Acessibilidade / Reportar erro

Rational approach in the new antituberculosis agent design: inhibitors of InhA, the enoyl-ACP reductase from Mycobacterium tuberculosis

In conjunction with the spread of HIV infection, tuberculosis (TB) has been among the worldwide health threats. Mycobacteria resistance to the drugs currently used in the therapeutics is the main cause of TB resurgence. In view of this severe situation, the new and selective anti-TB design is of utmost importance. Fatty acid biosynthesis is a prokariontes and eucariontes biochemical process that supplies essential precursors for the assembly of important cellular components, such as phospholipids, lipoproteins, lipopolysaccharides, mycolic acids and cellular envelope. However, the biochemical and functional differences between the bacterial and mammals' fatty acid synthetic pathway have endowed the mycobacterial enzymes with distinct properties. These provide valuable opportunities for structure- or catalytic mechanism-based design of selective inhibitors as novel anti-TB drugs with improved properties. The enoyl-reductases are essential enzymes in the fatty acids elongation pathway towards the mycolic acids, the main mycobacteria cell wall constituents, biosynthesis and so they are potential targets to the rational new antimycobacteria drug design. This paper highlights recent approaches regarding the design of new anti-TB agents, particularly, the enoyl-ACP reductase inhibitors.

Tuberculosis; Fatty acid; Mycolic acids; Mycobacteria drug resistance; Drugs; Enoyl-Act reductase


Divisão de Biblioteca e Documentação do Conjunto das Químicas da Universidade de São Paulo Av. Prof. Lineu Prestes, 950 , Caixa Postal 66083 , 05315-970 - São Paulo - SP - Brasil , Tel.: (011) 3091.3804 , Fax: (011) 3097.8627 - São Paulo - SP - Brazil
E-mail: bjps@usp.br