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ABSTRACT: Applications of phosphogypsum (PG) provide nutrients to the soil and reduce 
Al3+ activity, favoring soil fertility and root growth, but allow Mg2+ mobilization through the 
soil profile, resulting in variations in the PG rate required to achieve the optimum crop yield. 
This study evaluated the effect of application rates and splitting of PG on soil fertility of a 
Typic Hapludox, as well as the influence on annual crops under no-tillage. Using a (4 × 3) + 1 
factorial structure, the treatments consisted of four PG rates (3, 6, 9, and 12 Mg ha-1) and three 
split applications (P1 = 100 % in 2009; P2 = 50+50 % in 2009 and 2010; P3 = 33+33+33 % 
in 2009, 2010 and 2011), plus a control without PG. The soil was sampled six months after 
the last PG application, in stratified layers to a depth of 0.8 m. Corn, wheat and soybean 
were sown between November 2011 and December 2012, and leaf samples were collected 
for analysis when at least 50 % of the plants showed reproductive structures. The application 
of PG increased Ca2+ concentrations in all sampled soil layers and the soil pH between 
0.2 and 0.8 m, and reduced the concentrations of Al3+ in all layers and of Mg2+ to a depth of 
0.6 m, without any effect of splitting the applications. The soil Ca/Mg ratio increased linearly 
to a depth of 0.6 m with the rates and were found to be higher in the 0.0-0.1 m layer of the 
P2 and P3 treatments than without splitting (P1). Sulfur concentrations increased linearly 
by application rates to a depth of 0.8 m, decreasing in the order P3>P2>P1 to a depth of 
0.4 m and were higher in the treatments P3 and P2 than P1 between 0.4-0.6 m, whereas 
no differences were observed in the 0.6-0.8 m layer. No effect was recorded for K, P and 
potential acidity (H+Al). The leaf Ca and S concentration increased, while Mg decreased 
for all crops treated with PG, and there was no effect of splitting the application. The yield 
response of corn to PG rates was quadratic, with the maximum technical efficiency achieved 
at 6.38 Mg ha-1 of PG, while wheat yield increased linearly in a growing season with a drought 
period. Soybean yield was not affected by the PG rate, and splitting had no effect on the 
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yield of any of the crops. Phosphogypsum improved soil fertility in the profile, however, Mg2+ 
migrated downwards, regardless of application splitting. Splitting the PG application induced 
a higher Ca/Mg ratio in the 0.0-0.1 m layer and less S leaching, but did not affect the crop 
yield. The application rates had no effect on soybean yield, but were beneficial for corn and, 
especially, for wheat, which was affected by a drought period during growth.

Keywords: calcium sulfate, calcium/magnesium ratio, grain yield.

INTRODUCTION
Brazilian agriculture has an outstanding grain production, achieved by technologies that 
maximize the yield potential, such as the implementation of no-tillage (NT) systems. 
Since the introduction in the 1970s (Derpsch and Friedrich, 2009), NT proved to be more 
than a set of practices that ensure minimum soil disturbance, soil mulching with crop 
residues and control of soil erosion. The system improves the soil quality as a whole, 
favoring yield and allowing greater resource use efficiency (e.g. of soil, fertilizers and 
fuel), which has promoted the expansion of NT across the country. Currently, in Brazil, 
an acreage of nearly 32 million hectares is being managed in NT systems (FAO, 2012).

To establish well-nourished crops, the soil must retain water and nutrients in readily available 
forms for uptake, and no limiting factors of soil chemistry, physics and biology may stress the 
crop (Klein, 2011). In agriculture, short-term stresses during critical stages of the plant life 
cycle can greatly affect the yield of staple crops, especially due to the high precocity of current 
varieties. In spite of knowing NT since the 1970s, many farmers now restrict this practice to 
“direct seeding on crop residues” rather than applying the complete “no-tillage management 
system” with principles of conservation agriculture. This has affected the soil, resulting in 
stratified properties; satisfactory chemical conditions tend to be restricted to the topsoil, while 
compaction increases in the subsurface layers, intensifying the cropping problems resulting 
from the poor weather conditions in recent years (Denardin et al., 2008; Nunes et al., 2014).

Since in Brazil and other South American countries NT is used uninterruptedly, there is 
no periodic soil tillage, the accumulation of crop residues in the topsoil and the addition 
of lime and fertilizers to the surface intensifies soil stratification over time, leading to 
the accumulation of organic C and N (Ebeling et al., 2008; Venzke Filho et al., 2008), 
as well as P, K+, Ca2+ and Mg2+ to depths of 0.0-0.10 m (Klein et al., 2007; Spera et al., 
2011; Acqua et al., 2013; Kramer et al., 2014). Since the vertical mobility of lime is 
reduced in NT, the subsurface soil changes to a more acidic environment with higher 
concentrations of exchangeable aluminum (Al3+) (Raij et al., 1998; Ernani et al., 2001), 
creating a chemical limitation to root growth.

Management strategies originally designed from the fundamentals of NT can minimize 
or mitigate the problems resulting from the vertical gradient of fertility in the soil; 
implementing crop diversification, reducing time between sowing and harvesting and the 
addition of crop residues in a manner compatible with the biological dynamics (Nunes et al., 
2014) can all produce good results in the medium or long-term. Phosphogypsum (PG), 
on the other hand, even if applied to the soil surface, improves the chemical conditions 
in the soil profile for root growth, especially in deeper layers (Carvalho and Raij, 1997), 
after a few months (Caires et al., 2001, Rampim et al., 2011).

Due to its solubility and other specific reaction characteristics, PG (CaSO4.2H2O) moves 
throughout the soil profile releasing Ca2+ and sulfur (S) (Caires et al., 2006, 2011a; Soratto 
and Crusciol, 2008). Concomitantly, Mg2+ and K+ – the latter only rarely – are displaced from 
the soil exchange sites in top layers and then move along with water to the subsurface 
(Caires et al., 2011b). In addition, a decrease in the Al3+ concentrations to levels not toxic 
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to plant roots can occur (Toma et al., 1999), due to the formation of ionic pairs between 
Al3+ and the sulfate (SO4

2−) or fluoride (F−
  ) contained in PG (Zambrosi et al., 2007).

The application of PG proved effective in maximizing yields of Poaceae species under NT, 
especially those of corn (Raij et al., 1998; caires et al., 1999, 2004, 2011a; Toma et al., 1999) 
and wheat (Caires et al., 2002; Rashid et al., 2008). However, in most cases, no significant 
yield increases were observed in Fabaceae species, e g., in soybean (Nogueira and Melo, 
2003; Caires et al., 2003, 2006, 2011a; Neis et al., 2010).

Although comprehensive information regarding the effects of gypsum on soil and plants 
is available, Brazil has not yet established criteria for recommending PG application 
rates, which can vary regionally and according to the local climate, soil order and crop. 
There are few available data regarding crop rotation systems, and no information about 
PG split-application rates, which is a common strategy for increasing the efficiency of 
fertilizers by reducing N and K fertilization losses (Cardoso et al., 2007). 

The hypotheses of this study were that the higher availability of Ca2+ and S and the 
decrease in Al3+ in the soil due to PG application improve annual crop yields under 
long-term NT, and that PG split applications reduce the loss and, or, mobilization of S, 
Mg2+ and, or, K+, especially at higher PG rates. The objective was to evaluate the effects 
of different PG rates and split applications on a Typic Hapludox chemical properties, 
nutrition and on yields of NT corn, wheat and soybean.

MATERIALS AND METHODS
This study was carried out between November 2011 and April 2013, as part of a long-term 
field trial established in 2009 at the Experimental Field of the West-Central State University, 
in Guarapuava, Paraná, where the climate (Köppen-Geiger System) is classified as Cfb, 
mesothermal humid subtropical. A meteorological station of the Agronomic Institute of 
Paraná (IAPAR), located 200 m away from the experimental site (25° 23’ S, 51° 30’ W and 
1,026 m above sea level), was used to collect rainfall and temperature data throughout the 
experimental period, as well as long-term averages (Figure 1). In October 2009, a trench 
was dug for the morphological assessment of the soil and for soil sampling to determine 
the clay content (Claessen, 1997) and soil chemical properties (Pavan et al., 1992).

The profile (Table 1) was classified as very clayey Latossolo Bruno Distrófico, based on 
the Brazilian soil classification system (Santos et al, 2013), a Typic Hapludox (Soil Survey 
Staff, 2014). More information about the initial phase of the experiment was provided 
by Michalovicz (2012).

A randomized complete block design was used, with four replications and 16 × 6.4 m plots. 
The PG rates constituted the first treatment factor: 3, 6, 9, and 12 Mg ha-1 (dry-weight 
basis). The second treatment factor consisted of the split applications: P1 – without 
splitting, i.e., 100 % applied in November 2009; P2 – application split in two years, 
50+50 % in November 2009 and 2010; and P3 – split amongst three years, 33+33+33 % 
in November 2009, 2010 and 2011. A control without PG was also part of the study, in 
a factorial arrangement (4 × 3) + 1. The Ca and S concentrations of PG were 170 and 
140 g kg-1, respectively, and the application rates were calculated to provide 0, 33, 66, 
100, and 133 % of the required amount of Ca2+ in the A1 horizon (Table 1), so as to reach 
60 % of Ca2+ saturation of the cation exchange capacity (CECpH 7.0).

The factorial structure was complete when the final application of PG, the third 33 % 
portion in P3, was applied to the soil surface on November 15th, 2011, together with corn 
(P3646H®) sowing. The final plant density was 62,500 plants ha-1, in a row spacing of 
0.8 m, and the crop was fertilized with 300 kg ha-1 of 14-33-00 N-P-K fertilizer mixture, 
applied in the planting furrow. Side-dressing consisted of 45 kg ha-1 N (urea) and 54 kg ha-1 
K2O (KCl) at V4, plus 58 kg ha-1 N (urea) at V6. Wheat (OR Mirante®) was sown on July 
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20th, 2012, in a row spacing of 0.2 m and final plant density of 330 plants m-2. The crop 
was fertilized with 370 kg ha-1 of 05-20-20 N-P-K fertilizer mixture in the planting furrow 
and side-dressed with 40 kg ha-1 N (urea) during tillering. Soybean (Nidera 5909®) 
was sown on December 15th, 2012, in a row spacing of 0.4 m. Seeds were inoculated 
(Bradyrhizobium sp.) and 250 kg ha-1 of the 02-20-18 N-P-K fertilizer mixture was applied 
in the planting furrow. The final plant density was 325,000 plants ha-1.

Leaf tissue samples were collected from the central areas of each plot, when at least 50 % 
of the plants showed reproductive structures, i.e.: stage R1 for corn and soybean and 
10.5 on the Feekes-Large scale for wheat. For each crop, specific leaves were sampled: 
for corn, the leaf opposite and under the ear, for soybean the third trefoil from the apex 
to the base and for wheat the flag leaf (CQFSRS/SC, 2004). The samples were rinsed in 
deionized water, dried in a forced-air oven at 60 °C to constant weight, ground in a Willey 
mill and sieved to pass through 0.75 mm mesh. The concentrations of P, K, Ca, Mg and 
S were determined by nitric digestion, and N by sulfuric digestion (Santos et al., 2009).

Horiz.(1) Depth C P S pH(CaCl2) Al3+ H+Al Ca2+ Mg2+ K+ V Clay
m g dm-3 mg dm-3 cmolc dm-3 % g kg-1

A 0.0-0.3 21 1.1 4.7 5.4 0.20 4.96 5.01 2.66 0.26 61 720
AB 0.3-0.5 21 0.3 10.5 4.5 0.40 7.66 1.10 1.07 0.08 22 780
BA 0.5-0.8 11 0.5 13.3 4.7 0.40 6.18 0.85 1.14 0.04 25 810
Bw1 0.8-1.1 10 0.3 4.4 4.7 0.00 5.74 0.65 0.76 0.04 20 830
Bw2 1.1-1.4+ 6 0.2 3.8 5.3 0.00 3.68 0.29 0.22 0.04 13 820

Table 1. Chemical characterization and clay content of a Typic Hapludox profile before the experiment in October, 2009

(1) Pedological horizons, data extracted from Michalovicz (2012). C: determined by dichromate-oxidation method; P and K: extracted by 
Mehlich-1; S (SO4

2−): extracted by CaHPO3 0.01 mol L-1; pH in CaCl2 0.01 mol L-1 solution; Al, Ca, Mg: extracted by KCl 1 mol L-1; clay: pipette method.

Figure 1. Monthly rainfall and temperature for the periods of 1976-2013 (long-term averages), and November 2011 to April 2013 
(experimental period) in Guarapuava, Paraná state, Brazil.
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Soil samples were collected in May 2012, after the corn harvest (six months after the last 
PG application). A composite sample, consisting of 12 subsamples per plot (four from the 
planting rows and eight from in-between the rows), was collected with an auger probe from 
the layers 0.0-0.1 and 0.1-0.2 m. At six of these points (two in and four in-between the rows), 
the soil was also sampled at depths of 0.2-0.4, 0.4-0.6 and 0.6-0.8 m with a Dutch auger. 
Samples were dried in a forced-air oven at 65 °C, and then ground in a knife-type mill and 
sieved through a 2 mm mesh. The analysis was done according to Pavan et al. (1992) and P 
extracted by Mehlich-1. The inorganic form of S (SO4

2−) was extracted by calcium phosphate 
0.01 mol L-1 as described by Cantarella and Prochnow (2001), and then determined through 
turbidimetry. The soil delta pH (∆pH) was also calculated, as described by Kiehl (1979).

The yield of the crops harvested manually at physiological maturation was evaluated by 
collecting four sub-samples of 4 m (16 linear meters) per plot for corn and 3 m (12 linear meters) 
per plot for wheat and soybeans. Yields were reported at a moisture of 130 g kg-1 and maximum 
technical efficiency (MTE) rates of PG were obtained by setting the first derivative of the yield 
response models of each crop (regression analysis) equal to zero. All results were subjected 
to analysis of variance and in the case of significant (p<0.05) interactions between factors 
regression analyses were conducted separately (partitioning) for each split treatment. When 
no interaction was observed, split treatment means were tested by Tukey’s test (α=0.05) and 
regression analyses were conducted using the means of each rate for all split treatments. 
The models with the highest level of significance were adopted.

RESULTS AND DISCUSSION

Chemical properties of soil fertility

The PG rates did not influence soil pH in the 0.0-0.1 and 0.1-0.2 m layers, with or without 
split applications (Table 2). However, soil pH increased in the 0.2-0.4 and 0.4-0.6 m layers 
when compared with the control treatment, regardless of total or split application rates, 
while a linear increase in soil pH was observed in the 0.6-0.8 m layer as a function of PG 
rate, without effect of splitting or interaction. Phosphogypsum is a neutral salt without 
corrective properties for soil acidity, so no change in soil pH was expected from its use. 
Notwithstanding, there can be a small magnitude pH increase in subsurface soil due to 
SO4

2−-S increase, which at high concentrations can displace the OH− that is adsorbed to 
Fe and Al hydrated oxides to the soil solution, a process known as “self-liming” (Reeve 
and Sumner, 1972), which is rather unstable and reversible (Raij, 2008). Similar results 
were obtained by Caires et al. (1999) for the 0.2-0.4, 0.4-0.6 and 0.6-0.8 m layers, and 
in another study for the 0.2-0.4 and 0.4-0.6 m layers (Caires et al., 2003). 

Another possible explanation for these increases in soil pH could be a higher absorption of 
nitrate (NO−

3) in deeper layers, since NO−
3 is highly mobile in the soil profile and one of the plant 

effects described for PG is a greater root distribution in deeper soil layers (Caires et al., 2001). 
The OH−  is released by plants when NO−

3 is absorbed, alkalizing the soil (Bloom et al., 2003).

The application of PG resulted in a decrease in the Al3+ concentration in all studied soil 
layers, however, there was no effect of application splitting or rate increase (Table 2). 
The effects of PG on Al3+ have been associated with the formation of Al hydroxylated 
structures in the soil, as a result of ligand exchange between OH− from the surfaces of 
hydrated Fe or Al oxides and SO4

2− provided by PG (Reeve and Sumner, 1972), as well 
as the formation of an ionic pair between Al3+ and SO4

2− or fluoride (F−) (Zambrosi et 
al., 2007). Phosphogypsum contains approximately 15 % S and 0.6-3.2 % F, and even 
when considering the role of SO4

2− in Al3+ complexation, F− may be even more effective 
in this reaction (Carvalho and Raij, 1997; Zambrosi et al., 2007), which may explain 
why PG is more efficient than natural gypsum (gypsite) in complexing Al3+. In clayey 
Oxisols, Rampim et al. (2011) and Caires et al. (1999) also reported a reduction in Al3+ 
concentrations due to PG application, to a depth of 0.8 m in the latter case.
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Depth PG pH(CaCl2) Al3+ H+Al
P1(1) P2 P3 P1 P2 P3 P1 P2 P3

m Mg ha-1 cmolc dm-3

0.0-0.1 0 (control) 4.48 4.48 4.48 0.27 0.27 0.27 10.62 10.62 10.62
3 4.57 4.50 4.49 0.19 0.20 0.13 8.82 10.49 9.35
6 4.53 4.57 4.40 0.18 0.20 0.22 9.34 9.71 8.81
9 4.51 4.50 4.47 0.20 0.14 0.19 9.97 10.28 9.77

12 4.47 4.43 4.47 0.15 0.20 0.17 9.42 11.73 10.37
Split (x̄) 4.52ns 4.48ns 4.46ns 0.18ns 0.19ns 0.18ns 9.39ns 10.55ns 9.82ns

Rate ns ns ns
Rate × Split ns ns ns

Factorial × control ns * ns
CV (%) 2.19 44.31 18.03

0.1-0.2 0 4.51 4.51 4.51 0.25 0.25 0.25 9.86 9.86 9.86
3 4.65 4.57 4.61 0.10 0.16 0.06 9.16 10.02 8.87
6 4.57 4.60 4.40 0.15 0.13 0.20 9.77 10.37 10.97
9 4.62 4.70 4.70 0.14 0.11 0.11 9.35 8.32 9.03

12 4.72 4.47 4.52 0.13 0.19 0.13 8.74 9.64 10.31
Split (x̄) 4.64ns 4.59ns 4.56ns 0.13ns 0.15ns 0.13ns 9.26ns 9.59ns 9.79ns

Rate ns ns ns
Rate × Split ns ns ns

Factorial × control ns ** ns
CV (%) 3.89 43.25 9.85

0.2-0.4 0 4.43 4.43 4.43 0.42 0.42 0.42 11.12 11.12 11.12
3 4.60 4.57 4.70 0.25 0.26 0.27 10.24 10.46 8.41
6 4.67 4.70 4.42 0.23 0.21 0.36 10.18 10.49 11.32
9 4.65 4.67 4.60 0.26 0.18 0.20 10.67 10.07 10.10

12 4.64 4.48 4.55 0.23 0.30 0.26 9.93 11.28 10.67
Split (x̄) 4.64ns 4.61ns 4.57ns 0.24ns 0.24ns 0.27ns 10.25ns 10.58ns 10.12ns

Rate ns ns ns
Rate × Split ns ns ns

Factorial × control * * ns
CV (%) 3.39 49.87 14.51

0.4-0.6 0 4.42 4.42 4.42 0.35 0.35 0.35 10.87 10.87 10.87
3 4.62 4.50 4.62 0.24 0.27 0.25 10.46 10.88 9.89
6 4.54 4.62 4.50 0.23 0.24 0.23 10.09 10.10 10.74
9 4.62 4.62 4.60 0.20 0.21 0.20 10.07 9.90 10.14

12 4.74 4.45 4.57 0.19 0.26 0.26 9.90 10.65 10.26
Split (x̄) 4.63ns 4.55ns 4.57ns 0.22ns 0.25ns 0.24ns 10.13ns 10.39ns 10.27ns

Rate ns ns ns
Rate × Split ns ns ns

Factorial × control * * ns
CV (%) 2.62 38.29 6.90

0.6-0.8 0 4.40 4.40 4.40 0.27 0.27 0.27 10.87 10.87 10.87
3 4.43 4.42 4.54 0.22 0.23 0.20 11.63 10.58 9.95
6 4.55 4.62 4.45 0.23 0.15 0.26 9.92 10.20 11.03
9 4.65 4.60 4.60 0.19 0.13 0.18 9.95 9.77 10.38

12 4.70 4.62 4.57 0.15 0.21 0.20 9.95 10.51 10.54
Split (x̄) 4.58ns 4.57ns 4.54ns 0.20ns 0.18ns 0.21ns 10.36ns 10.27ns 10.48ns

Rate L(2)**/0.94 ns ns
Rate × Split ns ns ns

Factorial × control ** * ns
CV (%) 2.22 31.89 8.07

Table 2. Variance and regression analyses, and averages of soil pH, exchangeable aluminum (Al3+) and potential acidity (H+Al) 
under different total and split phosphogypsum (PG) application rates at a Typic Hapludox

(1) P1 = 100 % in 2009, P2 = 50+50 % in 2009 and 2010, P3 = 33+33+33 % in 2009, 2010 and 2011; (2) Linear adjust and R2 value after the bar; * 
and **: significant at p<0.05 and p<0.01, respectively; ns: not significant.
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Neither PG application rates nor splitting had an effect on H+Al concentrations in any 
of the soil layers (Table 2), in agreement with the observations of Caires et al. (2004) 
under similar soil conditions. Although there were changes in Al3+ and pH concentrations 
in this study, these were minor and not intense enough to affect the H+Al values, which 
is consistent with PG being a neutral salt.

The Ca2+ concentrations increased linearly in response to the PG application rates in 
all soil layers, but no splitting effect was found (Table 3). Phosphogypsum consists 
of 17 % Ca, and given that the Ca2+ concentrations were found to have increased in 
all soil layers, this demonstrates that PG is a Ca2+ source that migrates downwards 
through the soil profile. An increase in Ca2+ concentration throughout the soil profile 
was also observed by Caires et al. (1999, 2003, 2011b), Soratto and Crusciol (2008) 
and Rampim et al. (2011) during their studies, noting that PG is a complementary soil 
amendment tool to lime for increasing Ca2+ concentrations in NT soils, especially in 
the subsurface, due to the higher PG solubility and vertical mobility in the soil profile 
compared with lime (Caires et al., 1998).

Magnesium concentrations decreased linearly with increasing PG application rates in 
the 0.0-0.1 and 0.1-0.2 m layers, as reported in other studies (Toma et al., 1999; Soratto 
and Crusciol, 2008; Caires et al., 2011a), and again no effect of splitting was observed. 
Competing for the same adsorption sites, the Ca2+ added by PG displaces soil Mg2+ 
ions to the soil solution, which is further transported to deeper soil layers as the water 
percolates through the profile (Medeiros et al., 2008). The formation of MgSO0

4, which 
is mobilized easily in the soil, also occurs (Zambrosi et al., 2007). At the 0.2-0.4 and 
0.4-0.6 m depths, Mg2+ concentrations also decreased linearly, but this was different 
from the layers above, as no significant difference between the factorial average and 
the control average was observed. In these layers, incoming Mg2+ from surface layers 
leached down due to PG application, compensating in part for the Mg2+ that migrates 
downward, especially at the rates of 3 and 6 Mg ha-1. In the 0.6-0.8 m layer, no effects 
of rate increase or split applications were observed, however, PG increased the Mg2+ 
concentration, since the factorial mean was higher in relation to the control mean, 
indicating that Mg2+ was accumulated in this layer (Table 3).

In view of the effect of PG on Mg2+ availability in the soil, it is important to consider the 
initial Mg2+ concentrations in different soil layers before recommending PG rates, because 
the redistribution of the Mg2+ concentrated superficially in NT soils may be benefic for 
crops. It is also necessary to maintain Mg2+ concentrations above the critical level of the 
nutrient in surface layers to ensure adequate Mg2+ supply. Therefore, the planning of PG 
application must consider other agricultural practices that interact in this context, such 
as the use of dolomitic lime, magnesium thermophosphate, or other of Mg2+ sources, 
depending on the situation.

The soil Ca/Mg ratio increased linearly with PG application rates in all soil layers, although 
in the 0.4-0.6 and 0.6-0.8 m layers, the increase was not significant in relation to the 
control (Table 3). In the 0.0-0.1 m layer, the application of single rates (P1) resulted in a 
lower Ca/Mg ratio compared with rates where the applications were distributed over two 
(P2) or three (P3) years. Despite not being significantly different, the Ca2+ concentrations 
were higher while those of Mg2+ were lower in P2 and P3, where the time between PG 
application and soil sampling was shorter than in P1. The combination of these variations 
resulted in a statistical difference for the Ca/Mg ratio among split treatments. A Ca/Mg 
increase in response to PG application rates was also reported by Caires et al. (2011a), 
attributing these results to increases in Ca2+ concentrations and Mg2+ leaching.

There was no effect of treatment on soil K+ concentrations (Table 4). Despite K+ competes 
for the same adsorption sites as Ca2+ and Mg2+, the downward migration of K+ was not 
comparable to Mg2+. This movement for K+ (low magnitude) after PG application was 
reported by Caires et al. (1998, 2002), but other studies did not show the same behavior 
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Depth PG Ca2+ Mg2+ Ca/Mg ratio
P1(1) P2 P3 P1 P2 P3 P1 P2 P3

m Mg ha-1 cmolc dm-3

0.0-0.1 0 (control) 4.18 4.18 4.18 1.68 1.68 1.68 2.64 2.64 2.64
3 4.70 4.91 5.41 1.48 1.13 1.49 3.40 4.97 3.71
6 4.80 5.23 4.82 0.84 0.97 0.60 5.75 6.02 8.27
9 5.09 5.48 6.10 0.72 0.59 0.67 7.45 10.01 9.79

12 5.73 5.09 6.17 0.73 0.33 0.51 8.42 17.06 14.86
Split (x̄) 5.07ns 5.18ns 5.65ns 0.94ns 0.76ns 0.82ns 5.53 B 8.14 A 7.85 A

Rate L(2)*/0.83 L**/0.87 L**/0.98
Rate × Split ns ns ns

Factorial × control * ** **
CV (%) 15.17 40.16 36.48

0.1-0.2 0 3.85 3.85 3.85 1.62 1.62 1.62 2.80 2.80 2.80
3 4.38 4.29 4.68 1.63 1.15 1.90 2.90 4.41 2.74
6 4.82 4.67 4.56 0.93 1.20 0.90 5.87 4.14 5.67
9 4.77 4.96 4.57 0.64 0.68 1.11 7.09 8.84 4.35

12 5.22 5.07 5.55 0.56 0.36 0.55 11.55 16.62 10.19
Split (x̄) 4.80ns 4.75ns 4.84ns 0.94ns 0.85ns 1.11ns 6.85ns 8.55ns 5.66ns

Rate L*/0.91 L**/0.96 L**/0.89
Rate × Split ns ns ns

Factorial × control * ** *
CV (%) 16.41 38.74 51.02

0.2-0.4 0 2.69 2.69 2.69 1.18 1.18 1.18 2.51 2.51 2.51
3 2.83 3.42 3.38 1.28 1.30 1.35 2.78 3.43 2.70
6 3.70 3.88 3.40 1.04 1.14 0.93 3.91 3.43 3.66
9 3.86 3.68 3.85 0.88 1.06 1.25 4.44 4.15 3.54

12 3.92 3.94 4.10 0.91 0.84 0.80 4.62 4.92 5.26
Split (x̄) 3.58ns 3.73ns 3.68ns 1.03ns 1.09ns 1.08ns 3.93ns 3.98ns 3.79ns

Rate L**/0.93 L**/0.85 L**/0.97
Rate × Split ns ns ns

Factorial × control ** ns *
CV (%) 17.21 30.99 32.35

0.4-0.6 0 2.30 2.30 2.30 1.16 1.16 1.16 2.09 2.09 2.09
3 2.55 3.03 2.56 1.33 1.45 1.43 1.94 2.22 1.79
6 2.92 2.74 2.77 1.16 1.25 1.15 2.54 2.19 2.40
9 2.91 3.00 3.39 1.13 1.23 1.35 2.78 2.46 2.53

12 3.05 3.23 3.40 1.05 1.05 1.15 3.08 3.14 3.27
Split (x̄) 2.86ns 3.00ns 3.03ns 1.03ns 1.16ns 1.22ns 2.58ns 2.50ns 2.50ns

Rate L**/0.97 L*/0.83 L**/0.97
Rate × Split ns ns ns

Factorial × control ** ns ns
CV (%) 13.88 36.75 26.35

0.6-0.8 0 1.80 1.80 1.80 1.13 1.13 1.13 1.73 1.73 1.73
3 2.28 2.29 2.12 1.50 1.51 1.55 1.51 1.59 1.38
6 2.55 2.26 2.18 1.28 1.83 1.22 2.00 1.23 1.88
9 2.47 2.27 2.23 1.42 1.61 1.71 1.88 1.40 1.32

12 2.73 2.79 2.62 1.45 1.42 1.48 1.96 2.12 1.81
Split (x̄) 2.51ns 2.40ns 2.29ns 1.41ns 1.59ns 1.49ns 1.83ns 1.58ns 1.60ns

Rate L*/0.77 ns L*/0.56
Rate × Split ns ns ns

Factorial × control ** * ns
CV (%) 18.02 18.15 28.16

Table 3. Variance and regression analyses, and averages of soil calcium and magnesium concentrations and Ca/Mg ratio under 
different total and split phosphogypsum (PG) application rates of a Typic Hapludox

 (1) P1 = 100 % in 2009, P2 = 50+50 % in 2009 and 2010, P3 = 33+33+33 % in 2009, 2010 and 2011; (2) Linear adjust and R2 value after the bar; 
* and **: significant at p<0.05 and p<0.01, respectively; ns: not significant.
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(Raij et al., 1998; Caires et al., 2004). It is possible that K+, added periodically at crop 
planting throughout the years, compensates any effect possibly caused by PG mobilization. 
Nevertheless, since the K+ concentrations in the soil were considered high, the amount of 
K+ available for leaching was high, therefore, the absence of the effect of PG is evidence 
that mobilization would be lower for K+ than for Mg2+, and, or, that the relatively higher 
cycling of K+ (kg ha-1) by the crops reduces the leaching effect (Raij et al., 1998). Another 
hypothesis is that the KSO4

− formed after the PG reaction can bind to positive charges in 
the soil, which is not the case for MgSO0

4, making it more prone to leaching. Zambrosi et 
al. (2008) evaluated the ionic speciation of a clayey Oxisol under NT, and found that K+ 
was not complexed by organic anions, and that the complexation with inorganic anions 
(KCl, KNO3 and KSO4

−) represented a maximum of 0.2 % of the total, remaining as free 
ions and favoring soil adsorption.

Compared with the control treatment, the application of PG increased the soil S 
concentration and unlike for the other nutrients, there was an interaction between 
application rate and splitting for all soil layers (Table 4). The S concentration increased 
in the 0.0-0.1, 0.1-0.2 and 0.2-0.4 m layers in the following order: P1<P2<P3. As PG 
rates increased, the S concentrations also increased linearly, in all splitting treatments 
and soil layers, except for the 0.0-0.1 m layer where this response occurred only in 
P2 and P3. The effect of split applications changed in the deeper layers, so that in 
0.4-0.6 m, no difference was observed between P1 and P2 and both were exceeded by 
P3, while in the 0.6-0.8 m layer, no splitting effect occurred. Increased S concentration 
in the soil was also reported in other studies, to a depth of 0.6 m (Caires et al., 2011a) 
and 0.8 m (Raij et al., 1998). In addition, the above results indicate that splitting the PG 
application could benefit the S levels in the soil, especially in the near-surface layers, 
improving S cycling by plants and increasing the soil stock.

The retention of SO4
2− in the soil is low, especially in the topsoil where electronegativity is 

higher. In NT, soil net charge is even more negative in this layer due to the accumulation 
of organic matter and surface liming (Casagrande et al., 2003), thus repelling SO4

2−. 
In fact, due to the absence of tillage and to the natural low mobility of phosphate 
anions, they accumulate in the topsoil along with fertilization in the furrow during 
crop planting, and phosphates are preferably retained in the anion exchange capacity 
(AEC). Higher concentrations of S are common in subsurface layers (Borges, 1997; 
Alvarez V et al., 2000), where lower organic matter content allows for a higher AEC 
(Lima et al., 2013). In this study, this trend was estimated by the ∆pH values, which 
were less negative for the 0.4-0.6 and 0.6-0.8 m layers, -0.92 and -0.80, respectively, 
in comparison with the values for the 0.0-0.1, 0.1-0.2 and 0.2-0.4 m layers, where the 
∆pH values were -1.13, -1.04 and -1.04, respectively.

Phosphorus concentrations in the soil were not affected by treatments (Table 4), 
although residual concentrations of P (0.2-0.6 % P2O5) are present in PG, due to 
its origin in the phosphate fertilizer manufacturing process. In this study, the 
combination of the broadcast application of PG to the area and the very clayey 
soil texture creates a large P retention capacity, preventing increases in available 
P concentrations in the soil analysis.

Macronutrient plant leaf tissue concentrations 

The N concentration of corn, wheat and soybean leaves (Table 5) were not affected 
by any of the treatments. Raij et al. (1998) and Caires et al. (2011a) found similar 
results regarding corn, and despite the fact that rainfall in December 2011 was about 
100 mm lower than the monthly mean, there was no water stress in the corn growing 
season (Figure 1), with regular precipitation every 7-10 days. Wheat emerged on 
July 30th, 2012 and was affected by water stress in the early stages of its life cycle, 
with rainfall precipitation in August being only 2 mm while there was 100 mm less 
precipitation than the monthly mean of September. In this case, the absence of a 
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possible effect of PG on leaf N concentrations could be due to absorption limitations 
imposed by the dry period, which reduced wheat growth and the yield. No effect of 
PG application on wheat leaf N concentration under water stress was also reported 
by Caires et al. (2002). Soybean obtains most of the necessary N through symbiosis, 
resulting in a reduced potential effect of PG on N absorption from the soil, as was 
observed in this study and also reported by Nogueira and Melo (2003) and Caires 
et al. (2003; 2011a).

The treatments had no effect on leaf P concentrations (Table 5), corroborating findings 
of other studies for corn (Raij et al., 1998; Caires et al., 2004), wheat (Caires et al., 
2002), and soybean (Nogueira and Melo, 2003). The same concordance between the 
soil and leaf tissue results occurred for K in corn, wheat and soybean (Table 5). Despite 
increasing Ca2+ concentrations in soil layers due to PG application, K plant uptake was 
not influenced by competitive inhibition. In this case, the high concentrations of K+ 
in the soil and K+ supply through NPK fertilization in planting furrows for each crop 
may explain the results. Other studies with PG also reported similar results for leaf K 
regarding corn (Caires et al., 2011a), wheat (Caires et al., 2002) and soybean (Caires 
et al., 2003, 2011a; Nogueira and Melo, 2003).

The reduction in Al3+ concentration combined with Ca2+ increase throughout the soil 
profile improved soil fertility, especially in the subsurface, which may have benefited 
root growth (Carvalho and Raij, 1997) and enhanced root interception, the second most 
important ion-root contact component for Ca absorption (Prado, 2008). Thus, the linear 
increase in leaf Ca concentration for corn, wheat and soybean (Table 5) in response to PG 
application rates was explained. Increases in leaf Ca concentrations were also reported in 
other studies for corn (Caires et al., 2004; 2011a) and wheat (Caires et al., 1999; 2002), 
as well as soybeans (Caires et al., 2003, 2006; Rampim et al., 2011).

The decrease in Mg2+ concentrations in soil layers to a depth of 0.60 m was followed 
by a reduction in Mg absorption by corn, wheat and soybean (Table 5). High soil 
concentrations of Ca2+ and K+ inhibit Mg absorption by ionic competition, leading to 
possible nutrient deficiency (Prado, 2008). However, wheat was the only crop with Mg 
leaf concentration below the sufficiency range (1.5 – 4 g kg-1), and only for 6, 9 and 12 
Mg ha-1 of PG. A decrease in Mg concentration in corn leaf tissue after PG application 
was reported also by Raij et al. (1998) and Caires et al. (2004). For wheat, Caires et al. 
(2002) reported no effect of PG application on Mg leaf concentration, while Rampim 
et al. (2011) also observed a decline in leaf Mg, and the studies of Caires et al. (2003; 
2006) and Gelain et al. (2011) found increasing PG application rates related to a 
decrease in Mg concentration in soybean leaves.

The S concentrations in corn, wheat and soybean leaves (Table 5) were linearly 
increased by PG application rates, reflecting the S increase in the soil due to PG 
application rates. This result was similar to those reported in other studies on corn 
(Caires et al., 2011a), wheat (Caires et al., 2002) and soybean (Caires et al., 2003, 
2011a; Nogueira and Melo, 2003). In contrast, although application splitting also 
resulted in a higher soil S concentration to 0.6 m deep, this factor did not affect 
leaf S concentration in any of the crops; the same was true for the Ca and Mg 
leaf concentrations, even though splitting resulted in a higher Ca/Mg ratio in the 
0.0-0.1 m soil layer. The macronutrients did not demonstrate a response in terms 
of leaf concentration for any of the studied crops due to the effect of splitting, 
demonstrating that the magnitude of the variation in soil properties due to splitting 
the PG application rates was not high enough to affect plant uptake.

Crop yields

Corn yield was not influenced by splitting, but the effect of PG application rate was 
quadratic (Figure 2), with a decrease at higher rates, especially at 12 Mg ha-1 of PG, 
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Depth PG K+ S P
P1(1) P2 P3 P1 P2 P3 P1 P2 P3

m Mg ha-1 cmolc dm-3 mg dm-3

0.0-0.1 0 (control) 0.56 0.56 0.56 41.52 41.52 41.52 8.24 8.24 8.24
3 0.47 0.54 0.50 47.95 56.02 90.79 8.37 9.52 9.75
6 0.52 0.44 0.49 63.11 63.42 108.9 9.28 9.20 10.63
9 0.51 0.49 0.49 52.08 67.69 105.6 10.06 7.82 10.20
12 0.46 0.50 0.49 58.69 100.4 113.6 11.82 9.65 9.82

Split (x̄) 0.49ns 0.49ns 0.50ns 55.46 C 71.89 B 104.7 A 9.88ns 9.05ns 10.09ns

Rate ns ** ns
Rate × Split ns ns L(2)**/0.82 L**/0.73 ns

Factorial × control ns ** ns
CV (%) 14.19 13.98 21.32

0.1-0.2 0 0.23 0.23 0.23 51.99 51.99 51.99 2.33 2.33 2.33
3 0.20 0.22 0.23 60.23 83.04 98.70 1.59 2.70 2.06
6 0.20 0.17 0.23 73.91 83.27 126.3 2.09 1.60 2.51
9 0.20 0.18 0.22 88.91 88.51 148.0 2.24 2.04 2.20
12 0.20 0.19 0.25 81.37 132.0 153.4 2.25 1.81 2.35

Split (x̄) 0.20ns 0.19ns 0.23ns 76.11 C 96.72 B 131.6 A 2.04ns 2.04ns 2.28ns

Rate ns ** ns
Rate × Split ns L*/0.69 L**/0.69 L**/0.93 ns

Factorial × control ns ** ns
CV (%) 22.59 14.27 26.80

0.2-0.4 0 0.16 0.16 0.16 88.24 88.24 88.24 1.00 1.00 1.00
3 0.16 0.19 0.14 118.1 140.2 145.7 1.00 1.56 1.35
6 0.20 0.18 0.21 132.9 135.1 164.9 1.85 1.42 1.67
9 0.16 0.13 0.17 162.9 170.9 193.2 1.69 0.96 1.10
12 0.14 0.12 0.18 155.7 188.0 232.1 1.14 1.13 1.82

Split (x̄) 0.17ns 0.16ns 0.17ns 142.4 C 158.6 B 184.0 A 1.41ns 1.27ns 1.49ns

Rate ns ** ns
Rate × Split ns L**/0.80 L**/0.84 L**/0.98 ns

Factorial × control ** ** ns
CV (%) 33.50 9.36 42.41

0.4-0.6 0 0.11 0.11 0.11 92.13 92.13 92.13 0.52 0.52 0.52
3 0.13 0.09 0.09 152.1 160.5 162.6 0.61 0.57 0.65
6 0.13 0.11 0.11 169.6 173.6 183.5 0.75 0.68 0.67
9 0.10 0.11 0.13 180.9 204.8 214.7 0.64 0.60 0.66
12 0.08 0.08 0.10 202.2 195.1 248.1 0.68 0.62 0.78

Split (x̄) 0.11ns 0.10ns 0.11ns 176.2 B 183.5 B 202.2 A 0.67ns 0.62ns 0.69ns

Rate ns ** ns
Rate × Split ns L**/0.99 L**/0.75 L**/0.99 ns

Factorial × control ns ** ns
CV (%) 38.24 7.52 41.09

0.6-0.8 0 0.06 0.06 0.06 82.73 82.73 82.73 0.30 0.30 0.30
3 0.09 0.08 0.08 162.1 132.2 127.4 0.21 0.43 0.43
6 0.06 0.06 0.08 180.0 184.9 169.2 0.39 0.39 0.44
9 0.08 0.07 0.07 195.0 237.0 185.1 0.65 0.25 0.35
12 0.08 0.06 0.07 216.2 202.0 216.8 0.62 0.26 0.46

Split (x̄) 0.08ns 0.07ns 0.08ns 188.3ns 189.0ns 174.6ns 0.47ns 0.33ns 0.42ns

Rate ns ** ns
Rate × Split ns L**/0.99 L**/0.60 L**/0.97 ns

Factorial × control ns ** ns
CV (%) 26.83 9.48 57.84

Table 4. Variance and regression analyses, and averages of soil potassium, sulfur and phosphorus concentrations under different 
total and split phosphogypsum (PG) application rates of a Typic Hapludox

(1) P1 = 100 % in 2009, P2 = 50+50 % in 2009 and 2010, P3 = 33+33+33 % in 2009, 2010 and 2011; (2) Linear adjust and R2 value after the bar; * 
and **: significant at p<0.05 and p<0.01, respectively; ns: not significant.
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PG N P K Ca Mg S
Mg ha-1 g kg-1

Corn
0 (control) 38.56 3.20 19.72 4.53 3.13 3.91
3 37.51 3.25 19.73 4.71 2.94 5.04
6 37.42 3.12 20.08 4.82 2.71 4.87
9 37.90 3.21 19.94 5.09 2.63 5.08
12 37.91 3.25 20.36 5.26 2.39 5.56
Regression/R2 ns ns ns L(2)**/0.98 L**/0.97 L*/0.64
CV (%) 7.73 7.84 4.18 5.86 14.68 12.01
Split
P1(1) 37.51 3.14 19.88 5.11 2.81 5.22
P2 36.86 3.17 19.83 4.92 2.56 4.94
P3 39.02 3.31 20.39 4.89 2.63 5.25
Effect ns ns ns ns ns ns
CV (%) 7.17 7.56 4.09 7.09 15.97 12.68

Rate × Split ns ns ns ns ns ns
Factorial × control ns ns ns ** * **

Wheat
0 42.51 4.26 21.51 2.97 1.58 6.21
3 42.63 4.30 21.33 3.26 1.56 6.57
6 40.25 4.31 21.75 3.31 1.39 6.65
9 42.37 4.38 21.41 3.57 1.44 6.73
12 40.22 4.37 21.19 3.45 1.29 7.10
Regression/R2 n.s. n.s. n.s. L*/0.60 L**/0.77 L*/0.85
CV (%) 7.01 3.38 4.47 7.11 11.00 7.52
Split
P1(1) 42.09 4.34 21.18 3.45 1.48 6.71
P2 41.25 4.35 21.72 3.36 1.37 6.69
P3 40.77 4.34 21.35 3.38 1.40 6.89
Effect ns ns ns ns ns ns
CV (%) 7.39 3.45 4.40 7.88 12.47 7.98

Rate × Split ns ns ns ns ns ns
Factorial × control ns ns ns ** * *

Soybean
0 51.90 3.52 21.85 8.47 4.50 3.24
3 52.95 3.48 23.40 9.24 4.46 3.42
6 53.04 3.52 23.42 9.11 4.19 3.67
9 54.62 3.47 22.21 9.57 4.08 3.71
12 55.40 3.57 22.63 9.85 4.05 3.81
Regression/R2 ns ns ns L*/0.80 L**/0.85 L*/0.89
CV (%) 9.18 9.20 9.12 8.28 6.47 10.05
Split
P1(1) 54.73 3.53 23.18 9.47 4.28 3.57
P2 53.31 3.51 22.28 9.40 4.16 3.62
P3 53.96 3.49 23.28 9.47 4.15 3.77
Effect ns ns ns ns ns ns
CV (%) 9.24 9.17 9.10 8.81 7.44 10.48

Rate × Split ns ns ns ns ns ns
Factorial × control ns ns ns * ** *

Table 5. Variance and regression analyses, and averages of nitrogen, phosphorus, potassium, calcium, magnesium and sulfur leaf 
contents of corn, wheat and soybean plants under different total and split phosphogypsum (PG) application rates

(1) P1 = 100 % in 2009, P2 = 50+50 % in 2009 and 2010, P3 = 33+33+33 % in 2009, 2010 and 2011; (2) Linear adjust and R2 value after the bar; * 
and **: significant at p<0.05 and p<0.01, respectively; ns: not significant.
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Figure 2. (a) Corn yield (growing season 2011/12), (b) Wheat yield (growing season 2012) and (c) Soybean yield (growing season 
2012/13), as a function of different total and split phosphogypsum application rates (P1 = 100 % in 2009; P2 = 50+50 % in 2009 
and 2010; P3 = 33+33+33 % in 2009, 2010 and 2011) to the soil surface of a Typic Hapludox, under no-tillage.* and **: significant 
at p<0.05 and p<0.01, respectively; ns: not significant.
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which produced 0.3 % less than the control. The maximum technical efficiency (MTE) 
rate of PG was 6.38 Mg ha-1, corresponding to 10.94 Mg ha-1 of corn, which is about 5.5 
% higher than the control yield. Similar results in another study with PG application rates 
in Guarapuava, with a quadratic effect and a MTE of 7.8 Mg ha-1 of PG was reported by 
Caires et al. (2011a), concluding that the yield decrease at higher rates was due to Mg2+ 
and K+ leaching from the topsoil.

Leaf P, K, Ca and Mg concentrations were within the sufficiency ranges, whereas N and S 
concentrations were above the sufficiency range for corn (Santos et al., 2009). Although 
the Mg concentrations were higher than the critical level for the crop, the average with 
12 Mg ha-1 of PG was 23 % lower compared with the control, consistent with the lower 
yield. Unlike corn, wheat yield increased linearly with PG rates, without any effect of split 
applications (Figure 2), and the significance in the contrast between control and factorial 
treatments showed that by the average of the rates and splitting the application of PG 
improved wheat yield. 

Soybean showed no yield response to treatments and no significant difference between 
the control and the factorial treatments (Figure 2). Leaf concentrations of macronutrients 
were within the sufficiency ranges for all treatments, except for 12 Mg ha-1 of PG in the 
case of N and for all rates in the case of S, where concentrations exceeded the sufficiency 
range for the crop (santos et al., 2009). No effect of PG application on soybean yield 
was reported by Caires et al. (2003; 2006; 2011b), Neis et al. (2010) and Rampim et al. 
(2011). The roots of this crop, compared with corn for example, have a higher root cation 
exchange capacity (Fernandes and Souza, 2006), leading to a higher efficiency in the 
accumulation of soil divalent cations, such as Ca2+ and Mg2+, in the rhizosphere, which 
favors absorption even under low concentrations of these cations in the soil. Soybean 
roots are influenced slightly by low Al3+ concentrations in the soil when rainfall is regular 
(Caires et al., 2001), as was the case in this study.

CONCLUSIONS
The use of phosphogypsum increased grain yield of poaceous crops, with a quadratic response 
to the rates for corn under a normal growing season, and a linear response for wheat in a 
growing season with water restriction. Soybean yield was not significantly influenced.

The splitting of phosphogypsum rates decreased downward migration of SO4
2− through the 

soil profile, but did not reduce Mg2+ mobilization and had no influence on the yield of the 
studied crops. No K+ mobilization was observed as a function of phosphogypsum application.
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