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ABSTRACT: Extracellular soil enzymes are fundamental for the functioning of ecosystems. 
Several processes in the soil depend on the activity of these enzymes, including plant 
decomposition, soil organic matter formation/mineralization, and nutrient cycling. 
Moreover, extracellular enzyme activity occurs in the soil and is therefore influenced by 
environmental factors. Due to the high sensitivity to these factors, extracellular enzymes 
are used for monitoring soil quality. This review aimed to present the main contributions 
of soil enzymes to agriculture, emphasizing the dynamics of elements in the soil and 
the environmental factors that modulate enzyme activity. With this knowledge, the 
relationship of extracellular enzymes to soil quality is demonstrated and their use as 
a tool for soil monitoring. Finally, the evolution of research on soil enzymes in Brazil is 
presented, and the perspectives of basic and applied studies necessary to expand the 
knowledge and use of enzymes in soil management are pointed out. Soil enzymes play a 
key role in numerous soil processes, thereby making them useful indicators of productive 
capacity and soil quality. Research on enzymes in soil has developed significantly in 
the last two decades, which has made it possible for farmers to analyze and interpret 
enzyme activity in the soil in the laboratory.
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INTRODUCTION
Soil is a mediator of several chemical, physical and biological processes that are fundamental 
to maintain the functioning of terrestrial ecosystems (Dick and Burns, 2011). Soil colloids 
and minerals help filter water and adsorb environmental pollutants (e.g., inorganics, 
organics, radionuclides and microorganisms) (Gavrilescu, 2014). Furthermore, soil nutrients 
support the global production of food, fiber, oil and wood, and provide humans with 
over 98 % of their food (Kopittke et al., 2019). Organic matter plays a critical role in soil 
fertility, the global carbon cycle, and heavy metal complexation (Simpson and Simpson, 
2016; Gmach et al., 2020), and soil organisms depend on enzyme-mediated catalytic 
activity (Dotaniya et al., 2019). For instance, soil enzymatic activity is directly related 
to organic matter decomposition and nutrient cycling (Tabatabai, 1994), biodegradation 
of toxic organic pollutants (Karigar and Rao, 2011; Badzinski et al., 2021), and plant-
pathogen control (Baldoni et al., 2020).

Catalytic soil enzymes can exist in the cytoplasm or on the surface of membranes 
of viable cells, be excreted into the soil solution, or complexed in the soil matrix or 
microbial debris (Dick and Kandeler, 2005). Enzymatic catalysis carried out internally 
in the microbial cell corresponds to intracellular enzymes (IE), and this enzyme group 
generally acts on specific metabolic pathways in the cellular environment. Thus, 
IEs only act on small substrates absorbed by microbial cells and under controlled 
environmental conditions. Nonetheless, extracellular enzymes (EE) are associated 
with the outer part of cell walls or are released into the extracellular environment 
to hydrolyze high molecular weight organic substrates into oligomers or monomers 
(Dilly and Nannipieri, 1998; Burns et al., 2013). The action of EE occurs in the 
heterogeneous and dynamic environment of the soil, where extracellular enzymatic 
activity depends on the combination of minimally adequate factors to occur, 
including substrate availability, water, temperature, pH, among others (Wallenstein  
and Burns, 2011).

Considering that key biological soil functions depend on enzyme-mediated catalytic 
activity (Dotaniya et al., 2019), evaluating soil IE and EE may provide information on 
nutrient release in soil by organic residue degradation and microbial activity and even 
serve as indicators of changes in the soil environment (Kumar et al., 2013), being able to 
detect the quality of the soil. A classic concept of soil quality corresponds to the ability 
of a soil to function within the limits of the ecosystem to sustain biological productivity, 
maintain environmental quality and promote the health of plants and animals (Doran 
and Parkin, 1994). 

Brazil has a large territory and different climates, resulting in a broad diversity of soils, 
many of which are highly fragile (Mendes et al., 2018a). Soil use and management are 
often inadequate, leading to degradation, and determining the activity of enzymes in 
the soil can be a strategic tool for the early diagnosis of soil degradation or improve 
and advance decision-making by farmers. In agricultural areas from Brazil, subjected to 
the same management practices for long periods, correlations observed between soil 
enzyme activity and plant productivity can be used to diagnose soil quality and guide 
targeted management to improve soil health and increase crop yields (van Es and Karlen, 
2019; Mendes et al., 2021a).

This review aims to present the fundamental contributions of soil enzymes to agriculture, 
emphasizing the dynamics of elements in soil and the environmental factors that 
modulate their activity. With this knowledge, the relationship of extracellular enzymes 
with soil quality is demonstrated and their use in soil monitoring. Lastly, the evolution 
of research on soil enzymes in Brazil and the perspectives of basic and applied 
studies necessary to expand the knowledge and use of enzymes in soil management  
are presented.
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ENZYMES AND THE DYNAMICS OF ELEMENTS IN SOIL 
Carbon (C), nitrogen (N), sulfur (S) and phosphorus (P) are part of the structure of the 
molecules that form organic compounds, and their dynamics in the soil depend on biological 
activity. In organic waste degradation, the structural heterogeneity of biopolymers requires 
the interaction of several enzyme classes to reduce them to constituent monomers 
available for microbial consumption (Sinsabaugh et al., 2008). Extracellular enzymes are 
agents of organic compound decomposition, and key enzymatic reactions include those 
involved in the biogeochemical cycle of C (cellulose, hemicellulose and lignin degradation), 
those that hydrolyze organic N reservoirs such as proteins, chitin and peptidoglycan, 
those that mineralize P from nucleic acids, phospholipids, and other ester phosphates, 
and the ones that catalyze the hydrolysis of organic S esters (Sinsabaugh et al., 2008; 
Henry, 2012; Turner et al., 2016). Hence, the main groups of soil enzymes investigated 
due to their relationship with soil nutrition and health are cellulases (C cycle), protease 
and urease (N cycle), phosphatase (P cycle) and arylsulfatase (S cycle).

Main soil enzymes related to the carbon cycle

Cellulose is the most abundant natural polymer on the planet and constitutes a significant 
fraction of plant biomass (Lynd et al., 2002; Gessner, 2020). It is a long chain of glucose 
(C6H10O5)n, in which the monomers are joined by glycosidic bonds. Glucose molecules 
are the primary energy source of heterotrophic soil microorganisms, albeit they cannot 
directly access the glucose molecules present in cellulose structures. This access depends 
on the breakdown of this polymer through the action of three extracellular enzymes 
(endoglucanases, cellobiosidases and β-d-glucosidases) that compose a generic group 
called cellulases (Figure 1). 

The first step in cellulose depolymerization occurs by the action of the enzyme endoglucanase, 
which belongs to the group of glucanases. The endoglucanase (endo-1,4-β-glucanase;  
EC 3.2.1.4) randomly cuts the β-1,4 glycosidic bonds, thus breaking the long cellulose 
chain, with the broken molecular chains having one reducing end and one non-reducing end 
(Wallenstein and Burns, 2011; Chen, 2015). Subsequently, the action of the cellobiosidase 
on the short cellulose chains occurs; the cellobiosidase (exo-1,4-β-glucanase; EC 3.2.1.91) 
comprises two components that cut, respectively, glucose and cellobiose from the reducing 
end of the long-chain (Wallenstein and Burns, 2011; Chen, 2015; Thapa et al., 2020). 

Figure 1. Soil enzymes linked to carbon in the decomposition process of plant residues. Source: 
Adapted from Wallenstein and Burns (2011).
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After the action of the cellobiosidase, cellobiose fragments are released (C12H22O11), which 
are disaccharides composed of two glucose molecules joined by β (1→4) linkages. The 
β-d-glucosidase (EC 3.2.1.21) acts on cellobiose and other water-soluble cellodextrins 
from the reducing end, resulting in glucose molecules that can then be absorbed by 
microbial cells (Figure 2) (Wallenstein and Burns, 2011). 

Although depolymerization is complex, organisms have specialized strategies for cellulose 
degradation, resulting in the vast availability of glucose (Wallenstein and Burns, 2011). 
The main cellulase producers are fungi, mainly basidiomycetes and ascomycetes. 
Martinez et al. (2008) identified the fungus Trichoderma reesei E.G. Simmons (Hypocrea 
jecorina Berk. & Broome) as a producer of numerous cellulose-degrading enzymes.

Cellulase enzymes do not supply nutrients to plants, although the resulting glucose is still 
necessary for the growth of soil microorganisms, which in turn control the availability of 
N, P, S and other nutrients and promote plant growth by other means (Dotaniya et al., 
2019). Given that β-glycosidase is the last enzyme in the cellulose depolymerization 
process, its activity can be considered a suitable parameter to assess microbial activity 
and soil health.

Main soil enzymes related to the nitrogen cycle

Organic sources of N in the soil include humic substances, proteins, chitin, cell wall and 
nucleic acids (Vieira, 2017), originating from rhizodeposition, burlap, or the necromass 
of soil micro, meso and macroorganisms. The main source of N to soils is in the form of 
protein through the addition of plant and microbial residues (Greenfield et al., 2020). 
Proteins are polymers of amino acids held together by peptide bonds (Cox and Nelson, 
2008), and in the soil, their decomposition process can be divided into two steps. The 
first step is proteolysis, which is carried out by protease enzymes (EC 3.4.2.21-24) that 
break the protein chain into smaller peptides, which subsequently release amino acids 
due to peptidase action (Figure 2i) (Alef and Nannipieri, 1995). In fact, the “proteases” 
are actually a group of different enzymes that catalyze reactions in proteins and differ 
from each other in several characteristics, such as molecular structure, type of reaction 
catalyzed, and affinity of the active site for substrates. Many consider that protease 
enzyme activity occurs in free proteins in solution as the ability of enzymes to act 
on proteins adsorbed on the surface of soil minerals, although this is still not yet well 
understood (Greenfield et al., 2020).  
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Figure 2. Nitrogen-binding soil enzymes on plant residue decomposition. 
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The second step takes place when the soil microbial community consumes amino acids 
as a source of nitrogen, carbon and energy. Inside the microbial cells, these molecules 
undergo deamination reactions, in which ammonium (NH4

+) is produced and can be 
excreted into the soil solution. During these processes, part of the C contained in the 
amino acid structure is mineralized as CO2. In solution, part of the NH4

+ is nitrified into 
nitrite (NO3

-), and both forms can be absorbed by plant roots (Figure 2i) (Balota et al., 
2013; Vieira, 2017).

Proteases also play an essential role in the degradation of other soil enzymes since they 
are proteins and subject to proteolytic enzyme action. For instance, many proteases 
exuded by plant roots are related to resistance against pathogens (Wang et al., 2020). 
Therefore, various microorganisms have mechanisms such as the production of protease 
inhibitor molecules to regulate proteolysis in the apoplastic space of roots and externally 
in the rhizospheric environment. Competition for resources between prokaryotic and 
eukaryotic microorganisms stimulates the production of antifungal proteases by 
bacteria. In contrast, other proteases, for example, can cleave the cell wall proteins 
of fungi and nematodes.

Besides protease, urease (EC 3.5.1.5) is another important enzyme in the nitrogen cycle 
because it acts in the hydrolysis of urea [(NH₂)₂CO], converting it into ammonia (NH3) 
and CO2 (Figure 2ii). Urea is the most widely industrial source of N used in agriculture 
worldwide. However, plants do not absorb urea, so it must be degraded to release the 
ammonium (NH3) or ammonium ions (NH4

+) (Qin and Cabral, 2002). In addition, urea can 
be hydrolyzed chemically, although this process is slower than biochemically. Ureases 
are partially extracellular and are released at root and plant death. They can also be 
intracellular as part of the soil biomass, a cytoplasm component, or attached to the cell 
membrane. This enzyme has stability in the soil against proteolytic action and other 
processes that cause its inactivation because they are immobilized in organo-mineral 
complexes (Dharmakeerthi and Thenabadu, 1996).

Nonetheless, high activity of the urease enzyme may result in N loss through NH3 ammonia 
volatilization. Because of this, numerous strategies can be developed to reduce its effects, 
including producing urea granules coated with materials that limit dissolution and urea 
derivatives that are more slowly hydrolyzed by soil urease and using soil urease inhibitors 
applied with urea. These techniques decrease N losses by volatilization and improve 
urea-based fertilizer efficiency (Mota et al., 2015; Viero et al., 2015; Cancellier et al., 
2016; Lourenço et al., 2016).

Nitrification and denitrification processes are mediated by enzymes and also play a 
fundamental role in N dynamics. These processes are important for environmental 
quality due to nitrate leaching and nitrous oxide emission (N2O), a greenhouse gas. In 
nitrification, microbial oxidation occurs from reduced forms of N (NH3) to less reduced 
forms, including NO3

- (Hu et al., 2015), and this process has two steps. Initially, the 
oxidation of NH3 to hydroxylamine occurs and is mediated by the enzyme ammonia 
monooxygenase or hydroxylamine reductase (EC 1.7.1.10). Subsequently, hydroxylamine 
is oxidized to NO3

- by the action of the enzyme hydroxylamine oxidoreductase (EC 1.7.3.4) 
(Figure 2). Bacteria from different phylogenetic groupings participate in the first step, 
while the second step is performed mainly by bacteria of the β subclass of proteobacteria 
(Kandeler et al., 2011).

Denitrification starts with the reduction of NO3
-, coming from nitrification or added 

by external sources (e.g., fertilizers). The NO3
- is reduced to N dioxide (NO2

-) through 
the action of the nitrate reductase enzyme. Subsequently, NO2

- is reduced to nitric 
oxide (NO) by nitrite reductase enzymes. The microorganisms that carry out these 
transformations have one, but not both enzymes. Next, NO is then reduced to N2O by 
nitric oxide reductase and, depending on environmental conditions, N2O is converted to 
N2 gas through the enzyme nitrous oxide reductase (Figure 2) (Kandeler et al., 2011). 
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Denitrification can be performed in bacteria, halophilic and hyperthermophilic archaea, 
and fungi mitochondria (Zumft, 1997).

Main soil enzymes related to the phosphorus cycle

Phosphorus is an essential element for energy transport, cell structure and nucleic acids, 
being indispensable for terrestrial life. In plants, adequate availability of this element is 
vital for plant growth and development (Acosta-Martínez and Tabatabai, 2011). In soil, 
P is found in organic, inorganic, and soluble forms, and organic P in soil organic matter 
(SOM) and organic residues is immobile and structurally unavailable for uptake by 
plant roots. Moreover, P mineralization is carried out by microorganisms that produce 
phosphatases (Kunze et al., 2011; Silva et al., 2015; Yada et al., 2015), and through the 
activity of these enzymes, organic P is transformed into phosphate (HPO4

2- or H2PO4
-), 

which is the form that can be absorbed by plants (Figure 3i).

The name “phosphatase” was used to describe a group of five enzymes classified by 
the International Union of Biochemistry and Molecular Biology (IUBMB, 2021) into: 
1) phosphoric monoester hydrolases (EC 3.1.3), 2) phosphoryl diester hydrolases 
(EC 3.1.4.), 3) triphosphoryl monoester hydrolases (EC 3.1.5), 4) enzymes acting on 
phosphoryl-containing anhydrides (EC 3.6.1), and 5) enzymes acting on P-N bonds 
(EC 3.9), such as phosphoamidase (EC 3.9.1.1). 

Phosphoric monoester hydrolases are also known as phosphomonoesterases and can be 
acidic or alkaline, phosphoprotein phosphatases, phytases and nucleotidases. Examples 
of phosphomonoesters such as β-glycerophosphate, phenyl phosphate, β-naphthyl 
phosphate and p-nitrophenyl phosphate are attacked by phosphatases and release 
mineralizable forms of P (HPO4

2- or H2PO4
-; Figure 3iii) (Moreira and Siqueira, 2006; 

Nannipieri et al., 2011). Acid phosphomonoesterases are common in acidic soils, while 
alkaline ones are common in alkaline soils. These enzymes hydrolyze monoester bonds, 
including mononucleotides and sugar phosphates (Nannipieri et al., 2011), in addition 
to being the most studied phosphatases. 

Main soil enzymes related to the sulfur cycle

Sulfur is an essential macronutrient for plant growth, and its concentration in plant 
tissues varies between 0.1 and 0.5 g kg-1, depending on the species. This element 
is present in amino acids, such as methionine and cysteine (Lucheta and Lambais, 
2012), thus making organic matter the largest reservoir of soil S (Lucheta and Lambais, 

Figure 3. Enzyme phosphatase and arylsulfatase in soil.
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2012; Flis and Jones, 2020). In SOM, sulfur can be highly oxidized in the form of sulfate 
ester, highly reduced when bound to carbon in compounds (e.g., sulfides and thiols, 
including amino acids such as cysteine, cystine and methionine), and oxidized in the 
form of sulfoxides and sulfonates, in which sulfur is bound to carbon and hydrogen 
(Brady and Weil, 2013).

Moreover, S uptake by roots occurs preferentially via the sulfate ion (SO4
-2). However, 

the inorganic forms of S represent less than 10 g kg-1 of total soil S, and as a result, 
the availability of inorganic S depends directly on the sulfur mineralization of the SOM. 
In soil, arylsulfatase (EC 3.1.6.1) is an important enzyme that controls S mineralization 
from organic sources (Lisboa et al., 2012; Chen et al., 2019a). This enzyme acts on the 
sulfate ester by breaking the sulfur-oxygen bond and producing SO4

-2 (Figure 3ii) (Tabatabai, 
1994). A portion of the SO4

-2 will be used in microbial metabolism, while another fraction 
will be available in the soil solution for uptake by plants. Arylsulfatase was first described 
by Tabatabai and Bemner (1970) and can be intracellular or extracellular and produced 
by plants, animals and microorganisms (Tabatabai, 1994; Rao et al., 2014).

ECOLOGY OF SOIL EXTRACELLULAR ENZYMES
The activity of extracellular soil enzymes is influenced by substrate, moisture, temperature, 
pH and other factors, whether chemical, physical, or biological. The substrate is the main 
limiting factor of enzyme activity, and this occurs for an obvious reason: in its absence, 
enzymes do not express their catalytic functions. The extracellular degradation of the 
main organic molecules (cellulose, lignin, hemicellulose, starch, pectin, among others) 
requires the simultaneous and/or sequential action of different enzyme classes (Wallenstein 
and Burns, 2011). In soil, plant cell wall polymers represent the primary substrate for the 
decomposing activity of microorganisms. Their decomposition occurs through the action 
of hydrolytic enzymes (e.g., cellulases) and oxidative enzyme activity (e.g., laccases and 
peroxidases). In the plant cell wall, cellulose polymers are associated with hemicellulose, 
lignin, pectin and various proteins, forming a compact and rigid structure where the lignin 
acts as a barrier around the cellulose (Zhao et al., 2012; Chen, 2014). For soil cellulases 
to efficiently access cellulose, oxidative enzyme activity (an energetically unfavorable 
reaction) is first required to depolymerize lignin (Moorhead et al., 2013; Chauhan, 2020). 
Hence, given the structural heterogeneity of these polymers, their degradation involves 
a consortium of different enzymes produced by microorganisms belonging to different 
groups, albeit acting synergistically (Janusz et al., 2017).

Soil moisture is a major influencing factor on the microbial community and, consequently, 
on enzyme catalysis (Alef and Nannipieri, 1995; Lupatini et al., 2019). Hydrolytic 
enzymatic reactions only occur in an aqueous medium. Contact between a substrate 
and an enzyme depends on transport pathways and diffusion processes within them 
(Guber et al., 2018). Extracellular enzymes diffuse toward the substrate and away from 
the parent cells through the water content of the micro- and macropores (Baveye et al., 
2018; Schimel, 2018). 

Furthermore, enzymes have an optimum temperature where the efficiency of the 
reaction peaks. Temperature variation above or below this point can reduce the speed 
of the reaction until its complete inactivation (Yang et al., 2019; Gómez et al., 2020). 
Throughout their evolution, microorganisms have developed different biochemical 
strategies to maintain extracellular enzyme activity against environmental temperature 
changes. For instance, they secrete enzymes with high thermal stability, allowing 
them to catalyze stable reactions over a wide temperature range, or they can produce 
multiple isoenzymes, each with different optimal temperatures but with a similar affinity 
for the substrate (Razavi et al., 2016, 2017). Protease enzymes can maintain their 
thermal stability and affinity for the substrate almost constant even at temperatures 
as variable as 0 to 40 °C (Razavi et al., 2016). 
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The pH determines the electrostatic behavior of the enzyme, thus having a direct effect 
on interfacial attraction and repulsion (Datta et al., 2017). Inside living cells, the pH is 
close to 7.2 and is controlled by the microorganism itself. Once released into the soil 
solution, extracellular enzymes are dependent on the pH of the environment (Leprince 
and Quiquampoix, 1996; Mónica et al., 2018; Wade et al., 2021). Soil pH values near 
neutrality (pH 6.0-7.0) provide higher activity of the different extracellular enzymes 
(Burns et al., 2013).

Enzymes interact with the surface charges of soil minerals, including metal (hydr)oxides, 
surfaces, and edges of argillominerals. When adsorbed on minerals, extracellular enzymes 
can reduce and even lose their activity due to conformational changes in their structure 
(Quiquampoix and Burns, 2007; Kleber et al., 2015). In addition, their diffusion towards 
the substrate is inhibited, leading them to become dependent on the diffusion of the 
substrate to its active site. These phenomena are so important that, in some cases, soil 
enzyme activity is more affected by organo-mineral associations than by the enzyme 
content present at a given site (Noll et al., 2019). However, the adsorption phenomenon 
can protect the enzyme from physical or chemical degradation, resulting in a pool of 
extracellular enzymes in the soil (Datta et al., 2017).

Due to the influence of various environmental factors, quantifying soil enzyme activity 
requires defined protocols with well-known assay conditions tested for a multitude of 
contrasting soils, such as the colorimetric determination methods described by Tabatabai 
(1994). Following these protocols ensures proper conditions for the enzymes in the 
laboratory and the ability to compare data acquired from different sites. Moreover, 
attention should be paid to using methods that use minimal amounts of soil, including the 
microplate method, as it is more susceptible to laboratory errors (Nannipieri et al., 2018). 

EXTRACELLULAR ENZYMES AND THEIR RELATIONSHIP WITH 
SOIL QUALITY

As highlighted above, extracellular enzymes are sensitive to environmental changes, and 
several factors modulate their catalytic activity. These proteins are sensitive to alterations 
of land use, regulate SOM dynamics (Karaca et al., 2010; Acosta-Martínez et al., 2019; 
Adetunji et al., 2020), and relate to crop yields (Lopes et al., 2013, 2018; Mendes et al., 
2019a, 2021a). Thus, enzyme activities are key soil biological indicators of soil health 
and quality.

Changes in land use and soil management directly impact the microbial community, 
enzyme activity, and nutrient status in the soil (Bissett et al., 2011; Tischer et al., 2015; 
Malik et al., 2018). For example, clearing a forest area to grow annual crops modifies the 
substrate that the microbial community will access. In native forest environments where 
there is no disturbance, plant residues have a higher proportion of lignin, protecting cellulose 
from enzymatic attack, while annual crop residues generally have lower ratios of lignin 
(Puttaso et al., 2011; Talbot et al., 2012). This directly impacts the degradation rates of 
plant cell wall polymers and the ability of the soil to sequester carbon and store it in SOM. 

In agricultural environments, soil disturbance increases substrate exposure to enzymatic 
attack and bioavailable organic carbon protected within aggregates, resulting in loss 
of organic carbon because it increases extracellular enzymatic activity (Ghimire et al., 
2019). Nevertheless, overall soil enzymatic activity decreases after rapid degradation of 
these carbon compounds due to reduced substrates availability for extracellular enzyme 
action. Soil disturbance also accelerates water loss through evaporation and reduces 
soil moisture, limiting the substrate and enzyme diffusion and consequently catalysis 
(Manzoni et al., 2014). 

Due to greater exposure to solar radiation, elevated soil temperature may rapidly increase 
enzyme activity and consequently higher organic carbon degradation and mineralization 
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rates (Hou et al., 2016; Liu et al., 2019). This is a highly undesirable effect given our 
scenario of increased global average temperatures and the intensified greenhouse effect 
(Hassan et al., 2015; Looby and Treseder, 2018). However, temperature increases above 
the optimal limits for enzymes can reduce their half-life, substrate affinity and catalytic 
efficiency due to conformational changes and protein denaturation (Wallenstein et al., 
2010; Alvarez et al., 2018). 

Sustainable soil management systems (e.g., no-tillage; NT) can not only minimize soil 
organic carbon loss but create favorable conditions for balanced and healthy soil biological 
activity (Luo et al., 2020; Ramos et al., 2021). Different management systems in an 
Oxisol (Typic Haplorthox) were evaluated in a 24-year study. It was possible to observe 
the activity of the enzymes acid phosphatase, alkaline phosphatase, and arylsulfatase 
in NT was similar to enzymes in undisturbed forests (Balota et al., 2014). Additionally, 
the activity of these enzymes in NT was higher than in the conventional planting system 
(Balota et al., 2014). In another 22-year study, it was observed that NT in flooded Entisol 
and rice cultivated soil increased the C (45 %) and N (54 %) of microbial biomass and 
the activity of β-glucosidase (43 %), acid phosphatase (68 %), fluorescein diacetate 
(34 %), and urease (96 %) compared to conventional soil preparation (Carlos et al., 
2021). Several studies, including short-duration ones (2 years), have shown that NT is a 
sustainable practice that increases microbial biomass C, N, P, S, and soil enzyme activity 
(β-glucosidase, arylsulfatase, phosphatase, and protease) compared to the conventional 
tillage system (Babujia et al., 2010; Mathew et al., 2012; Chen et al., 2019b).

In recent years, the Brazilian Agricultural Research Corporation (Embrapa) has developed 
the soil bioanalysis technology SoilBio, which provides a simple, effective, and practical 
tool for monitoring and interpreting soil health at the farm scale (Mendes et al., 2018b, 
2021a,b). This technology adds the microbiological component to the physicochemical 
analyses commonly used by farmers by evaluating the enzymes arylsulfatase and 
β-glucosidase, which were selected because they are robust soil health bioindicators 
(Mendes et al., 2019a, 2021a). With the results of the enzyme analyses, interpretation 
of the values is performed, falling into ranges of high, medium, or low. Subsequently, the 
technology includes calculating the FertBio soil quality index, where the values of the 
chemical analyses are integrated with the data of the biological analyses. The tables for 
interpreting the results of the enzymatic analyses are specific to different soils and crops; 
so far, there are only tables available for the conditions of the Brazilian Cerrado biome. 
Currently, commercial laboratories of soil analysis are being capacitated to perform the 
enzyme analysis, and tables are being generated for other conditions, which will allow 
expanding the technology to other regions and make it available to more farmers.

EVOLUTION OF RESEARCH ON SOIL ENZYMES IN BRAZIL 
In an attempt to demonstrate the growth of research on extracellular enzyme activity 
in the soil, a search on the Web of Science® database was performed using the terms 
(“enzymatic activity”* OR enzymatic* OR enzyme*) NEAR/3, and the search filter “Brazil,” 
and 134 scientific articles were found. To broaden the horizons of this theme, we also 
manually selected articles on soil enzymes by accessing the curriculum of several 
researchers on the Lattes platform (https://lattes.cnpq.br/). The data obtained from 
both search methods were compiled into a single database, and a total of 194 articles 
on enzymes in soils from Brazil were counted. 

The first papers on enzyme activity in Brazilian soils were published in 1982 (Kulinska et al., 
1982; Melo et al., 1982), while studies of the same nature in other countries had been 
published as early as the 1950s (Galstian, 1959). In the case of Brazil, the late publication 
of these studies compared with the rest of the world is because the most scientific research 
on soils began after the creation of the first graduation courses and Embrapa in the early 
1970s. During the entire 1980s, only three articles were published on enzyme activity 
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in Brazilian soils (Figure 4a), which is quite similar to the number of publications of the 
same nature in the following decade. Thereafter, the number of publications significantly 
rose in the years 2000 and 2010, reaching 115 articles between 2010 and 2019; in other 
words, 59 % of all papers on enzyme activity in soils in Brazil were published in this period 
(2010 to 2019). However, even more remarkable growth seems yet to come because, 
from January 2020 to July 2021, 38 articles have already been published.

The 194 articles on enzymes in soils from Brazil were published in 86 scientific journals, 
71 % in international journals, and 57 % in journals with the highest impact factor (Qualis A, 
according to the classification proposed by the Coordination for the Improvement of 
Higher Education Personnel Foundation; CAPES). The journals with the highest number of 
publications were Revista Brasileira de Ciência do Solo (14.4 %), Pesquisa Agropecuária 
Brasileira (5.2 %), and Applied Soil Ecology (4.1 %).

For the publication survey, the soil collection sites were considered. If the study presented 
soil collections in more than one state of Brazil, it was counted for both. The states with the 
most soil samples collected for enzymatic studies were São Paulo (18 %), Minas Gerais (15 
%), Pernambuco (11 %) and Paraná (10 %) (Figure 4b). Most publications were registered in 

Figure 4. Current status of publications on soil enzymes in Brazil. Distribution of publications per 
decade (a); distribution of publications per Brazilian state (b).
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the southeastern (33.66 %), northeastern (25.85 %), and mid-western (19.51 %) regions. 
Notably, there are few studies on soil enzymes in the northern states (1.46 %), which is 
where the Amazon Rainforest is located. Significant growth of research on soil enzymes 
in this region is expected to occur very soon due to the environmental importance and 
land-use changes caused by deforestation, representing a great research opportunity for 
Brazilian institutions. According to this survey, there is an increasing number of studies on 
extracellular enzyme activity in the soil, and application of this knowledge in the sustainable 
management of agricultural environments, with even better future prospects.

CONCLUSIONS
The agriculture practiced in many countries and recent decades has been based on 
monoculture, synthetic fertilizers and pesticides, and intensive water and agricultural 
machinery use. Over the years, this agricultural system became unsustainable due 
to the high economic and environmental cost of the inputs and the impact caused on 
agro-ecosystems. Many soils became degraded due to inefficient use and management, 
reducing their productive capacity. Simultaneously, the demand for food in the world 
has been increasing in quantity and quality. 

For many years, scientific discussions and research have been carried out to find a way 
to produce more and better food and use less synthetic inputs and without advancing 
over areas still occupied by natural ecosystems. A consensus resulting from this effort 
is the permanent need to monitor the quality of agricultural soils to detect any damage 
to their chemical, physical and biological properties early on, and new practices can be 
adopted to avoid degradation. Once degraded, the productive capacity and ecosystem 
activity carried out by the soil are compromised, and its recovery is an expensive and 
time-consuming process.

For many decades, numerous studies have shown that soil enzyme activity can be used 
to monitor recent changes, for better or for worse, that occur in the soil environment 
resulting from its agricultural use. As demonstrated herein, the participation of soil 
enzymes in processes essential to environmental quality and plant productivity and 
their sensitivity to environmental factors make them a key indicator to help monitor 
biological quality. Given this scenario, enzymes related to the carbon cycle (cellulase), 
nitrogen (protease and urease), phosphorus (phosphatase), and sulfur (arylsulfatase) are 
paramount. In Brazil, the SoilBio technology is training various laboratory professionals 
to analyze and interpret arylsulfatase and β-glucosidase enzymes, consequently making 
this technology available to many farmers. 

Although significant advances have been made, there is still much research to be done 
on soil enzymes. Most studies performed have so far focused on a few enzymes, while 
many have been poorly studied. The variations in soil environmental factors, natural and/
or imposed by use, make it necessary to study enzyme activity under different conditions. 
For this reason, the interpretation tables of enzyme activity must be calibrated to different 
soils and crops (Mendes et al., 2019b), which is particularly difficult in a country with a 
wide diversity of climates, soils, and crops such as Brazil. Given these reasons, the study 
of soil enzymes is still challenging, albeit the results obtained thus far have proven to be 
promising and show that, indeed, it is possible to make technology available to farmers 
to evaluate the biological quality of soils. 

SUPPLEMENTARY DATA
Supplementary data to this article can be found online at https://www.rbcsjournal.org/
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