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ABSTRACT: Multitemporal collections of satellite images and their products have 
recently been explored in digital soil mapping. This study aimed to produce a bare soil 
image (BSI) for the São Paulo State (Brazil) to perform a pedometric analysis for different 
geographical levels. First, we assessed the potential of the BSI for predicting the surface 
(0.00-0.20 m) and subsurface (0.80-1.00 m) clay, iron oxides (Fe2O3), aluminum (m%) 
and bases saturation (V%) contents at the state level, which are important properties 
for soil classification. In this task, legacy soil samples, the BSI and terrain attributes 
were employed in machine learning. In a second moment, we evaluated the capacity 
of the BSI for clustering the landscape at the regional level, comparing the predicted 
patterns with a legacy semi-detailed soil map from a smaller reference site. In the final 
stage, the predicted soil maps from the state level were investigated at the farm level 
considering several sites distributed across the São Paulo state. Our results demonstrated 
that clay and Fe2O3 reached the best prediction performance for both depths at the state 
level, reaching a RMSE of less than 10 %, RPIQ higher than 1.6 and R2 of at least 0.41. 
Additionally, the predicted landscape clusters had a significant association with the 
main pedological classes, subsurface color, soil mineralogy and texture from the legacy 
semi-detailed soil map. Illustrative examples at the farm level indicated great capacity 
of BSI in detecting the variations of soils, which were linked to several soil properties, 
such as texture, iron content, drainage network, among others. Therefore, this study 
demonstrates that BSI is valuable information derived from optical Earth Observation 
data that can contribute to the future of soil survey and mapping in Brazil (PronaSolos).
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INTRODUCTION
Digital soil mapping (DSM) has been explored in Brazil to produce updated and higher 
resolution maps of soil properties and soil taxonomic classes (Chagas et al., 2010; ten 
Caten et al., 2012; Samuel-Rosa et al., 2013; Giasson et al., 2015; Arruda et al., 2016; 
Vasques et al., 2016; Moura-Bueno et al., 2019). Different methods were also adapted 
for predicting soil taxonomical classes (Nolasco de Carvalho et al., 2015; Coelho et al., 
2021), such as the probability mapping (Giasson et al., 2006), categorical mapping 
(Bazaglia Filho et al., 2013; Wolski et al., 2017; Moura-Bueno et al., 2019), Boolean logic 
(Rizzo et al., 2020), spatial disaggregation (Sarmento et al., 2017), among others. The 
DSM relies on the relationship of soil observations with environmental data employed 
in a model, which delivers a predicted value for a specific location usually coupled with 
an uncertainty estimate (McBratney et al., 2003; Lagacherie et al., 2006; Minasny and 
McBratney, 2016). 

In this regard, Earth Observation (EO) data are explored as model predictors due to their 
widespread availability and ability to cover large geographical areas. However, when 
employing DSM over huge areas with high or medium resolution EO data, the project 
may be limited by the high computing processing requirements and storage capacity. 
Especially in large countries, DSM has important obstacles to overcome. We can also 
mention the practical and economical limitations of sampling strategies that seek to 
improve the representation of soil diversity, as well as the lack or poor relationship of 
some environmental information with soils when calibrating prediction models. 

Generally, EO products have been used as covariates for inferring soil spatial distribution, 
despite the continuous vegetation cover in both arable lands and natural forests 
(Chabrillat et al., 2019). For example, the Manual Técnico de Pedologia (Technical 
Manual of Pedology), which describes some guidelines for soil survey and mapping in 
Brazil, indicates that remote sensing products are useful for soil mapping if coupled 
with the intensification of field surveys (IBGE, 2015). However, different from this view, 
multitemporal collections of satellite images increased its value in recent years, as these 
products provide useful insights related to soil properties (Chabrillat et al., 2019). This can 
support both the quantitative and qualitative interpretation of soils at the landscape level. 
However, multitemporal EO data in the optical domain can only assist the soil surveying 
and mapping if coupled with appropriate transformation or preprocessing techniques.

Many automated processing algorithms have recently been developed to produce 
soil reflectance maps from optical EO data (Diek et al., 2017; Demattê et al., 2018; 
Rogge et al., 2018). In Brazil, the Geospatial Soil Sensing System (GEOS3) has been 
used to map soil properties (Fongaro et al., 2018; Gallo et al., 2018; Poppiel et al., 
2019a) and infer the spatial distribution of soil and lithological classes (Mendes et al., 
2019; Poppiel et al., 2019b; Rizzo et al., 2020). The algorithm is based on the retrieval of 
historical soil exposures to the satellite measurements, which are aggregated into products 
namely Synthetic Soil Image (SYSI) and Soil Frequency (SF). These products reveal the 
direct multispectral response of soils and the cumulative alterations of soil surface for 
a given location, which can be correlated with soil properties and land intensification 
(Demattê et al., 2020), respectively. However, despite the importance and developments 
in the area, there is a lack of knowledge regarding the impact of such analysis in multiple 
geographic levels. Our hypothesis is that a bare soil image derived from multitemporal 
collections of satellite images can be employed in pedometric analysis at different 
geographical levels, despite its standard spatial resolution of 30 m.

This paper aimed to produce a direct representation of soil reflectance for the São Paulo 
State in Brazil using the historical Landsat image collections. With the spectral features 
derived from EO data, we aimed at assessing the relationship of the bare soil reflectance 
with soil properties commonly used for soil taxonomic classification at the state level, 
i.e., clay, iron oxides (Fe2O3), aluminum saturation (m%) and bases saturation (V%), 
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by calibrating machine learning models for spatial prediction. Further, we also aimed to 
study soil reflectance images’ potential for clustering landscape units over a reference site, 
comparing its results to a legacy semi-detailed soil map. Finally, the medium-resolution 
maps were assessed on different farms from São Paulo state. Thus, this study explores 
the potential of medium-resolution products derived from EO data for assisting the soil 
survey and mapping in Brazil (PronaSolos).

MATERIALS AND METHODS
We performed the study across the state of São Paulo, Brazil, mainly in agricultural 
areas due to the availability of bare soils from cropped lands. We produced a bare soil 
composite for the state level using the historical collections of Landsat images. We used 
this product to assess the major surface spectral patterns across the state and evaluate 
the quantitative relationship with some soil properties used for soil classification. First, 
we explored and discussed the method and its impact on the state level. In a second 
moment, we explored the bare soil composite over a smaller reference area near the 
Piracicaba municipality. In this step, we compared the soil units of a semi-detailed legacy 
map with landscape units generated from a clustering method. Then, we explored the 
results at the farm level to complete our assessment. In the next sections, the geographical 
areas and statistical analysis are described.

Soil properties mapping at the state level

The major region explored in this study is the Brazilian state of São Paulo, which represents 
an area of 248,222 km2 (Figure 1). São Paulo has a relatively high relief, with 85 % of its 
landscape between 300 and 900 m above sea level. In the region, seven distinct climate 
types appear, being predominant the tropical climate of altitude (CWA) and savanna 
climate (AW). The CWA is characterized by rainy summer and dry winter, while the Aw 
is warm and has a minimal rainfall (Alvares et al., 2013).

About 30 % of São Paulo’s territory is composed of a crystalline basement, dominated by 
igneous (granite) and metamorphic rocks. The remaining 70 % consist of deposits of the 
Paraná and Bauru basins, which resulted in sedimentary rocks from the glacial–interglacial 
cycle that occurred in the southern portion of the Gondwana paleocontinent. The Paraná 
basin was the scenario of intense tectonic-magmatic processes during the Mesozoic to 
Cenozoic period, resulting in basaltic flows, dike swarms and several alkaline complexes. 
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Figure 1. Study area representing the São Paulo State and several farm-level sites (left). The 
reference site near the Piracicaba municipality with a semi-detailed pedological map (right, scale 
1:100,000) is also highlighted. CX: Cambisol (Cambissolo), GX: Gleysol (Gleissolo), GM: Histic Gleysol 
(Gleissolo Hístico), LV: Ferralsol (Redddish) (Latossolo Vermelho), LVA: Ferralsol (Yellowish-red) 
(Latossolo Vermelho Amarelo), MX: Haplic Phaeozem (Chernossolo Háplico), NV: Eutric Nitisol 
(Nitossolo Eutrófico), PV: Acrisol (Argissolo Vermelho), PVA: Lixisol (Argissolo Vermelho Amarelo), 
RL: Regosol (Neossolo Regolítico).
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Conversely, the Bauru basin is represented by continental sandstones and constitutes 
about 45 % of the territory, corresponding to a major part of the substrate of the 
Western region of the state. Intracontinental and coastal Cenozoic basins, as well as 
Quaternary sedimentary deposits, also occur in minor proportions (Garcia et al., 2018).

The pedodiversity is also noticeable. Based on the World Reference Base (WRB) soil 
classification system (IUSS Working Group WRB, 2015), Lixisols and/or Acrisols predominate 
in more undulating topography, mostly in the Western part. Ferralsols, Arenosols and 
Eutric Nitisols are mostly found in gentle slopes in relatively geomorphological stable 
positions, similar to what is found in some portions of the Western and Central regions of 
the state. Conversely, Cambisols, Leptsols and Regosols are typical of unstable positions 
of the landscape, like hilly slopes and floodplains. Gleysols, Podzols and Histosols are 
inherent in coastal plains and wetlands, where the water table is persistent (Oliveira et al., 
1999; Rossi, 2017).

Bare soil reflectance and terrain attributes

The algorithm Geospatial Soil Sensing System - GEOS3 (Demattê et al., 2018) - developed 
inside the Google Earth Engine, was used to generate the multispectral bare soil composite 
from 1982 to 2018 using the Landsat collections of 30-m-resolution surface reflectance 
images (USGS, 2018a,b). The GEOS3 is a data-mining algorithm that extracts soil 
features from the historical collection of satellite images and aggregates the spatially 
sparse bare soil fragments into a denominated as Synthetic Soil Image (SYSI). The SYSI 
is the reflectance image, composed of six spectral bands: blue (450–520 nm), green 
(520–600 nm), red (630–690 nm), NIR (760–900 nm), SWIR1 (1550–1750 nm) and SWIR2 
(2080–2350 nm). A set of rules was used to identify bare soil pixels in satellite images, 
based on spectral indices coupled with quality assessment bands to remove cloud, 
cloud shadow, inland water, snow, photosynthetic vegetation and non-photosynthetic 
vegetation (crop residues). Bare soils were flagged when the pixel value had the Normalized 
Difference Vegetation Index (NDVI) values falling between the range of −0.05 and 0.30 
(masking out green vegetation), and Normalized Burn Ratio 2 index (NBR2) values 
between the range of −0.15 and 0.15 (masking outcrop residues). The pixels identified 
as bare soil were marked as valid for aggregating the multitemporal collection by their 
median value. Thus, GEOS3 produces an almost-continuous representation of surface 
reflectance, increasing the mapped area of the soil surface by averaging the multitemporal 
measurements. Detailed information about GEOS3 and SYSI, as well as spectral indices 
and sensitivity analysis, can be found in previous studies (Demattê et al., 2018, 2020; 
Fongaro et al., 2018; Gallo et al., 2018). In addition, the Digital Elevation Model (DEM) 
derived from the Shuttle Radar Topography Mission (SRTM) with a resolution of 30 m was 
used to calculate the slope, northness, eastness, horizontal curvature, vertical curvature 
and shape index of terrain (Safanelli et al., 2020a). This terrain information was used as 
additional covariates in prediction models.

Legacy soil observations

The legacy soil observations gathered across the São Paulo State came from previous 
surveys developed by the Geotechnologies in Soil Science Group (https://esalqgeocis.
wixsite.com/geocis) and others (Nanni et al., 2004; Terra et al., 2015; Rizzo et al., 
2016; Fongaro et al., 2018; Gallo et al., 2018; Demattê et al., 2019; Mendes et al., 
2019). Surface (0.00-0.20 m) and subsurface (0.80-1.00 m) samples (n = 22,311) were 
collected with augers in georeferenced locations, mostly following the sampling strategy 
of toposequences or grid schemes.

In this study, a few key soil properties explored by the Brazilian Soil Classification System 
– SiBCS (Santos et al., 2018) were selected for further analysis: clay content, total iron 
content (Fe2O3), base (V%) and aluminum saturation (m%). Clay content is used, for 
example, to evaluate the textural gradient between the surface and subsurface horizon, 
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which is a diagnostic attribute of Lixisols. The iron oxides content (total iron) is a diagnostic 
attribute for classifying soils at the third categorical level, which is related to color and 
mineralogical features. The saturation of aluminum or bases (Ca2+, Mg2+, K+, Na+) in the 
sorption complex of soils are used to distinguish the soil chemical fertility at the third 
categorical level of SiBCS.

Soil samples had their chemical and particle size analysis following Brazilian standards. 
The densimeter method was used to obtain the soil particle size distribution (clay, silt 
and sand), whereas the chemical properties (V% and m%) and Fe2O3 were determined 
by ion-exchange resin method and sulfuric acid extraction, respectively, according to 
Raij et al. (2001). Although the soil data is composed of several legacy surveys performed 
in the last years, which can affect the performance of prediction models, they still provide 
a baseline of the soil spatial distribution across the São Paulo State.

Soil properties prediction models

Prediction models of clay, Fe2O3, V% and m% for the 0.00-0.20 and 0.80-1.00 m layers 
were applied in the study area. The Random Forests (RF) algorithm, which is an ensemble 
of many regression trees built with bootstrapped samples and randomized predictors 
(Breiman, 2001), was chosen to calibrate the soil prediction models. For this, we performed 
a grid search for defining the best hyperparameters for each soil layer and soil property. 
The number of trees of the forest (FS), the number of random predictors tested at splits 
of each tree (nRP), and also the minimum number of samples at the tree leaves (minSL) 
were tested.

The training set was determined by collecting bootstrapped samples of each regression 
tree, whereas the testing set was defined by the remaining samples (out of the bag) 
that were not selected at each bootstrapping. Bootstrapping is a method that samples 
observations with replacement to the same size of the dataset, covering, in general, 
around 67 % of the entire dataset. We applied the bootstrapping method up to 500 times, 
which is equivalent to the maximum number of trees tested for the random forest. The 
performance metrics were determined by the mean value calculated across the collection 
of bootstrapped trees for both the training and the test sets. The minimum Root Mean 
Squared Error (RMSE) of the training set was used for defining the best hyperparameters 
(FS, nRP, and minSL). The range of values tested for FS was 30, 60, 100, 200 and 
500 trees. The values of 3, 5, 8, 11 and 13 predictors were investigated for defining 
the nRP: SYSI blue, SYSI green, SYSI red, SYSI NIR, SYSI SWIR1, SYSI SWIR2, elevation, 
slope, northness, eastness, horizontal curvature, vertical curvature, and terrain shape 
index (Table 1). Further, the values of 10, 20, 30, 40, 50, 100, 200 and 500 observations 
were tested for minSL.

The final model performance was evaluated by applying the optimized models to the 
test set. The prediction accuracy was evaluated using the RMSE. The Coefficient of 
Determination (R2) was calculated to assess the explained variance of the prediction 
models, and the Ratio of Performance to Interquartile range (RPIQ) was calculated to assess 
the consistency between the predicted values with the variability of soil observations 
(Safanelli et al., 2020a). The evaluation performance was defined by averaging the 
metrics from the out-of-the-bootstrapped estimates.

Landscape units at the regional level

At the second stage of multilevel analysis, a smaller reference site was selected near 
Piracicaba municipality due to the availability of a semi-detailed soil map and expressive 
soil variability. The Piracicaba region is characterized by a complex geology, diverse 
topography, and the occurrence of different soil types (Figure 1). The region is classified 
as humid subtropical by the Koppen’s classification system, characterized by dry winter 
and hot rainy summers. The average annual rainfall is approximately 1273 mm yr−1 and 
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the average annual temperature is 24 °C. The landscape is gently undulating and rolling 
uplands, with slopes between 0 and 42 % (Gallo et al., 2018).

The geology includes fine to medium, reddish, silty-clay sandstone of the Botucatu and 
Pirambóia Formation; dike elements of basic intrusive diabase rocks of the Serra Geral 
Formation; sandstones from the Irati Formation (Passa Dois Group), where the relief is 
gently undulating to flat; and siltstones, that are the predominant lithology of the Itararé 
and Tatuí Formation (Tubarão group) (Bonfatti et al., 2020). Thus, the soil variability is 
mainly due to the complexity and diversity of the parent material. Soil derived from 
diabase rocks, such as Ferralsols, are situated in the highest position of the relief, while 
Nitisols occur on smooth to gentle undulating relief. Soils derived from sedimentary 
rocks include Leptsols, Arenosols, Lixisols, which may be associated or not. On the flat 
relief near to the drainage system, Planosols and Gleysols are found (Gallo et al., 2018). 
In Piracicaba region (Figure 1), a smaller reference site (area of ~350 km2) was selected 
to study the relationship of bare soil composite with soil mapping units of a semi-detailed 
pedological chart of the São Paulo state that corresponds to Piracicaba region. This map 
is a result of several surveys carried out in the area, providing the boundaries of soil 
units as a vector layer with a 1:100,000 scale (Rossi, 2017).

Principal components and k-means clustering analysis

The SYSI of the reference site was transformed by a principal component analysis (PCA) 
to reduce the spectral dimension and produce uncorrelated components. The first three 
components that accounted for 99 % of the spectral variability were employed to k-means 
clustering analysis to produce spatial units defined by their multispectral reflectance. 
The optimal number of clusters was defined when a decrease of the Akaike Information 
Criteria (AIC) was equal to or lower than 10 % from the range of 1 and 20 clusters. The 
AIC criteria was selected to define a parsimonious model for clustering the reference site, 
i.e., it was used to define the simplest landscape delineation with the least assumptions 
and number of clusters, but with the greatest explanatory capacity (Dotto et al., 2020). 
The mean reflectance of each cluster was calculated for spectral characterization.

The landscape units defined by k-means clustering were compared to the legacy soil 
mapping units using the correspondence analysis, which evaluates the association of two 
categorical groups. The Chi-squared test was applied to assess the association strength 
between clusters and soil mapping units, and the relationship between the levels of 
both groups was evaluated from a contingency table and the respective diagram of 

Table 1. Predictors used for model calibration

Predictors Source (spatial resolution)
SYSI blue (450–520 nm) Landsat collection (30 m)
SYSI green (520–600 nm) Landsat collection (30 m)
SYSI red (630–690 nm) Landsat collection (30 m)
SYSI NIR (760–900 nm) Landsat collection (30 m)
SYSI SWIR1 (1550–1750 nm) Landsat collection (30 m)
SYSI SWIR2 (2080–2350 nm) Landsat collection (30 m)
Elevation SRTM (30 m)
Slope TAGEE/SRTM (30 m)
Northness TAGEE/SRTM (30 m)
Eastness TAGEE/SRTM (30 m)
Horizontal curvature TAGEE/SRTM (30 m)
Vertical curvature TAGEE/SRTM (30 m)
Terrain shape index TAGEE/SRTM (30 m)
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principal coordinates. Thus, the relationships can be statistically and visually assessed 
(Demattê et al., 2019).

For this analysis, the soil mapping units were interpreted according to their predominant 
soil class since a few units were composed of soil associations with ranked abundance. The 
dominant taxonomic class was decomposed in interpreted information representing the 
soil type, color, fertility, iron oxides content, and subsurface texture. The decomposition 
followed the first, second, and third levels of SiBCS, with the subsurface texture being 
used as an additional soil property. The levels from the SiBCS classification are based 
on the presence or absence of soil characteristics, diagnostic horizons or properties that 
can be identified at the field, which are resulted from a set of dominant processes that 
acted during soil formation. In table 2, we present the original and translated categorical 
levels decomposed from the dominant soil taxonomic class of soil units.

Farm-level assessment

Farm-level assessment was performed by linking the aforementioned products (SYSI, 
terrain attributes, and soil properties maps) with field observations. We went to 
eight sites distributed across the São Paulo State to qualitatively assess the bare soil 
image and its derived products. First, we wanted to evaluate the performance of the 
traditional toposequence sampling strategy for depicting the soil variation across the 

Table 2. Conversion of classification terms from the Brazilian Soil Classification System - SiBCS 
(Santos et al., 2018) to World Reference Base – WRB/FAO (IUSS Working Group WRB, 2015)

Original (SiBCS) Adapted to WRB/FAO
First categorical level
Argissolo Acrisols, Lixisols*, Alisols
Cambissolo Cambisols
Chernossolo Phaeozems*, Kastanozems, Chernozens
Gleissolo Gleysols*, Stagnosols
Latossolo Ferralsols
Neossolo Leptosols, Arenosols, Regosols*, Fluvisols
Nitossolo Nitisols*, Lixisols or Alisols
Second categorical level
Litólico Lithic (continuous rock contact)
Háplico Haplic (qualifier for general properties)
Vermelho Reddish
Vermelho-Amarelo Yellowish-red
Melânico Histic horizon
Third categorical level
Distrófico Dystric (low fertility) qualifier
Distroférrico Dystric and Ferric (high Fe2O3 content)
Eutrófico Eutric (high fertility) qualifier
Eutroférrico Eutric and Ferric
Subsurface texture
Média Loam
Média/Argilosa Clay loam
Argilosa Clay
Argilosa/Muito Argilosa Clay/Heavy clay
Muito Argilosa Heavy clay

* Selected when multiple options were available.
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landscape. Without using the products derived from EO data, we distributed and made 
field observations with an auger in three different depths (0.00-0.20, 0.40-0.60 and 
0.80-1.00 m) with subsequent soil analysis. This evaluation allowed the comparison of 
the toposequence sampling strategy with the SYSI and its derived maps.

In another stage, a different approach was tested. In this case, SYSI and its predicted maps 
were used to allocate observation points based on their spatial patterns. This would make 
it possible to detect features related to the drainage network detected by SYSI, which 
could be linked to redoximorphic features of Gleysols. Other sites with high variation of 
clay content at the farm level were also observed in situ to assess the discrimination 
potential of SYSI for smart sample allocation and soil survey. In the end, two detailed 
maps were delineated using all information available. This final analysis was decisive to 
complete the multilevel analysis of products derived from EO data.

RESULTS

Spectral features from EO data

The SYSI with 30 m resolution produced over the São Paulo State reveals different 
patterns that are related to soil and rock types (Figure 2). In the true color composition 
(Figure 2a), SYSI is presented with brown shades that resemble the true color of soils. 
The false color of SYSI (Figure 2b), composed in part by infrared bands (R: SWIR1 G: NIR, 
and B: red), allows better visualization of the soil variability at the state level (Figure 2c). 
It is also worthy to note the Southeastern region of the state is barely mapped with bare 
soils, possibly related to permanent land uses, such as natural forests, and places where 
metamorphic rocks prevail (Figure 2d).

(a) (b)

(d)(c)

Synthetic Soil Image
R: red, G: green, B: blue

Synthetic Soil Image
R: SWIR1, G: NIR, B: red

Acrisols, Lixisols, Alisols
Cambisols
Phaeozems, Kastanozems
Podzols
Gleysols

Ferralsols
Leptosols or Arenosols
Nitisols, Alisols
Histosols
Planosols

Igneous rocks
Igneous and metamorphic rocks
Igneous and sedimentary rocks

Metamorphic rocks
Sedimentary rocks

Figure 2. a) Synthetic Soil Image (SYSI) in true-color composition; b) SYSI in false-color composition; 
c) Main soil taxonomic classes (scale 1:500.000 from Rossi (2017); d) Rock types (IPT - Instituto 
de Pesquisas Tecnológicas, 1981). Gray color indicates unmapped soil reflectance in SYSI images 
and the absence of information in soil and lithological maps. The readers are referred to figure 1 
for spatial reference.



Safanelli et al. Fine-scale soil mapping with Earth Observation data: a multiple geographic...

9Rev Bras Cienc Solo 2021;45:e0210080

Soil properties prediction at the state level

When SYSI was employed with terrain attributes for calibrating prediction models of 
soil properties, the visual aspects confirmed its association to clay and Fe2O3 content 
(Table 3). The aluminum and base saturation of the sorption complex of soils presented 
unsatisfactory performance (either R2 <0.4 or RPIQ <1.4, and RMSE around 20 %) for 
0.00-0.20 and 0.80-1.00 m layers. For clay and Fe2O3, the surface layer had the best 
performance metrics: the lowest RSME and highest R2 values between the layers, reaching 
an explained variance (R2) between 0.41 and 0.69, and RMSE of less than 10 %.

The visual aspect of the predicted maps of clay and Fe2O3 (Figure 3) followed the same 
patterns of SYSI and rock types (Figure 2). The dark shades of both SYSIs had higher 
estimates for both clay and Fe2O3 contents in both predicted soil layers. The places 
that predominate igneous rocks are also associated with regions of high clay and Fe2O3 
contents (Figure 2). The distinct predicted layers also reveal that subsurface had higher 

Table 3. Performance evaluation of soil attributes prediction using out-of-the-bag validation

Property(1) Layer(2) n(3) RMSE(4) RPIQ(5) R2(6) FS(7) nRP(8) minSL(9)

m
Clay 0.00-0.20 22311 8.56 1.67 0.69 60 13 200
Clay 0.80-1.00 20557 9.31 1.70 0.65 200 13 200
Fe2O3 0.00-0.20 476 4.17 1.72 0.57 60 6 10
Fe2O3 0.80-1.00 181 8.06 2.09 0.41 100 3 20
m 0.00-0.20 21933 16.91 0.69 0.07 200 13 500
m 0.80-1.00 20509 25.51 2.04 0.20 30 13 200
V 0.00-0.20 21982 19.56 1.46 0.06 30 13 500
V 0.80-1.00 20555 20.57 1.80 0.15 30 11 200

(1) Fe2O3 (%): total iron oxides content; m (%): aluminum saturation; V (%): bases saturation. (2) Layer: soil 
depth (m). (3) n: number of available samples per soil attributes and layer. (4) RMSE: root mean squared error. 

(5) RPIQ: ratio of performance to the interquartile range. (6) R2: coefficient of determination. (7) FS: hyperparameter 
forest size. (8) nRP: hyperparameter number of random predictors. (9) minSL: hyperparameter minimum number 
of samples at leaves.

(a) (b)

(d)(c)

Clay (%) 0.00–0.20 m Clay (%) 0.80-1.00 m
0 100 0 100

Fe2O3 (%) 0.00–0.20 m Fe2O3 (%) 0.80-1.00 m
0 100 0 100

Figure 3. a) Predicted clay content for the 0.00-0.20 m layer; b) predicted clay content for the 
0.80-1.00 m layer; c) Predicted Fe2O3 content for the 0.00-0.20 m layer; d) Predicted Fe2O3 content 
for the 0.80-1.00 m layer. The readers are referred to figure 1 for spatial reference.
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estimates for both soil attributes (Figures 3b and 3d), as demonstrated by the slightly 
darker shades of subsurface maps (0.80-1.00 m).

Landscape discrimination at the regional level

From the visualization of the state level, we went further in detail to understand the 
spatial patterns at regional level. However, it is worth mentioning that the spatial 
resolution of the bare soil image and its products is 30 m, changing only the visualization 
level. The SYSI of the reference site was firstly processed by PCA to reduce the spectral 
dimension and produce uncorrelated features. The first three components accounted for 
almost 99 % of the spectral variability, which were influenced by the overall intensity, 
the effect of the infrared region, and the contrasting effects of correlated bands.

In the clustering analysis, the first three components promoted the identification of seven 
spectral groups across the reference site. The spatial distribution of cluster revealed a 
relationship with some soil taxonomic classes found in the reference site (Figure 4). The 
regions dominated by Ferralsols (LV) and Nitisol (NV) coincided with the ones with darker 
shades in the true color composite of SYSI (Figures 4a and 4b) and clusters with low 
reflectance intensity (Figure 4c). Conversely, the high predominance of Regosols (RL) 
and Lixisols (PVA) in the opposite side of Ferralsols coincided with brighter colors of SYSI 
and the remaining clusters. The soil types of high reflectance intensity are situated in 
the lower parts of the reference site, while the Ferralsols and dark-colored soils prevail 
on the higher portions of the landscape (Figure 4a).

The spatial association of the spectral clusters with the pedological map is confirmed 
(p<0.01) by the correspondence analysis (Figure 5). For the first classification level, 
the soil units composed of Nitisol, Ferralsol and Gleysol had a significant association 
to clusters number 2 and 3 (Figure 5a), which presented a lower reflectance intensity 
and are situated in the darker shaded area of SYSI (Figure 4b). Soil units composed 
of Cambisol, Regosol, Lixisol and Phaeozem are associated with clusters 4, 6 and 7. 
A similar association was found for the second categorical level, where the soil color 
and other general properties are defined (Figure 5b). Reddish soils are linked to cluster 
2 and 3, while yellowish-red soils are linked to groups 5 and 7. The lithic and general 
qualifiers (Haplic) were grouped in the middle of the diagram close to clusters 1, 4 
and 6 (Figure 5b). For the qualifiers of soil fertility and iron content (Figure 5c), the 
third categorical level, it is possible to find an association of soils with high Fe2O3 
content to clusters of numbers 2 and 3, which have a lower reflectance. Finally, the 
subsurface texture also reveals the grouping of high clay content soils linked to the 
spectral groups 1, 2 and 3 (Figure 5d).

Farm-level assessment

The illustrations and observations at the farm level revealed that SYSI and its related 
products provided great assistance to soil survey and mapping, despite its limited resolution 
(Figure 6). Figure 6a demonstrates that regular satellite images or aerial photographs 
present vegetation patterns, restricting the visualization of the soil surface. In a first 
example, after SYSI generation (Figure 6b), a drainage pattern was observed using 
the true color composition, since a pale color was detected within a reddish soil zone. 
The field observation performed at that site confirmed the presence of redoximorphic 
features (Figure 6c).

Figure 6d represents an apparently homogeneous area by the regular satellite image. 
However, the SYSI false-color composite (Figure 6e) depicted the spatial variation 
across the entire area and the clay content could be quantified by a prediction model, 
which followed the same patterns of SYSI (Figure 6f). As ratified by field observations, 
the area with light magenta color were classified with low clay content, while the 
darker ones were estimated with higher clay content. It is important to note that there 
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was no continuous trend of these patterns along the terrain, and thus, the traditional 
inference of conventional soil mapping could fail in detecting those soil transitions. 
Indeed, as observed from figures 6d and 6e, the classical delineation following the 
terrain patterns is limited, while the information derived from EO data allows qualitative 
and quantitative analysis.

A more impacting change about the terrain variation is indicated in figures 6g and 6h. 
As it represents a smaller area, the clayey soil does not follow the terrain trend, as the 
continuum is broken by a sandy soil. If a pedologist demarked the toposequences 1 and 
2, he/she could surely detect the soil variation, but could not detect the same transition 
in position 3. Another good example is provided from figures 6i to 6l.

A strong relief characterizes the site represented in figures 6i to 6l with variable lithology 
(shale, sandstone, and basalt). With a regular aerial photograph or satellite image 
(Figure 6i), it is impossible to detect most of the landscape variations due to vegetation 

(a)

(b)

(c)

CX
GX
GM
LV

LVA
MX
NV
PV

PVA
RL
Urban
Water

C1
C2

C3
C4

C5
C6

C7

Synthetic Soil Image
True color composite

Figure 4. a) 3D visualization of the soil taxonomic map (scale 1:100,000); b) Synthetic Soil Image 
(SYSI) in the true-color composite with map units in yellow lines; c) Spatial distribution of spectral 
clusters (prefix C) across the reference site. The readers are referred to figure 1 for spatial reference 
and soil classes names.
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and residues cover. When the elevation gradient is used (Figure 6j), a contrasting relief 
is revealed. However, only with the bare soil composite that a synoptic view of the soil 
landscape can be generated (Figure 6k), which brings an additional comprehension 
about the soil types. Integrating terrain information with SYSI patterns make possible 
the delineation of soil types with higher precision, as expressed in figure 6l with the 
resulting detailed map.

Figures 6m, 6n and 6o illustrate the differentiation of soils in a relatively homogenous 
area with flatter terrain. In this situation, the soil surface is depicted only by the bare 
soil reflectance, making it difficult for a pedologist to work with only elevation gradients. 
In fact, the locations with question marks reveal the places with patterns that seem to 
be related to the same terrain positions.

DISCUSSION

Predictions at the state level

The darker shades from both the true color and false composites of SYSI (Figure 2) 
illustrated the soils with a lower reflectance intensity in the visible channels (blue, green 
and red), which are related to clay, iron oxides and organic carbon (Demattê et al., 2019). 
In this sense, the spatial variation revealed by the pedological map (Figure 2c) presented 
a certain degree of association with the true and false-color compositions of SYSI, where 
the darker shades were linked to Ferralsols and the brighter ones to Acrisols, Lixisols, 
or Arenosols. Besides that, it is evident the correlation of SYSI darker shades to igneous 
rocks, in agreement with study of Bonfatti et al. (2020).

When SYSI was employed in machine learning, the performance metrics (Table 3) 
confirmed its association to clay and Fe2O3 for both soil layers. These satisfactory results 
for clay and Fe2O3 are in accordance with previous studies that used bare soil images 
and other environmental information for DSM (Fongaro et al., 2018; Poppiel et al., 2019; 

Figure 5. Correspondence analysis of landscape clusters with information derived from the 
dominant class from the semi-detailed soil map: first categorical level (a), second categorical level 
(b), third categorical level, and subsurface soil texture (d).
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Safanelli et al., 2020a). In addition, the visual correspondence of the predicted maps of 
clay and Fe2O3 with rock types (Figure 2) confirmed the association of soil reflectance 
with soil minerals and its granulometric composition (Dalmolin et al., 2005), which are 
important characteristics used for soil taxonomic classification. The poor prediction 
performance of chemical properties (m% and V%) found in this study is also present in 
other studies (Poppiel et al., 2019a; Rizzo et al., 2020; Safanelli et al., 2021). This can be 
linked to several factors, such as an insufficient calibration dataset, the spatial-temporal 
variation of these soil attributes, and the weak relationship of the environmental predictors 
tested in this study with the chemical soil properties.

(a) (b)

(c)

(i) (j)

(m) (n) (o)

(k) (i)

(d)

(g) (h)

(e) (f)

Drainage pattern
not visible

Drainage pattern visible
with SYSI true color

Regular image
with terrain features

Qualitative analysis
with SYSI false color

Predicted map of clay
(darker: more clay)

• Field observations

0.00-0.20 m 0.40-0.60 m 0.80-1.00 m
Relief did not drive clay delineation (darker: more clay)

Regular image Elevation gradient
(blue: higher/red: lower)

SYSI true color

SYSI false color

Detailed soil map

Regular image Predicted clay map
(darker: more clay)

Figure 6. Farm-level illustrations: a) aerial photograph of site 1 (lat: -48.28047, lon: -21.50934), b) SYSI true color of site 1, c) field 
observation at site 1, d) aerial photograph of site 2 (lat: -48.05636, lon: -22.08765), e) SYSI false color of site 2, f) surface clay content 
of site 2, g) aerial photograph of site 3 (lat: -48.02316, lon: -22.09264), h) surface clay content of site 3, i) aerial photograph of site 4 
(lat: -47.47652, lon: -23.15061), j) digital elevation model of site 4, k) SYSI true color of site 4, l) detailed soil map of site 4, m) aerial 
photograph of site 5 (lat: -48.29843, lon: -21.90618), n) SYSI false color of site 5, o) surface clay content of site 5. 



Safanelli et al. Fine-scale soil mapping with Earth Observation data: a multiple geographic...

14Rev Bras Cienc Solo 2021;45:e0210080

Landscape patterns at the regional level

Principal component analysis was used before the clustering analysis to compact 
information and produce uncorrelated features, similar to what other studies have 
explored (ten Caten et al., 2011; Viscarra Rossel et al., 2011). Overall, the results of PCA 
followed the expected effects of iron oxides at the NIR and red bands, while soils with 
higher sand content were similarly grouped in high reflectance clusters (Dalmolin et al., 
2005). In addition, the optimal number of spectral clusters was close to previous studies 
that similarly explored spectral segmentation methods (Viscarra Rossel et al., 2016; 
Demattê et al., 2019; Dotto et al., 2020). The clustering analysis applied to the regional 
level confirmed that reflectance patterns is a valuable proxy for soil discrimination and 
quantitative analysis (Nanni et al., 2004; Bellinaso et al., 2010).

Soil landscape patterns at the farm level

Field observations confirmed that SYSI can express the irregular soil variations across the 
landscape (Figure 6). It is worth noting that there is a gain of information from the regular 
satellite images or aerial photographs, which is increased by the terrain attributes and 
completed by a bare soil composite. However, the bare soil images do not give the last 
word, as the final representations of soil types are better achieved when merging all the 
available information. The detailed soil maps represented in figure 6 were delineated by 
integrating field observations, terrain attributes, and SYSI.

If the bare soil technique were not used, as demonstrated in figure 6, many places 
could probably not be detected by the pedologist in the field. This happens because the 
pedologist uses his/her tacit knowledge with terrain inference, while the bare soil image 
can produce a synoptic view about soil surface reflectance. I turn, the main limitation 
is that SYSI only represents the surface variation, and for some specific soil types, the 
subsurface can be contrasting. Thus, soils with textural gradient, such as Lixisols or 
Acrisols, could not be detected only with surface data.

Another point that can be discussed is that the bare soil images can provide information 
about soil variability before going to the field, assisting in this case, to the allocation of 
more assertive observations. This can save time, resources and improve the representation 
of soil variability of the final maps. Some soil spots revealed in figure 6 demonstrated 
that the surface variations are irregular and not detected by terrain patterns. Thus, the 
illustrations of figure 6 and figure 3 of SD confirm that smarter sampling strategies using 
bare soil images or derived products could improve the soil survey and soil mapping.

Some considerations regarding the PronaSolos

Brazil, as a continental country, requires detailed soil information for its sustainable 
development. In this aspect, PronaSolos has gained attention and can become one of 
the most outstanding projects of soil survey and mapping, which will impact the future 
of Brazilian agriculture and other environmental sectors (Polidoro et al., 2016). Detailed 
and updated information on soils brings a myriad of benefits to our society. Our results 
reveal the potential of an effective method to depict the soil spatial variability using 
computational systems and EO data by producing a synthetic soil image (SYSI). In this 
sense, capacitation courses (e.g., Universidade PronaSolos), free and open access datasets 
and products (e.g., febr) and software (e.g., Python, R), collaborative work and others, 
will be necessary to increase the assimilation of these technologies in future works 
(Dalmolin et al., 2020; Samuel-Rosa et al., 2020; Costa et al., 2021).

Another point that must be addressed is the integration of new technologies and products 
with the legacy methods of soil survey and mapping. Since the soil reflectance comes 
from EO satellite sensors, the observation of the soil surface across the landscape 
becomes synoptic. In the 1960s, EO was performed by aerial photographs that indicated 
the differences between soils without looking at the subsurface but making inferences 
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from the relief. In the 1970s, pedologists from Radam project used radar sensor on board 
of airplanes to relate the image results to soil variability (IBGE, 2015). Thus, the present 
technique based on multispectral reflectance is an evolution of these legacy methods 
and can be assimilated or integrated. The multitemporal reflectance of SYSI, which is 
closely related to several soil properties and attributes, is an effective proxy that brings 
direct information of clay, iron and other relatively stable soil properties.

In turn, one also shall take into consideration the subsurface layers, for sure the most 
challenging target for EO satellite sensors. However, it is absolutely clear that EO products 
associated with field information can improve soil survey and mapping. In a recent study, 
Rossiter et al. (2021) performed a study to evaluate the predictive soil mapping (PSM) with 
geographic distribution of soil properties, where some limitations were identified. Although 
there still exist some discrepancies between PSM and field soil survey, the authors clearly 
addressed that PSM is still a valuable tool. They claimed PSM is more reproducible and 
objective, integrating field data with environmental covariates and learning algorithms, 
which can at least provide a useful pre-map for planning sampling and field survey. In this 
sense, the pedologist can go directly to key locations previously identified by SYSI or other 
landscape information, gaining time and reducing potential costs. At the end, the final decision 
is still made by the pedologists or soil surveyors by examining the soil at the landscape.

CONCLUSIONS
A direct representation of bare soil reflectance of São Paulo State was produced, representing 
most of the historical and recent cropped area. The relationship of this information was 
confirmed with clay and Fe2O3 spatial distribution (surface and subsurface layer) by a 
satisfactory prediction performance when employed to machine learning with auxiliary 
spatial information (terrain). We also demonstrated the potential of bare soil image for 
clustering landscape units linked to soil taxonomic classes over a reference site in São 
Paulo. The predicted spatial clusters had a significant association with soil classes and 
their qualifiers, such as the main pedological class, subsurface color, soil mineralogy 
and soil texture. The potential of SYSI for soil survey and soil mapping was illustrated 
with several examples at the farm level. Therefore, this study demonstrates that bare 
soil images are valuable information derived from optical Earth Observation data, which 
can contribute to the future of soil survey and mapping in Brazil (i.e., PronaSolos).
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