate
depended only of the gradient signals of the error
function. The objective of this algorithm is to find in
the error surface values for the synaptic weights that
minimize network errors (Haykin, 2001).

Neural model implementation
A mulit-layer artificial neural network, with a

backpropagation training algorithm and 11 neurons in
the input layer, was used. In this type of network,
network inputs are represented in the first layer, which
distributes input information to the intermediate layer.
The following inputs were used: egg storage time, air
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temperature, air relative humidity, and molar internal
concentrations of carbon dioxide and oxygen, all with
their respective standard deviations. The last layer is
the output layer, where the solution for the problem is
obtained.

Hatchability was determined according to
Equation 1:

         total n. hatched eggs
% Hatchability = * 100 (1)

             total n. incubated fertile eggs

The parameters used in the input layer included the
entire 496-h incubation period (incubation and hatcher
data). Hatchability and data electronically recorded by
the sensors inside the incubators and the hatchers were
randomly divided in two sets – training and Validation.
The training set consisted of data from six incubations
out of the eight carried out, and included the mean
and standard deviation of each parameter. Data were
normalized in a 0-1 range, and submitted to ANN in
the format of a matrix with eleven columns (process
variables) and 496 lines (corresponding to the number
of hours of the total incubation period). Data
normalization is essential when unit values have
different magnitudes (Yin et al., 2003). The remaining
incubations were divided in two sets – Test and
Validation. Figure 1 presents the architecture of the
applied neural network.

Figure 1 - Neural architecture of the system used to predict
hatchability.

The learning rate was adaptive in the 0-1 range as,
according to Teixeira et al. (1998), a variable learning
rate improves network performance – if the error is
small, the rate must also be small, but as the error
increases, the rate should also increase. The choice of
the number of neurons in the hidden or intermediate
layer was made by trial, always seeking networks with
few hidden neurons and good generalization capacity.
There is no general criterion to defined neuron number
in the intermediate layer. ANNs with a few hidden
neurons are preferred, as they tend to have higher
generalization power, reducing overfitting problems.
However, networks with few intermediate neurons
may not have enough capacity to model and to learn
data in complex problems, leading to underfitting, i.e.,
the ANN did not train enough to represent the data
set (Pereira, 1999).

At first, a neural network with three neurons in the
intermediate layer was designed, and it presented
good generalization power. ANNs with four and five
hidden neurons were also evaluated, but some become
too specialized during training. Therefore, ANNs with
only three neurons in the intermediate layer were
considered. The sigmoidal activation function,
expressed as f(u) = 1/(1 + e -u), where for each
intermediate neuron, was applied. In 200-time step
intervals, training was interrupted and compared to
the desired outputs, which were included in the
network data, and an error signal was calculated for
each. This error signal was transmitted back to the
network (error backpropagation), thereby updating
weights and connections, aiming at decreasing the
error between input and output, which allowed the
ANN to learn the information contained in the data.
The training data set was presented 5000 times to the
network, and the performance was assessed based
on the Test and Validation sets. The ANN model was
simulated in MATLAB® software, version 6.3 (Matrix
Laboratory) for Windows, which is a computational
environment used for visualization and high-
performance numerical computation. MATLAB
integrates numerical analysis, signal processing, and
graphs, and the problems and solutions are expressed
as mathematically formulated, with no traditional
programming (Veiga et al., 2005).

Multiple regression linear model
The statistic technique multiple linear regression is

used to study the relation between one dependent
variable and several independent variables. It is a
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mathematic technique that minimizes differences
between actual and predicted values. Using the same
data set applied for ANN training, a multiple linear
regression model (MLR) was generated using the
software STATISTICATM, version 5.0, to predict fertile
egg hatchability (Y

i
). The independent values

considered were the same used in the input layer of
the ANN, and were estimated by multiple linear
regression. For the data set with eleven explanatory
variables, the regression model is described as
(Equation 2):

Yi = b
0
 + b
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Comparison of the artificial neural
network with the multiple linear
regression model
Hatchabilities estimated by ANN were compared

with those estimated by the multiple linear regression
model, based on performance measurements (Table
1). The measurement used to validate the estimation
methods are mentioned below, where are the actual
observations and the estimates, using the methods
ANN or MLR, of egg hatchability.

The measure MAPE, according to Armstrong &
Collopy (1992), places a heavier penalty on estimated
values above the desired value than on those below
the desired value. According to Taylor (1992), in order
to validate different methods to estimate a single series,
MSE can be used; however, when the same method is
applied to a group of series, MSE may produce
misleading results. A solution for the problem of
choosing a proper error measurement is that proposed
by Makridakis et al. (1998), which included in Validation
most standard error measurements.

The ratio r (Equation 10) is known as Theil’s U or
difference coefficient, and is used to measure the
efficiency of a prediction model. For r values lower than
1, it indicates that the error obtained in ANN is lower
than that obtained in MLR.

RESULTS AND DISCUSSION

The obtained results were compared with the actual
hatchabilities of the incubations to validate the
proposed models – Test and Validation, with
hatchabilities of 90.13% and 91.64%, respectively.
Based on the data obtained in the matrices used in
ANN and in the MLR model, the errors were calculated.
Table 2 shows the evaluation criteria used to determine

In order to determine which model obtained the best
prediction, the measure of the r ratio, described in
Equation 10, was used. According to Braga et al.
(2002), prediction models with Theil’s U values equal
or lower than 0.55 are considered reliable. The value
presented by the ANN model (Table 2) indicates that it
is highly reliable.

the quality of the hatchability estimation methodologies
used in ANN and in the MLR model.

Table 1 – Evaluation criteria of estimate quality.
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Where Y
p

 is the value estimated by NAA, Y is the desired value, and
Y

n

 is the value estimated by MLR.

Table 2 - Prediction measures used in ANN and in the MLR

model.

Accuracy measures Test* Validation**
ANN MLR ANN MLR

ME -0.0131 -0.5355 0.0207 -1.2051
AME 0.0131 0.5355 0.0207 1.2051
MSE 0.0001 0.2910 0.0004 1.4627
RMSE 0.0100 0.5394 0.0200 1.2094
AMPE (%) 0.0145 0.5940 0.0226 1.3150
Theil’s U 0.0245 0.0721

*90.13% and **91.64% actual hatchabilities.
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Data variations in each model are presented in Figure
2, and are represented as the central value (mean), as
well as standard error and standard deviation ranges.

Figure 2A shows the variation of hatchability
predictions for the Test of the proposed models. In ANN,
results presented virtually no variation, with predicted
mean (90.14%) very close to actual hatchability
90.13%. The widest error range was found in the MLR
method (90.6 and 90.74%), with a predicted mean of
90.67%. Yu et al. (2005) evaluated the use of ANNs
as an alternative to traditional regression statistics
techniques to predict shrimp growth in commercial
farms. The results indicated that ANN provided a more
accurate prediction than conventional multiple
regression models.

Figure 2B shows high variation of the results
predicted by the MLR statistical method (92.72 and
92.92%) and a relatively high mean (92.82%);
however, ANN mean was equivalent to the actual
hatchability of 91.64%.

Mean air temperature and egg storage time were
20.50±0.90ºC and one day for the Test, and
21.1±0.30ºC and two days in Validation. Reis et al.
(1997) studied the influence of short storage periods
(one or two days) at 21.0ºC on the hatchability of fertile
eggs. Hatchability of eggs stored for two days was
higher as compared to one-day storage (92.10 vs.
90.6%, respectively). The fact that ANN was able to
predict this behavior, i.e., that Validation eggs
submitted to longer storage (two days) presented
higher hatchability than the Test eggs, confirms that
this method is able to produce more accurate
predictions.

The best performance presented by ANN mainly
derived from its capacity to capture non-linear
dynamics (Hamed et al., 2004). ANN have greater
advantage in complex situations, are variables are
constantly compared to convergence data, opposite
to regression analysis (Yu et al., 2005).

The application and the success of ANNs in
prediction problems are not new in science.
Researchers from different areas have applied ANNs
with good results in problems aiming at abstracting
patterns. As Brazil is a leader in the broiler market in
South America, this industry needs to increased its
competitiveness by researching technological
innovations.

CONCLUSION

This study aimed at demonstrating the possibility of
the use of artificial intelligence in agribusiness,
specifically in broiler production. The representative and
predictive capacity of ANN was compared to the
multiple linear regression model. The results showed
that the proposed ANN methodology was more
efficient to predict hatchability, as compared to the
MLR statistical model, as shown by its lower error
measurements.
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