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ABSTRACT: Sequences of thick and eroded soils in hills surfaces are cultivated with 
banana since the beginning of the last century in the Northeast of Pernambuco (PE), Brazil. 
Measurements of soil properties depending on soil slope under intensive agricultural 
cultivation are limited mostly as the pedogenetic approach. This study aimed to identify 
the dominant soil types, to evaluate morphological, physical, chemical, and mineralogical 
properties of soil profiles, and link them to the relief position under continuous banana 
cropping, in the transition Mata-Agreste of PE. Three slope classes and soil profiles 
were considered: Profile 1 (P1), upper third of the elevation slope; Profile 2 (P2), middle 
third of the slope; and Profile 3 (P3) lower third. They were opened, described, and soil 
samples collected from all horizons at a typical slope of the region. Independent of 
relief position and land use, all soils are deep (>1.50 m) and present the argic horizons 
(Bt) developed in all steeply sloping surfaces (15-33 %). The Bt horizon presented the 
highest values of soil bulk density and microporosity. Despite the presence of illite, all 
the soil profiles showed remarkable degree weathering, are mostly kaolinitic, besides 
presenting goethite and quartz in the soil clay fraction, and predominance of quartz 
in the silt and sand fraction. Water-stable aggregates >2 mm were dominant in all the 
relief positions. Acidity, low cation exchange capacity, and in general, nutrient poverty 
were observed in the soil profiles, as opposed accumulation of exchangeable cations 
on the lower third of the slope (P3). However, the soil properties were affected by land 
use and water erosion. The Ap horizons showed the highest values of pH, exchangeable 
bases, phosphorus available, and organic carbon due to agricultural practices, while 
the steepest slope (P2) had the lowest content of clay, phosphorus and mean weight 
diameter of aggregates, and higher organic carbon content, in the superficial horizon, 
due to removal and deposition by water erosion. From the upper third to the lower third 
of the slope, Nitic Acrisol, Haplic Acrisol, and Nitic Lixisol were formed.
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INTRODUCTION
Cultivated hillslopes in the coastal area of Pernambuco (PE), “Zona da Mata”, are one 
of the most altered ecogeomorphological systems in northeast Brazil. The areas of 
hills in the northeast of PE were especially affected by deforestation of the Atlantic 
Forest, which has been reduced to less than 8 % of its original size (Myers et al., 
2000), and replaced by sugarcane cultivation still in the 16th century. More recently, 
since the beginning of the last century, the banana farming has become the second 
agricultural activity of importance for this region, in addition to medium-sized properties, 
banana cultivation supports family farming. Several studies have been conducted 
to evaluate controlling factors of soil properties on the landscape, with bears visual 
evidence of various linkages between surface processes, as well as surface disturbances 
(Brubaker et al., 1993; Pawlik et al., 2013; Comino et al., 2016). Thus, understanding 
the soil formation and distribution of the soil properties as influenced by landscape 
features is critical for assessing the effect of future land use changes on soil use and 
management (Kosmas et al., 2000).

Along of the topographic gradient in the “Vale do Siriji”, transition area between the Zona 
da Mata and Agreste of PE, the dissected scarps structured in faults constitute elevated 
areas that underwent the action of weathering and denudational events, suggesting 
that erosive and geochemical processes, as well as possible tectonic reactivations, 
contributed to the present forms that cover the slopes of the region (Bigarella et al., 
1994; Bezerra et al., 2008; Silva et al., 2012). This relief, with altitudes between 100 and 
600 m, influences the climate and the economic occupation of the region (Andrade, 2001).

Many studies have determined the topography as the dominant factor influencing soil 
property variation due to its influence on microclimate, drainage, runoff and soil erosion, 
and on soil formation (Park and Burt, 2002; Clemens et al., 2010; Dessalegn et al., 2014; 
Silva et al., 2017). For instance, Anjos et al. (1998) observed that pedogenic intensity is 
strongly dependent on characteristics of the major geomorphic surfaces in the Caetes 
basin. Similarly, Moniz and Buol (1982) advocate that the steep slope favors the flow of 
water within the solum, as proposed by the double-water flow model, which accelerate 
the formation of an argic horizon by creating a compressed layer of a blocky structure. 
The desilication on the upper-slope soils over the granite gneiss saprolite should be 
recovered by resilication of lower-slope soils (Moniz and Buol, 1982).

In this sense, the IUSS Working Group WRB (2015) considers that the soils with argic 
horizons often have a specific set of morphological, physicochemical, and mineralogical 
properties other than a mere clay increase, which allow various types of argic horizons 
to be distinguished and their pathways of development to be traced (Sombroek, 1986). 
Soils with argic horizons predominate in the Vale do Siriji, mainly Argissolos Vermelhos 
and Vermelho-Amarelos (Acrisols) and Luvissolos (Luvisols). The technological level of 
most producers in the region is low, and soil conservation practices on systems subject 
to land-use change are uncommon (Araújo Filho et al., 2000).  

The influence of land use systems on the soil properties, the advance in chemical 
weathering and erosion processes is a research subject of great interest, that can 
contribute to the understanding of pedogenesis (Courchensne, 2006), pedodiversity, 
and the risk of soil degradation. The continuous cultivation has altered the content of 
potassium exchangeable on the soil surface (Sharpley and Buol, 1987; Strawn et al., 
2015). Similarly, changes in land use influences on the quantity and quality of soil organic 
matter (Purton et al., 2015; Baddeley et al., 2017). Tree roots influence the creation and 
stabilization of soil aggregates, and protection of the soil surface against erosion also is 
indicated by Courchensne (2006).

The hypothesis is that the slope position influenced the soil properties and genesis. Also, 
that cultivated hillslopes can result in different levels of degradation of soil physical 
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conditions, such as soil aggregate degradation and compaction. Thus, the objectives of 
the present study were to identify the dominant soil types, to evaluate morphological, 
physical, chemical, and mineralogical properties of soil profiles, and link them to the 
relief position under continuous banana cropping, in the transition Mata-Agreste of PE.

MATERIALS AND METHODS

Description of the area and sample collection

The study was carried out in private property, in the municipality of São Vicente Férrer, 
state of Pernambuco, located at coordinates 07° 35’ 28” S and 35° 29’ 29” W (Figure 1). 
Geology is characterized by orthogneisses of granitic to tonalitic composition, with the 
presence of monzonites, monzodiorites, and diorites. The relief is bustling, strong wavy 
and hilly, with deep and narrow valleys. The climate of the region is classified, according 

Figure 1. Location of the study area, with the relief positions, altitudes, and distance between the profiles in the municipality of 
São Vicente Férrer, Pernambuco, Brazil (a). Image of the profiles: Profile 1 (b): Argissolo Vermelho-Amarelo Distrófico nitossólico 
(Nitic Acrisol); Profile 2 (c): Argissolo Vermelho-Amarelo Distrófico típico (Haplic Acrisol); Profile 3 (d): Argissolo Vermelho-Amarelo 
Eutrófico nitossólico (Nitic Lixisol).
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to the Köppen classification system, as As’, hot and humid with autumn-winter rains 
(Beltrão and Macêdo, 1994). The average annual rainfall is 1,103 mm, the average 
annual temperature of 24.1 °C, presenting from five to six months with precipitation over 
100 mm and a dry period of three to four months. The rainy season begins in January/
February with the end in September, but it may advance until October.

In the farm where the study was carried out, banana is cultivated for approximately 
40 years, chicken manure is used as organic fertilizer, and NPK (05-07-32) is applied twice 
a year, at a dosage of 100 g per plant, reaching producing 8.4 t ha-1 (Almeida, 2009).

A typical slope of the region was selected, apparently uniform in terms of parent material. 
On this slope three trenches were opened, in the upper third (15 % slope), the middle 
third (33 % slope), and the lower third near the slope (20 % slope), the extension of 
approximately 800 m (Figure 1). All horizons were described morphologically according 
to norms established by Santos et al. (2005), and deformed samples were collected for 
the analyses carried out except the soil density, which was used for undisturbed samples. 
Undisturbed soil samples were also collected at all layers to evaluate aggregate stability. 

Soils were classified according to Santos et al. (2018) and the samples sent to the 
laboratory in which the physical, chemical, and mineralogical analyses were performed. 

Physical and chemical analyses 

The physical and chemical analyses were performed on the air-dried fine earth (ADFE). 
The physical analyses comprised the particle size distribution by the pipette method, soil 
bulk density by the volumetric ring method, particle density by the volumetric balloon 
method, and the total porosity was calculated from the values of soil and particle density, 
according to Claessen (1997). Microporosity was determined in samples with preserved 
structure and a tension table (0.60 m column of water). Macroporosity was obtained by 
difference between total porosity and microporosity (Claessen, 1997).

The specific surface was determined according to Quirk (1955) and for stability of 
aggregates in water the methodology adopted was that recommended by Angulo et al. 
(1984), with some modifications, using 100 g of soil and sieves of 3.35, 2.00, 1.00, 0.50, 
and 0.25 mm of opening. We calculated the mean weight diameter (MWD).

The chemical analyses followed the methods described by Claessen (1997): pH(H2O) and 
pH(KCl) in at a ratio of 1:2.5; Ca2+, Mg2+, and Al3+ extracted with KCl 1 mol L-1 - Ca2+ and 
Mg2+ were measured by atomic absorption spectrophotometry, and Al3+ by volumetry; 
Na+ and K+ extracted with Mehlich-1 and dosed by flame photometry; H+Al extracted with 
calcium acetate 1 mol L-1 at pH 7.0 and determined volumetrically with NaOH solution. 
The organic carbon (C) determined by oxidation using potassium dichromate in sulfuric 
medium and the available phosphorus (P) by Mehlich-1 extraction and colorimetric 
determination, following the method of Braga and Defelipo (1974). 

Mineralogical analysis

The ADFE was separated by wet sieving (sand) and decantation (silt and clay) to 
identify its components and qualitative analysis by X-ray diffraction (XRD), with specific 
treatments inherent to each fraction, as recommended by Jackson (1975) and Whitting 
and Allardice (1986).

The diffractograms were obtained using a Shimadzu diffractometer, operating at a voltage 
of 40 kv, with a current of 20 mA, Cukα radiation, with graphite monochromator. The 
scanning range was 5 to 70° (2θ), with a recording speed of 3° θ min-1 for total sand 
and silt, and amplitude of 3 to 70° (2θ) and the same velocity for clay dust. For samples 
saturated with K at ambient temperature and heated to 550 °C, the scanning range was 
3 to 35° (2θ) and the recording speed of 2° 2θ min-1.
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RESULTS

Morphological and physical properties

Independent of relief position, all soils are deep (>1.50 m) (Table 1) and well developed. 
Morphologically, the root system of the crop was deeper in the upper and lower third 
of the hillside, while in the middle third, with less favorable physical conditions, a good 
amount of roots up to 1.00 m depth was observed. In the aggregates predominate 
moderate to abundant clay coatings and the increase clay contents in the subsurface 
horizons (Table 1). 

The profiles exhibit Ap-AB-Bt1-Bt2-Bt3 (P1) and Ap-AB-Bt1-Bt2 (P2 and P3) pedogenic 
horizon sequences (Table 1). They have predominantly blackish colors on the A horizon, 
and yellowish-red in the subsurface horizons (7.5YR and 5YR, moist color, respectively). 
In subsurface, values from 4 to 5 and chromas ≥6 in all profiles. All horizons were firm, 
friable, plastic, and sticky (except P1), which was also very firm. The structure is well 
developed, moderate, very small and small in subangular, and angular blocks.

According to the criteria established by SiBCS (Santos et al., 2018) and World Reference 
Base of Soil Resources (IUSS Working Group WRB, 2015), the distribution of the soil 
classes from the upper third to the lower third of the slope is in the following order: 
P1 - Argissolo Vermelho-Amarelo Distrófico nitossólico (Nitic Acrisol) (Figure 1b); P2 - 
Argissolo Vermelho-Amarelo Distrófico típico (Haplic Acrisol) (Figure 1c); and P3 - Argissolo 
Vermelho-Amarelo Eutrófico nitossólico (Nitic Lixisol) (Figure 1d). 

The profiles ranged from sandy clay loam to very clayey (Table 2). The clay content 
ranged from 270 to 497 g kg-1 in the A horizon, and increased towards the subsurface 
horizons, allowing the characterization of the argic horizon (Bt). The profile of the 
middle third (P2) is more sandy at the surface (Table 2), consistent with the high silt/
clay ratio (>1.0). While this ratio was lower than 0.7 in P1 and P3. The fine sand/coarse 

Table 1. Morphological properties of soils in a topographic sequence, São Vicente Férrer, Pernambuco, Brazil

Horizon Layer
Color

Structure Clay 
coating

Consistency
Transition

Wet Dry Humid Wet
m

P1 - Argissolo Vermelho-Amarelo Distrófico nitossólico (Nitic Acrisol)
Ap 0.00-0.15 7.5YR 4/3 10YR 4/4 mod vsma sma sub fi pl v sti c f
AB 0.15-0.35 7.5YR 4/6 mod vsma med sub mod abu vfi pl v sti g f
Bt1 0.35-0.78 5YR 5/6 mod vsma sma sub mod abu fi pl v sti d f
Bt2 0.78-1.20 5YR 5/6 mod vsma sma sub mod com fri pl sti d f
Bt3 1.20-1.60+ 5YR 5/6 wea vsma sma sub wea com fri pl sti

P2 - Argissolo Vermelho-Amarelo Distrófico típico (Haplic Acrisol)
Ap 0.00-0.27 7.5YR 4/3 10YR 5/4 mod vsma sub fi v pl v sti g f
AB 0.27-0.50 7.5YR 4/6 mod str vsma sma angb str abu fi v pl v sti g f
Bt1 0.50-1.00 5YR 4/6 mod vsma sma angb mod abu fi pl v sti d f
Bt2 1.00-1.60+ 5YR 5/8 mod vsma sma sub mod com fri pl sti

P3 - Argissolo Vermelho-Amarelo Eutrófico nitossólico (Nitic Lixisol)
Ap 0.00-0.24 7.5YR 3/2 10YR 4/3 mod vsma sma sub fi pl v sti c f
AB 0.24-0.50 7.5YR 4/3 mod vsma sma sub angb mod abu Fi pl v sti g f
Bt1 0.50-0.90 5YR 4/6 mod vsma sma sub angb mod abu Fri pl v sti d f
Bt2 0.90-1.40+ 5YR 4/6 mod vsma sma sub angb mod com Fri pl sti

Abu: abundant; angb: angular blocks; com: common; c: clear; d: diffuse; f: flat; fi: firm; fri: friable; g: gradual; med: medium; mod: moderate; pl: 
plastic; sma: small; sti: sticky; str: strong; sub: subangular blocks; v: very; vfi: very firm; vsma: very small; wea: weak.
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sand ratio exhibits a small variation in depth in all profiles. Soil bulk density ranged 
from 1.27 to 1.47 Mg m-3 in the upper third (P1), and from 1.37 to 1.57 Mg m-3 in 
the middle third (P2) and lower third (P3). Particle density was between 2.57 and 
2.9 Mg m-3 (Table 2). 

The degree of flocculation of the clays presents values of 100 % in most of the Bt 
horizons, being observed a greater dispersion in the superficial layers (Table 2). The 
distribution of the total pore quantity ranged from about 40 to 52 % in the soil sequence, 
the microporosity increased in the Bt horizons of all profiles, to the detriment of the 
reduction of macroporosity (Figure 2b). The SS referring to the upper, middle, and lower 
thirds of the slope presented mean values of 32, 52, and 38 m2 g-1 of clay, respectively.

The predominance of aggregates >2.0 mm in the soil profiles (except at the A horizon of 
P2) demonstrates the good physical condition of the soil (Figure 2d). This was indicated 
by aggregation index MWD, which is an estimate of the relative amount of soil in each 
class of aggregates and increases with a higher percentage of large aggregates (Castro 
Filho et al., 2002). The MWD of water-stable aggregates decreased in depth in all profiles, 
was 2.47 mm on average in the horizons A of P1 and P2, and 1.87 mm in P2 (on average) 
in the superficial horizon, influence of land use.

Chemical composition

The soils of the topographic sequence are classified as dystrophic (P1 and P2), but 
with high base saturation in the horizons Ap, while the P3 (lower third) was eutrophic 
(Table 3). The soils were characterized by low acidity pH or neutral, except for the 
P3 which had pH>7. All profiles still presented negative ΔpH values [pH(KCl) – 
pH(H2O)] (Table 3). 

The K+ values ranged from 0.03 to 0.17 cmolc kg-1, with decreases in the subsurface 
horizons in all profiles, while P3 had the highest values (0.14 to 0.32 cmolc kg-1) 

Table 2. Physical properties of soils in a topographic sequence, São Vicente Férrer, Pernambuco, Brazil 
Horizon Layer Sand Coarse sand Fine sand FS/CS Silt Clay S/C DF Bd Ps SS

m g kg-1 g kg-1 % Mg m-3 m² g-1

P1 - Argissolo Vermelho-Amarelo Distrófico nitossólico (Nitic Acrisol)
Ap 0.00-0.15 378.7 214.3 164.4 0.77 127.8 492.1 0.26 54.20 1.46 2.58 24.30
AB 0.15-0.35 328.0 191.6 136.4 0.71 174.0 497.0 0.35 31.47 1.47 2.61 36.18
Bt1 0.35-0.78 258.1 147.6 110.5 0.75 117.9 622.2 0.19 100.00 1.47 2.61 35.46
Bt2 0.78-1.20 247.1 137.4 109.7 0.80 112.5 640.3 0.18 99.28 1.41 2.63 27.72
Bt3 1.20-1.60+ 247.0 137.9 109.1 0.79 247.6 502.6 0.49 99.79 1.25 2.62 37.44

P2 - Argissolo Vermelho-Amarelo Distrófico típico (Haplic Acrisol)
Ap 0.00-0.27 433.2 262.5 170.7 0.65 295.4 270.4 1.09 44.13 1.56 2.60 36.36
AB 0.27-0.50 398.5 248.5 150.0 0.60 121.8 477.9 0.25 100.00 1.55 2.62 58.68
Bt1 0.50-1.00 318.8 196.7 122.4 0.62 131.4 543.1 0.24 98.55 1.57 2.64 74.52
Bt2 1.00-1.60+ 256.5 164.0 92.5 0.56 128.1 614.1 0.21 97.13 1.37 2.69 40.14

P3 - Argissolo Vermelho-Amarelo Eutrófico nitossólico (Nitic Lixisol)
Ap 0.00-0.24 452.7 278.9 173.8 0.62 222.0 326.8 0.68 24.71 1.56 2.57 43.02
AB 0.24-0.50 373.8 224.8 149.0 0.66 185.3 438.4 0.42 58.01 1.55 2.59 30.42
Bt1 0.50-0.90 306.4 180.7 125.7 0.70 201.2 491.5 0.41 100.00 1.57 2.63 40.50
Bt2 0.90-1.40+ 313.7 179.8 133.9 0.74 195.8 490.7 0.40 100.00 1.37 2.60 37.62

FS/CS: fine sand/coarse sand; S/C: silt/clay; DF: degree of flocculation; Bd: soil bulk density; Ps: particle density, all analyzes performed according to 
the method described in Claessen (1997); SS: specific surface (Quirk, 1955). 
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compared to other profiles (Table 3). The Ca2+ and Mg2+ contents ranged from 1.30 to 
3.04 cmolc kg-1 and 0.07 to 0.56 cmolc kg-1, respectively, in the A horizons, with decreases 
of Ca2+ in the subsurface horizons. The Mg2+ values increased in the subsurface in all 
profiles (Table 3). 

The available P contents were high at an average of 47.7 mg kg-1 in the superficial horizons 
with an emphasis at the P2 Ap horizon that had 2.57 mg kg-1. The T presents the average 
values of 4.86, 4.15, and 3.03 cmolc kg-1 in the profiles P1, P2, and P3, respectively, 
reflecting the kaolinite mineralogy of the soils, consistent with XRD (Figure 3). The Ap 
horizons showed 9.87, 12.31, and 9.63 g of organic C per kilogram of soil in the upper, 
middle, and lower third, respectively, with values decreasing in depth. In the other 

Figure 2. Values of total porosity (a), macroporosity (b), microporosity (c), and  mean weight 
diameter (MWD) at depth in all soil profiles (d).
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horizons, these values were not conditioned to the landscape position, were relatively 
uniform (Table 3). 

Bulk mineralogical composition 

The mineralogy is identical in all profiles studied. Thus P1 was chosen to represent the 
topossequence, since the XRD of all horizons and profiles were similar. The mineralogical 
assemblage of the clay fraction of the studied soils is constituted mainly by kaolinite, 
goethite, and hematite in addition to quartz (Figure 3a). The presence of mica (illite) in 
all profiles was also detected (Figure 3b). 

DISCUSSION

The soils distribution does not follow a catenary differentiation, as a sequential change 
in soils along the slope, common in models of soil genesis in the tropics, as Milne’s 
catena concept. Although with variations in soil location in the landscape and steeply 
sloping surfaces (15-33 %), no change was observed in the soil class along the slope, 
but a sequence of Argissolos Vermelho-Amarelos (Acrisols and Lixisol) well developed 
(>1.50 m). Nevertheless, differences between the profiles of soils studied can be attributed 
to the relief, supposedly reflect erosive processes and the participation of lateral water 
flow (superficial and basal) (Moniz and Buol, 1982). 

The argic horizon in the studied sequence was developed on a convex slope, which did 
not favor its development. Thus, the development of argic horizon of profiles may be 
related to desiccation-induced compression as described by Moniz and Buol (1982). 
These authors suggest that a steeper relief increases the lateral flow of the soil solution 
and the cycles of wetting and drying, favoring the dispersion and clay illuviation (Castro, 
1989; Vidal-Torrado and Lepsch, 1993), as observed by the textural gradient and clay 
coatings in all profiles (Tables 1 and 2). 

Table 3. Chemical properties of soils in a topographic sequence, São Vicente Férrer, Pernambuco, Brazil

Horizon Layer
pH

C P Ca2+ Mg2+ Na+ K+ Al3+ H+Al S T V m
H2O KCl

m g kg-1 mg dm-3 cmolc dm-3 %
P1 - Argissolo Vermelho-Amarelo Distrófico nitossólico (Nitic Acrisol)

Ap 0.00-0.15 6.91 6.17 9.87 56.87 3.04 0.17 0.01 0.17 0.05 3.33 3.51 6.84 51.33 0.73
AB 0.15-0.35 5.91 5.20 9.13 28.65 1.65 0.07 0.07 0.06 0.05 3.52 1.86 5.38 34.58 0.94
Bt1 0.35-0.78 5.74 5.57 5.21 3.62 1.19 0.60 0.05 0.05 0.10 2.93 1.85 4.78 38.79 2.09
Bt2 0.78-1.20 5.67 5.64 2.99 0.82 1.04 0.50 0.04 0.03 0.05 2.04 1.66 3.70 44.90 1.35
Bt3 1.20-1.60+ 5.98 5.96 2.69 1.37 1.13 0.60 0.04 0.03 0.05 1.82 1.81 3.63 49.32 1.38

P2 - Argissolo Vermelho-Amarelo Distrófico típico (Haplic Acrisol)
Ap 0.00-0.27 7.14 6.31 12.31 2.57 2.48 0.09 0.07 0.14 0.05 1.79 2.77 4.57 60.73 1.09
AB 0.27-0.50 5.69 5.17 6.26 0.33 1.30 0.56 0.05 0.07 0.15 2.92 1.98 4.90 40.40 3.06
Bt1 0.50-1.00 5.74 5.57 3.88 0.00 1.18 0.39 0.05 0.05 0.05 1.93 1.68 3.62 46.50 1.38
Bt2 1.00-1.60+ 4.96 4.93 3.15 0.00 1.02 0.28 0.04 0.04 0.15 2.12 1.38 3.51 39.46 4.28

P3 - Argissolo Vermelho-Amarelo Eutrófico nitossólico (Nitic Lixisol)
Ap 0.00-0.24 7.49 6.78 9.63 38.48 1.51 0.07 0.09 0.32 0.05 1.77 1.99 3.76 53.04 1.33
AB 0.24-0.50 7.19 6.43 6.20 2.38 1.33 0.33 0.05 0.13 0.05 1.02 1.84 2.86 64.23 1.75
Bt1 0.50-0.90 6.97 6.48 3.69 2.68 1.08 0.20 0.04 0.14 0.05 1.22 1.46 2.68 54.59 1.87
Bt2 0.90-1.40+ 6.90 6.61 2.36 6.65 1.43 0.29 0.04 0.14 0.05 0.91 1.90 2.82 67.59 1.77

S: sum of exchangeable bases (Ca2+ + Mg2+ + Na+ + K+); T: sum of exchangeable bases and extractable acidity (H+Al); V = 100 × S/CEC; m = [100 × 
Al3+/(S + Al3+). All analyzed and calculated according to the methods described in Claessen (1997). P: available phosphorus (Braga and Defelipo, 1974).
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Bulk density values were high in the surface horizons (1.52 Mg m-3, on average) and 
subsurface (average of 1.67 Mg m-3) of the studied profiles, especially larger on the 
surface of the Bt horizon. This may be related to the formation of a compressed layer 
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Figure 3. X-ray diffraction (XRD) of the natural clay fraction in the form of oriented aggregates from 
all horizons of P1 (a), and of the clay fraction from Bt1 horizon of P1 (b). The XRD of P1 represents 
all the profiles studied since the XRD of all horizons and profiles were similar.
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by desiccation of horizon, and the plastic deformations induced by soil water behavior 
(Costa and Libardi, 1999). The depth of occurrence does not indicate compaction due 
to agricultural practices.

The higher clay content and soil bulk density of the Bt horizons determined a higher 
microporosity (Figure 2c), especially in the P2 and P3 profiles. According to Moniz and Buol 
(1982), on steeper slopes with anisotropic hydraulic conductivity values can favor the 
conditions for the formation of the Bt horizon. This occurs because to the concentration 
of water in a lateral flow zone, since favors the dispersion of clay minerals, deposited in 
the pores of the soil, increasing the clay content and microporosity (Moniz et al., 1982; 
Moniz, 1996; Costa and Libardi, 1999). 

A moderate, strong, very small, and small angular blocky structure of the compressed 
layer (Bt) was observed in P2 and P3. Moniz and Buol (1982) also suggest that subangular 
blocky structure of the compressed layer occurs due to a plastic deformation induced 
by different conditions of alternate wetting and drying, which are induced probably by 
sloping surfaces. The aggregates have a large amount of flat surfaces, on the contrary 
of the subangular blocky structure of P1. 

Desilication and leaching are the major processes in the well-drained soils, indicating a high 
degree of weathering of these soils, as reflected by the low values of silt/clay ratio (Table 2). 
The studied profiles were obtained of surfaces with a relief of dissected escarpments, 
constituting a testimony of the erosive retreat between the upper compartments of the 
Borborema Plateau and the recessed areas (Bigarella et al., 1994; Bezerra et al., 2008). 
The fine sand/coarse sand ratio, with small variation in depth, indicates that on this slope 
there is apparently no lithological discontinuity.

Despite the absence of mechanization and the permanent character of the banana crop, 
the rugged relief favored laminar erosion along the whole slope. The profiles of the upper 
and lower third are more clayey from the surface, while the profile (P2) of the middle 
third is more sandy on the surface (Table 2). The P2 show a silt/clay ratio higher than 
the other profiles, above 1.0 and a textural relationship that influences its classification, 
which can be attributed to a loss of clay in the A horizon by differential erosion at this 
relief position.

The topography, texture, and lower flocculation degree in the surface layers, probably 
due to increased negative charges after application of corrective and higher organic 
matter content, could favor the loss of suspended clay under heavy rainfall or cultivation 
practices, which could determine the widespread occurrence of erosion. Nunes et al. 
(2001) observed soils highly susceptible to erosion with argic/nitic B horizons in the 
hilly landscape of Minas Gerais. However, the low disintegration of aggregates during 
wet sieving, as indicated by high MWD values (predominantly >2.0 mm) due to small 
soil movement, reflects high stability and contributes to the maintenance of the great 
thickness of the studied soil profiles, even in steep slopes (P2). Although the reduction 
of MWD values was evident on the surface of P2.  

The aggregates observed in the present study are larger than those found by Palmeira et al. 
(1999) and Soares (2005), who describe sizes of the concentrated aggregates in the 
median range inferior to 1.00 mm in the conventional management area. Water-stable 
aggregates contribute to improved porosity, increased water infiltration, and erosion 
resistance (Tisdall and Oades, 1982; Pinheiro et al., 2004).

Despite the presence of illite, the levels of K+ were low in all soils (Figure 3 and Table 3). 
This indicates that under continued cultivation this element is rapidly depleted, which 
can be attributed to the export by the fruits, since the banana is a very demanding 
crop of this nutrient (Delvaux, 1995), besides the leaching, requiring supply by fertilizer 
application, at a high economic cost. The higher and more uniform K content in P3 (lower 
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third) in relation to the other profiles is attributed to its great mobility in the soil, which 
facilitates its displacement to the lower part of the relief.

The most of the chemical analyses showed that the studied soils presented 
characteristics (movement of elements and especially in cations) that are common 
features of the location soil (i.e., erosion or accumulation position) of tropical and 
sub-tropical areas (Clemens et al., 2010; Dessalegn et al., 2014). The highest SS in 
the middle and lower third of the slope is probably related to materials deposited by 
soil erosion from the higher portions of the relief, such as clay and oxides (Grohmann, 
1972). Argissolos (Acrisols) from gneiss change in moist climates show low chemical 
fertility (Lima et al., 2007). 

This is consistent with the presence of minerals such as kaolinite, goethite, illite, and 
quartz in the clay fraction of all soils profiles (Figure 3) and low values T (Table 3), 
indicating the neoformation was an important process. This soil mineralogy demonstrates 
the influence of the humid tropical climate for the genesis of soils with a high degree 
of weathering, which generally uniformizes the mineralogy of the clay fraction along 
the slope, as described by Neves et al. (2018) and Brilhante et al. (2017) on the 
south coast of Pernambuco. This also highlights the importance of management that 
increases the contribution of the organic matter to the exchange complex of these 
soils (Stevenson, 1994).

Kaolinite formed during the mineralogical evolution of the soils can be attributed to the 
alterations of the feldspars, common in the parent material. Costa et al. (2018) described 
pathways of alteration followed by feldspars, mainly, resulted in kaolinite when studying 
soil developed from the conglomerate of the Cabo Basin in a similar environment, on the 
south coast of Pernambuco (Litoral/Mata physiographic unit). 

Most studies describing illite formation in soils have concluded that the source of illite 
particles is mica, usually muscovite (Meunier and Velde, 2004). Only a few studies 
have indicated considerable illite formation in leached soils of the temperate or 
tropical regimes (Juang and Uehera, 1968; Torrent and Cabedo, 1986; He et al., 2008). 
In the present study, the inexpressive occurrence of other 2:1 minerals that could 
be a source of illite suggests that illite may be a product of muscovite alteration in 
these soils, already present among the primary minerals more resistant to weathering 
of the parent rock. 

The fact that illite have easy relative weathering at the local climate, hot and humid, 
implies that the weathering solutions suggesting that the activity of potassium is high. 
Although the available K content is low (Table 3), the amount of exchangeable K extracted 
from the soil may be less than the K absorbed by the crop, indicating the importance of 
non-exchangeable forms of K for plant nutrition (Martins et al., 2004). The presence of 
these minerals in the clay fraction of the profiles as a source of K for plants may have 
contributed to the banana farming has become the second most important agricultural 
activity in this region (Barros et al., 2008).

The formation of goethite in these soils would be product of the alteration of 
ferromagnesian minerals (Buol and Weed, 1991), such as amphiboles and biotite present 
in granite, which exhibit strong alteration in tropical climate (Buol and Weed, 1991). 
Brilhante et al. (2017) demonstrated that the formation of goethite in rhyolite-derived 
soils under similar climatic conditions was derived of mafic minerals and primary 
oxides, associated with changes in the pedogenetic environment, more favorable to 
the maintenance of moisture in the soils.

In the lower third of the slope, the pH(H2O) is higher throughout the profile (~7.0), which 
may have a negative effect on the availability of micronutrients such as boron, zinc, iron, 
and manganese (Miller and Donahuer, 1990) and, also, the availability of phosphorus. 
In the upper and middle third the pH is higher only on the surface, reflecting the productive 
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system due to the application of limestone to the superficial layer. These changes in pH 
reflect a movement of bases along the slope. For the banana crop, which does not have 
many restrictions on pH, its highest yields are in soils with pH between 6.0 and 6.5. This 
is confirmed by the eutrophic V in P3 (lower third), possibly due to the mobilization of 
the nutrients towards the lower part of the toposequence, and in the superficial horizon 
of the other profiles, attributed to fertilization and soil organic matter. While the highest 
value of S (3.51 cmolc dm-3) was observed in the A horizon of P1 (upper third), due to 
the lower slope and erosion.

High available P values (Table 3) in the surface may be due to the NPK fertilization 
carried out in the area. Higher levels of P in the superficial layers were also observed 
by Azevedo et al. (2007) in the chemical characterization of an Oxisol, in the layers of 
0.00-0.05, 0.05-0.10, 0.10-0.20, 0.20-0.40 m, under tillage systems in eastern Maranhão. 
Besides the release of P during the decomposition of residues and the lower P fixation 
by inorganic soil constituents (Sidiras and Pavan, 1985), since the studied soils undergo 
little or no incorporation of plant residues into the soil. The low mobility of P can be 
seen by its low distribution in depth (Table 3). In P2 (middle third) did not observe high 
available P content at the surface, which may be related to the precipitation of insoluble 
calcium phosphates at high values of pH and Ca2+ (Haynes, 1982) in the Ap horizon, 
demonstrating that soil erosion is not the only loss factor of P (Table 3).

The higher C content observed in P2 (middle third) is considered atypical for slope position, 
probably resulting from erosive processes and the characteristics of banana crop, with 
high incorporation of cultural remains on the soil surface. Or it may be related to its 
greater slope, making it a position of lesser movement due to its position, resulting in a 
decrease in the rates of losses of organic matter by decreasing the decomposition (Bayer 
et al., 2000), due to the smaller fractionation and incorporation of the vegetal residues.

Despite the accumulation of clay in the subsurface in all studied profiles, only the P2 (middle 
third) has textural gradient to be classified as Argissolo (Acrisol). The polychromy and 
dystrophy in P2 allowed for the classification as Argissolo Vermelho-Amarelo Distrófico 
típico (Haplic Acrisol). The other profiles, P1 (upper third of the slope) and P3 (lower 
third), do not exhibit typical textural gradient of Argissolo; however, the presence of 
polychromy prevents their classification as Nitossolo (Nitisol), so they were therefore 
classified as intermediate soils between these two orders. In addition, the basic difference 
between the profiles (P1 and P3) is the base saturation, higher in the lower third (P3), 
classified as Argissolo Vermelho-Amarelo Eutrófico nitossólico (Nitic Lixisol), while the 
P1 was classified as Argissolo Vermelho-Amarelo Distrófico nitossólico (Nitic Acrisol).

Whereas the studies of soil as part of an inventory of soil and landform systems in the 
northeast of PE are scarce, where Argissolos Vermelho-Amarelos and Vermelhos represent 
the most extensive soil type of this region (Araújo Filho et al., 2000; Embrapa, 2012). Our 
results show the development of highly weathered soils with presence of 2:1 minerals 
(illite), even under humid tropical climate and continuous cultivation of banana. This 
highlights the existence of a pedodiversity still little known in the region, which probably 
differentiated the agricultural potential of these soils, allowing the cultivation of banana 
with low technology management systems, in contrast to the cultivation of sugarcane 
extensively practiced in the region. The formation of illite, although not investigated in 
this study, in an environmental setting that, within the framework of the wider survey, 
seems confined to the dry areas of the landscape (transition Mata-Agreste), relative to 
the coast of Pernambuco, Litoral/Mata physiographic unit (wetter).

CONCLUSIONS
The soils are highly weathered, essentially kaolinitic, with goethite, quartz, and illite in the 
soil clay fraction, low nutrient retention, good internal drainage and subject to leaching.
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Although the soils show a decrease in total porosity and increase soil density in the 
sequence from the highest to the lower third, and present small variations in physical 
properties in the position of the middle third (P2), they are well structured and allow 
good development of the root system.

The steepest slope (P2) had the lowest content of clay, phosphorus and the mean weight 
diameter of aggregates, and higher organic carbon content, in the Ap horizon, due to 
removal and deposition by water erosion.

The soils were classified as: P1 - Argissolo Vermelho-Amarelo Distrófico nitossólico 
(Nitic Acrisol); P2 - Argissolo Vermelho-Amarelo Distrófico típico (Haplic Acrisol); and 
P3 - Argissolo Vermelho-Amarelo Eutrófico nitossólico (Nitic Lixisol), as a function of the 
position in the relief. The profile of the lower third (P3) was enriched by the exchangeable 
bases removed from the higher parts.
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