
ArticleRev Bras Cienc Solo 2019;43:e0180174

1https://doi.org/10.1590/18069657rbcs20180174

* Corresponding author: 
E-mail: elisbenedetsilva@gmail.com

Received: November 28, 2018
Approved: May 06, 2019

How to cite: Silva EB, Giasson 
E, Dotto AC, ten Caten A, 
Demattê JAM, Bacic ILZ, Veiga 
M. A regional legacy soil dataset 
for prediction of sand and clay 
content with VIS-NIR-SWIR, in 
Southern Brazil. Rev Bras Cienc 
Solo. 2019;43:e0180174. 
https://doi.org/10.1590/18069657rbcs20180174

Copyright: This is an open-access 
article distributed under the 
terms of the Creative Commons 
Attribution License, which permits 
unrestricted use, distribution, 
and reproduction in any medium, 
provided that the original author 
and source are credited.

A Regional Legacy Soil Dataset for 
Prediction of Sand and Clay Content 
with Vis-Nir-Swir, in Southern Brazil
Elisângela Benedet Silva(1)* , Élvio Giasson(2) , André Carnieletto Dotto(3) , 
Alexandre ten Caten(4) , José Alexandre Melo Demattê(3) , Ivan Luiz Zilli Bacic(1)  
and Milton da Veiga(5)

(1) Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina, Florianópolis, Santa Catarina, Brasil. 
(2) Universidade Federal do Rio Grande do Sul, Departamento de Ciência do Solo, Porto Alegre, Rio Grande 

do Sul, Brasil. 
(3) Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, Departamento de Ciência do 

Solo, Piracicaba, São Paulo, Brasil.
(4) Universidade Federal de Santa Catarina, Departamento de Ciência Veterinária e Biologia, Curitibanos, 

Santa Catarina, Brasil.
(5) Universidade do Oeste de Santa Catatina, Curso de Agronomia, Campos Novos, Santa Catarina, Brasil.

ABSTRACT: The success of soil prediction by VIS-NIR-SWIR spectroscopy has led to 
considerable investment in large soil spectral libraries. The aims of this study were 1) to develop 
a soil VIS-NIR-SWIR spectroscopy approach using legacy soil samples to improve spectral soil 
information in a regional scale; (2) to compare six spectral preprocessing techniques; and (3) 
to compare the performance of linear and non-linear multivariate models for prediction of 
sand and clay content. A total of 1,534 legacy soil samples, stored by Epagri, were collected 
from agricultural areas in 2009 on a regional scale, covering 260 municipalities of Santa 
Catarina. Six spectral preprocessing techniques were applied and compared with reflectance 
spectra (control treatment) in the development of sand and clay prediction models. Five 
multivariate regression models, Support Vector Machines, Gaussian Process Regression, Cubist, 
Random Forest, and Partial Least Square Regression were compared. The scatter-corrective 
preprocessing groups produced similar or better performance than spectral-derivatives. In 
addition, preprocessing spectra prior to regression analysis does not improve sand prediction, 
since reflectance spectra achieved the best performance using Cubist, SVM, and PLS models. 
In general, clay content presented better prediction accuracy than sand content. The best 
multivariate model to predict sand and clay content from soil VIS-NIR-SWIR spectra was Cubist. 
The best Cubist performance was achieved combined with reflectance spectra (R2 = 0.73; root 
mean square error = 10.60 %; ratio of the performance to the interquartile range = 2.36) and 
MSC (R2 = 0.83; root mean square error = 7.29 %; ratio of the performance to the interquartile 
range = 3.70) for sand and clay content, respectively. Considering the mean RMSE values of 
the validation set, the predictive ability of the multivariate models decreased in the following 
order: Cubist>PLS>RF>GPR>SVM for both properties. The predictive ability of VIS-NIR-SWIR 
reflectance spectroscopy achieved in this study for sand and clay content using legacy soil 
data and heterogeneous samples confirmed the potential of the spectroscopy approach. 
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INTRODUCTION
Reflectance spectroscopy in the visible, near and shortwave infrared (VIS-NIR-SWIR) 
regions has been proposed as a rapid, accurate, and cost-effective model to predict 
chemical, physical, and mineralogical properties using laboratory, field, and airborne 
hyperspectral sensors (Vasques et al., 2008; Demattê et al., 2016a; Nouri et al., 2017; 
Poggio et al., 2017; Viscarra Rossel et al., 2017; Dotto et al., 2018). Soil VIS-NIR-SWIR 
spectra are non-specific and include weak, wide, and overlapping absorption bands 
directly linked to soil composition, whereby moisture, particle size, organic matter, 
and mineralogy of the clay fraction and iron oxides influence spectral behavior 
(Stenberg et al., 2010). 

Different preprocessing techniques have been applied to transform soil spectra, removing 
noise from the multiple scattering effect, highlighting specific features of the spectra, 
eliminating redundant information, and preparing the soil spectra for spectral modeling 
(Rinnan et al., 2009). As reported by Buddenbaum and Steffens (2012), these techniques 
represent an important step in the multivariate approach and include several algorithms 
such as smoothing, normalization, scatter-correction, continuum removal, and derivatives. 
Some studies have reported improvements in the performance of prediction models 
(Vasques et al., 2008; Nawar et al., 2016; Dotto et al., 2017), while others found similar 
or better results with no spectral preprocessing (Sawut et al., 2014; Viscarra Rossel and 
Webster, 2012). The type and amount of required preprocessing techniques are site-
specific (Stenberg et al., 2010) and, with large datasets, the effects of preprocessing 
steps are not clear (Engel et al., 2013). 

Several multivariate models based on VIS-NIR-SWIR have been applied to processing 
soil spectra in order to mathematically extract meaningful information from individual 
spectrum to accurately predict chemical and physical soil properties, such as organic 
carbon/matter, pH, total nitrogen, soil moisture, and cation exchange capacity, among 
others (Morellos et al., 2016; Demattê et al., 2017; Dotto et al., 2018; Xu et al., 2018). 
The capacity to predict sand, silt, and clay has also been demonstrated in previous 
studies (Vendrame et al., 2012; Demattê et al., 2016b; Lacerda et al., 2016; Nawar et al., 
2016; Dotto et al., 2017; Santana et al., 2018), but none of them in a regional soil 
legacy spectral library of subtropical soils in Brazil. Among the multivariate model, 
the partial least square regression (PLS) is the most common multivariate model used 
(Dotto et al., 2018), given its simplicity and robustness (Viscarra Rossel et al., 2006; 
Vasques et al., 2008; Lacerda et al., 2016). However, other studies have established 
that nonlinear data-mining models such as Support Vector Machines (SVM), Gaussian 
Process Regression (GPR), and Random Forest (RF) can outperform PLS when used 
to build predictive models from reflectance spectra (Terra et al., 2015; Nawar et al., 
2016; Dotto et al., 2017; Santana et al., 2018). In addition to these models, another 
data-mining tool based on Cubist regression-rules has been introduced into the 
spectroscopy approach to predicting soil properties (Minasny and Mcbratney, 2008; 
Viscarra Rossel and Webster, 2012; Morellos et al., 2016; Viscarra Rossel et al., 2016; 
Zeng et al., 2017; Sorenson et al., 2018). Minasny and McBratney (2008), Morellos et al. 
(2016), and Sorenson et al. (2018) used Cubist to build predictive models of soil 
properties, including clay content, total carbon, total nitrogen, moisture content, 
and cation exchange capacity, and reported that Cubist provided better results than 
those provided by PLS. 

The success of soil prediction by VIS-NIR-SWIR has led to considerable investment in 
large soil spectral libraries (Shepherd and Walsh, 2002; Brown et al., 2006; Viscarra 
Rossel and Webster, 2012). Soil information stored by universities, research centers, 
and government agencies, among others, could provide an opportunity to enlarge 
spectral libraries for data-poor regions, new challenges with regard to the reliability 
of such data and brings understanding to improve future site sampling (Nocita et al., 
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2015; Viscarra Rossel et al., 2016). While several studies have been done to build 
predictive models for soil properties based on local, regional, and national spectral 
libraries in Brazil (Bellinaso et al., 2010; Ramirez-Lopes et al., 2013; Araújo et al., 
2014; Demattê et al., 2016b; Lacerda et al., 2016), the application of soil reflectance 
spectroscopy has not been reported on a regional scale in South Brazil, especially 
in the state of Santa Catarina (SC). In this state, existing studies using soil spectral 
libraries are limited to local scale with low variability (Dotto et al., 2017, 2018). This 
research aims to fill this gap and to further the use of reflectance spectroscopy for 
assessing sand and clay content using a legacy soil dataset in subtropical soils based 
on a regional spectral library.

Given the high variability of our regional scale legacy soil dataset, the hypothesis 
stated is that the performance of the prediction models will rely on a combination 
of preprocessing, multivariate models, and soil property being predicted. The main 
objectives of this study were: (1) to explore the potential of a legacy soil dataset with 
large range variability of sand and clay content on a regional scale, to predict soil 
properties by a systematic VIS-NIR-SWIR spectroscopy approach; (2) to compare six 
spectral preprocessing techniques in the development of sand and clay content models; 
and (3) to compare the performance of linear and non-linear multivariate models for 
prediction of sand and clay content. 

MATERIALS AND METHODS

Study area and soil spectral library

The study area covers 260 municipalities (about 90 %) of the state of Santa Catarina 
(Figure 1). The state is characterized by its diversity in climate, vegetation, geology, 
relief, and soil. Santa Catarina (SC) has two climate types according to the Köppen 
classification system (Figure 1); super humid and mesothermal (Cfa) and quite humid 
and mesothermal (Cfb). The remaining original vegetation includes areas of Rain Forest 
type and five major subtypes, these being Dense Rain Forest, Araucaria Forest, Alpine 
Grassland, Deciduous Forest, and Coastal Vegetation (Klein, 1978). The geology consists 
of granitoids, charnockitics, gneisses, and granites in Eastern SC, the Gondwana Plateau 

Figure 1. Sampling of soil data from municipalities of Santa Catarina State.
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and a basalt plateau in Western SC, with a predominance of basic volcanic rocks and quartz 
sandstones, with siliceous and argillaceous intercalations (Silva and Bortoluzzi, 1987). 
Soils are diverse and the predominant soil order, according to Brazilian Soil Classification 
System (Santos et al., 2013) and the IUSS Working Group WRB (2014), are Cambissolos 
(Inceptisols, 46.0 % of SC area), Neossolos (Entisols, 18.5 %), Nitossolos (Ultisols, Oxisols, 
13.8 %), Argissolos (Ultisols, 7.7 %), Latossolos (Oxisols, 6.1 %), Gleissolos (Aquents, 
4.2 %) (Embrapa, 2004). 

The soil dataset provided by the Agricultural Research and Rural Extension Corporation 
of Santa Catarina (Epagri - Empresa de Pesquisa Agropecuária e Extensão Rural de Santa 
Catarina) was used to develop the soil spectral library. A total of 1,534 samples were 
collected from agricultural areas in 2009 on a regional scale, from within the 0.00-0.50 m 
soil layer and described in Veiga et al. (2012). Samples were air-dried, ground, sieved to 
2 mm, and stored. The sand (0.05-2 mm) and clay (<0.002 mm) content were determined 
in 2009 according to the pipette standard method (Teixeira et al., 2017). The silt fraction 
was not considered in this study.

Spectral measurements 

The spectral reflectance of soil samples was obtained using a FieldSpec 
3 spectroradiometer (Analytical Spectral Devices Inc., Boulder, CO, USA) in the 
VIS-NIR-SWIR range (350-2500 nm), following standard laboratory procedure of the 
Brazilian Soil Spectral Library (Romero et al., 2018). The samples were placed in a 
petri dish and shaken to ensure a smooth surface for spectrum acquisition. The light 
source was two halogen (50 W) bulbs with the beam non-collimated to the target 
plane, positioned at a distance of 35 cm from the sample with a zenithal angle of 30°. 
The spectral sensor captured the light through a fiber-optic cable connected to the 
sensor, placed vertically within 8 cm of the sample, where the reflected light in an 
area of approximately 2 cm2 at the center of the sample was measured. As a reference 
standard, a white Spectralon® was used at the beginning of the measurements and 
after every 20 readings. Each spectrum measurement was the result of the average 
of 50 sensor readings. A total of three scans were collected from each sample, 
rotating the petri dish by 90° for each scan, and these were then averaged to obtain 
a representative spectrum. 

Spectral preprocessing

In this study, six spectral preprocessing techniques were applied and compared in the 
development of sand and clay prediction models. The techniques were divided into groups 
of scatter-correction and spectral-derivatives. The first group included: (i) multiplicative 
scatter correction (MSC), which removes additive and/or multiplicative signal effects 
(Martens and Naes, 1992); (ii) detrending (DET), to reduce the effect of particle size and 
additionally remove the linear, or curvilinear, trend of each spectrum (Barnes et al., 1989); 
and (iii) normalizations by range (NBR), to get all data to approximately the same scale; 
(iv) continuum removed reflectance (CRR), which removes the continuous features of the 
spectra and isolates specific absorption features present in the spectrum to minimize 
noise (Clark and Roush, 1984). The second group is spectral derivatives, represented by 
(v) Savitzky–Golay first derivative using a first-order polynomial with a search window of 
11 nm (FDSG) and (vi) Savitzky–Golay second derivative using a second order polynomial 
with a search window of 11 nm (SDSG). 

The preprocessing techniques (Figure 2) were selected because they have been shown 
to improve the performance of spectroscopy models and have different effects on model 
prediction. They were applied to soil reflectance curves in the range of 350-2,500 nm. 
Reflectance spectra (RAW) with no spectral preprocessing applied was used as “control 
treatment”. All preprocessing techniques were carried out using R (R Development 
Core Team, 2017) by applying prospectr (Ramirez-Lopes et al., 2013), pls (Mevik et al., 
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2016), and clusterSim (Dudek, 2017) packages. The spectral preprocessing techniques 
presented here are discussed in more detail in Rinnan et al. (2009) and Buddenbaum 
and Steffens (2012).

To better compare the preprocessing techniques, including RAW spectra, the SK test of 
R2 and RMSE mean values of the validation set was carried out. The Scott-Knott (SK) 
test (Scott and Knott, 1974) was used to compare the average values of R2 and RMSE 
between different models and preprocessing techniques to verify significant differences 
between them. The SK performs a hierarchical cluster analysis approach used to partition 
treatment into distinct homogeneous groups by minimizing variation within groups and 

Figure 2. VIS-NIR-SWIR reflectance spectra and the preprocessing techniques of the spectral curves for all soil samples. The highlighted 
raw spectra correspond to the mean, the lowest, and the highest reflectance spectra of the soil samples.
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maximizing variation between groups (Scott and Knott, 1974). The cluster procedure 
begins with the whole group of observed mean effects and then divides and keeps 
dividing subgroups in such a way that the intersection of any of the two formed groups 
remains empty (Jelihovschi et al., 2014). It was applied using the ScottKnott package 
(Jelihovschi et al., 2014). 

Multivariate models

To compare the performance of the proposed multivariate regression models using a 
regional spectral library, we compared to two supervised learning algorithms with linear 
kernel function, Support Vector Machines (SVM) and Gaussian Process Regression (GPR), 
two tree-based models, Cubist and Random Forest (RF), and one of the most common 
linear model used in the spectroscopy approach, Partial Least Square Regression (PLS). 
The regression process was implemented based on the measured reflectance spectra 
(RAW and six spectral preprocessing techniques) and the measured values of sand 
and clay content using the training set. The predictive models were assessed for each 
soil property using the independent validation set. Only the best predictive model, 
laboratory-measured versus VIS-NIR-SWIR-predicted values of sand and clay content, will 
be plotted. The modeling was performed using several packages in R (R Development 
Core Team, 2017) and the parameters of each model were manually optimized to generate 
the best possible fit between the variables and outputs.

The multivariate model used were Cubist, regression-rules model (Holmes et al., 1999), 
Random Forest (RF) as an ensemble learning model (Breiman, 2001), and Support 
Vector Machine (SVM) as a machine technique based on statistical learning theory 
(Vapnik, 1995). 

Gaussian Process Regression (GPR) as a probabilistic, non-parametric Bayesian approach, 
and PLSR (Wold et al., 2001). The RMSE was used in this study to identify the number of 
latent factors and leave-one-out cross-validation was used for the model training set to 
verify prediction performance (Boos, 2003) and to prevent over or under-fitting the data 
in the training step. From the total dataset (n = 1,534), 75 % were separated at random 
into the training set (n = 1,151), to create the regression models, while the remaining 
25 % (n = 383, validation set) were used to independently validate the models. To check 
the reliability of splitting of each subset, the Levene’s test and Student’s t-test were 
applied to verify the equality of variances and means, respectively. The coefficient of 
determination (R2), root mean square error (RMSE), and the ratio of performance to the 
interquartile range (RPIQ) were used to assess the performance of sand and clay content 
prediction models, using equations (1), (2), and (3), respectively. The R2 provides the 
proportion of the variance explained by the model. The RMSE provides the accuracy of 
predictions, giving the standard deviation of the model prediction error in the same units 
as the attributes. The RPIQ was used instead of the ratio of performance deviation (RPD) 
because it is based on quartile range and better represents the spread of the population 
for skewed distributions ( Bellon-Maurel et al., 2010). The highest R2 (Equation 1) and 
RPIQ (Equation 2) values and the lowest RMSE (Equation 3) value of the validation set 
were used to determine the selection of the best spectral preprocessing and multivariate 
regression models.

R2 = Σn
i=1 (yî – ȳi)2

Σn
i=1 (yi – ȳi)2

								            Eq. 1

where ŷi is the value predicted by the model; yi is the measured value; ȳi is the average 
value; and N is the number of samples.

RPIQ = IQ
RMSE

								            Eq. 2
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where IQ is the interquartile distance (IQ = Q3-Q1) of the observed values, which accounts 
for 50 % of the population around the median. 

RMSE = Σ (yî – ȳi)2

i=1

N
1
N√

							           Eq. 3

where N is the number of samples used in the prediction; and ŷi and yi are the values of 
predicted and measured soil properties, respectively.

RESULTS 
The samples under study presented a wide variation with sand and clay contents 
(Table 1), indicating great variability in terms of particle size distribution. The 
independent training and validation sets showed Levene’s test p-value of 0.609 and of 
0.175 for sand and clay content values in the training and validation sets, respectively. 
According to Student’s t test sand (p-value = 0.179) and clay (p-value = 0.435), 
did not show a significant difference at a 5 % significance level, for the training and 
validation sets, respectively. 

The effect of six preprocessing techniques fluctuated between models (Tables 2 and 
3), so it is difficult to reach a clear conclusion as to whether the differences between 
the average values of R2 and RMSE among preprocessing techniques are significant. 
It was observed that there was no statistical difference between the mean values 
of R2 and RMSE for RAW spectra, NBR, MSC, DET, CRR, and FDSG for sand and 
clay prediction models (Figure 3a). In other words, on average, RAW spectra, NBR, 
MSC, DET, CRR, and FDSG preprocessing techniques had an equal effect on model 
performance to quantify sand and clay content, and they clearly perform better 
than SDSG preprocessing. Thus, RAW spectra and MSC preprocessing are the best 
strategies for sand and clay content, as they consistently simplify the models. The 
worst results for both R2 and RMSE were found with SDSG preprocessing (Figure 3b). 
There is significant variability across SDSG results. The poorest result was achieved 
by SDSG-SVM, which presented the lowest R2 and the highest RMSE (0.19 and 27.94 % 
for sand and 0.28 and 23.13 % for clay). 

The predictive model performance of sand content presented R2, RMSE, and RPIQ values 
ranging from 0.19 to 0.73, 10.60 to 27.9 %, and 0.9 to 2.4, respectively (Table 2). The 
predictive model performance for clay content presented R2, RMSE, and RPIQ values 
ranging from 0.28 to 0.83, 7.3 to 23.1 %, and 1.2 to 3.7, respectively. For sand, the SK 
test showed that there was no statistical difference between R2 and RMSE mean values 
of the five models applied, using a 5 % significant level. For clay, the SK test showed 

Table 1. Descriptive statistics of soil properties for dataset, training set and validation set
Dataset (100 %) Training set (75 %) Validation set (25 %)
Sand Clay Sand Clay Sand Clay

Observations 1534 1534 1151 1151 383 383
Minimum 1.00 0.00 1.00 0.00 3.00 0.00
Maximum 99.00 77.00 98.00 76.00 99.00 77.00
Mean 28.85 38.25 28.30 38.45 30.53 37.63
Median 25.00 37.00 25.00 38.00 27.00 36.00
Std error of mean 0.50 0.40 0.55 0.50 1.09 0.91
Skewness 1.10 0.11 1.08 0.11 1.04 0.05
Kustosis 1.10 -0.80 1.17 -0.75 0.78 -0.83
CV 67 45 67 44 70 47
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different results for R2 and RMSE between the Cubist (R2 = 0.79, RMSE = 8.06 %) and 
the remaining multivariate models, PLS (R2 = 0.69, RMSE = 10.08 %), RF (R2 = 0.68, 
RMSE = 10.15 %), GPR (R2 = 0.65, RMSE = 11.07 %), and SVM (R2 = 0.62, RMSE = 12.13 %) 
presented a statistical difference (Figure 4). 

Table 2. Performance of sand predictive models from five multivariate methods with the 
corresponding spectral preprocessing techniques

Soil property Method Preprocessing
Validation set

R2* RMSE (%) RPIQ

Sand

Cubist

RAW 0.73 10.6 2.4
MSC 0.70 11.0 2.2
NBR 0.67 11.7 2.1
DET 0.65 12.0 2.1

FDSG 0.64 12.0 2.1
CRR 0.63 12.4 2.0

SDSG 0.62 12.4 2.0

RF

FDSG 0.68 11.6 2.2
SDSG 0.63 12.8 2.0
DET 0.61 12.8 2.0
CRR 0.61 12.9 1.9
MSC 0.61 12.8 1.9
NBR 0.60 13.1 1.9
RAW 0.57 13.4 1.9

SVM

RAW 0.67 11.6 2.2
NBR 0.64 12.1 2.1
CRR 0.61 12.5 2.0
MSC 0.60 12.8 2.0
DET 0.58 13.0 1.9

FDSG 0.58 13.4 1.9
SDSG 0.19 27.9 0.9

PLS

RAW 0.67 11.6 2.1
FDSG 0.65 11.9 2.1
NBR 0.63 12.2 2.0
MSC 0.60 12.7 2.0
CRR 0.60 12.7 2.0
DET 0.59 12.9 1.9

SDSG 0.54 13.7 1.8

GPR

NBR 0.65 12.0 2.1
RAW 0.64 12.1 2.1
CRR 0.62 12.5 2.0
MSC 0.61 12.5 2.0
FDSG 0.61 12.8 1.9
DET 0.58 13.0 1.9

SDSG 0.30 20.8 1.2

Minimum 0.19 10.6 0.9
Maximum 0.73 27.9 2.4
Mean 0.60 13.1 2.0
Standard Deviation 0.10 3.0 0.26

* Sorted by ascending order of R2 (coefficient of determination for validation set).
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DISCUSSION

Effects of the preprocessing techniques on modeling

In general, model performances (Tables 2 and 3) decreased as the noise resulting from 
preprocessing increased (from RAW to SDSG). The derivatives emphasize noise in the 
data more distinctly than the other methods (Buddenbaum and Steffens, 2012). Even 

Table 3. Performance of clay predictive models from five multivariate methods with the 
corresponding spectral preprocessing techniques

Soil property Method Preprocessing
Validation set

R2* RMSE (%) RPIQ

Clay

Cubist

MSC 0.83 7.3 3.7
RAW 0.83 7.3 3.7
DET 0.83 7.4 3.7
NBR 0.82 7.5 3.6
CRR 0.79 8.1 3.3

FDSG 0.74 9.1 3.0
SDSG 0.69 9.8 2.8

SVM

NBR 0.77 8.7 3.1
MSC 0.76 8.7 3.1
DET 0.73 9.4 2.9
RAW 0.69 9.9 2.7
FDSG 0.63 11.6 2.3
CRR 0.45 13.5 2.0

SDSG 0.28 23.1 1.2

GPR

NBR 0.76 8.8 3.1
MSC 0.75 9.0 3.0
DET 0.71 9.6 2.8
RAW 0.67 10.3 2.6
FDSG 0.67 10.5 2.6
CRR 0.57 11.9 2.3

SDSG 0.42 17.3 1.6

RF

FDSG 0.76 8.8 3.0
DET 0.70 10.0 2.7
CRR 0.68 10.2 2.6
MSC 0.68 10.3 2.6
SDSG 0.69 10.3 2.6
NBR 0.65 10.6 2.5
RAW 0.63 10.9 2.5

PLS

NBR 0.75 8.9 3.0
MSC 0.73 9.3 2.9
CRR 0.72 9.5 2.8
DET 0.70 9.8 2.7
RAW 0.70 10.1 2.7
FDSG 0.67 10.5 2.6
SDSG 0.55 12.4 2.2

Minimum 0.28 7.3 1.2
Maximum 0.83 23.1 3.7
Mean 0.69 10.3 2.8
Standard Deviation 0.12 2.9 0.5

* Sorted by ascending order of R2 (coefficient of determination for validation set).
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though extremely flat structures can be evaluated with spectral derivatives (FDSG and 
SDSG), this also tends to increase spectral noise (García-Sánchez et al., 2017), especially 
by second spectral derivatives (Buddenbaum and Steffens, 2012). For sand, RF (with 
FDSG and SDSG) did not appear to be sensitive to enhanced noise in the spectrum 
(Breiman, 2001), revealing its capability to better handle derivative transformation 
(Dotto et al., 2018). However, SDSG decreased model performance of the remaining 
multivariate models for the two soil properties studied. These results with spectral 
derivatives and ensemble-learning algorithms (RF) are in agreement with Vasques et al. 
(2008), Pinheiro et al. (2017), Dotto et al. (2018), and  Santana et al. (2018). 

Considering the performance of RAW, preprocessing the spectra before regression 
analysis did not improve sand prediction, with the exception when used with RF models. 
Therefore, spectral reflectance values without preprocessing (RAW spectra) were sufficient 
to obtain highly accurate models, and our results show that there is no need to perform 
any preprocessing technique on the spectra to generate better prediction models for sand 
in the VIS-NIR-SWIR region. The results achieved in the current study are divergent from 
Franceschini et al. (2013), which found high performance of the sand model (R2 = 0.87) 
with applying spectral preprocessing. Considering the GPR model, only a slight benefit 

Figure 3. The mean values of RMSE and R2 for each preprocessing technique for sand and clay 
content. The letters in parentheses represent the results of the Scott Knott test (significance  
level α=0.05).
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was found using preprocessing (NBR) on the spectra. This finding is in agreement with 
Duda et al. (2017), who reported no significant improvement in results with first derivative 
preprocessing compared with RAW spectra using the SVM model. They combined two 
proximal sensor approaches relative to a single sensor, to compare the efficacy in 
determining soil properties, sand and clay content, among others, in a catena scale 
in Eastern Europe. Sawut et al. (2014) reported a small influence of preprocessing on 
spectral analysis for the prediction of sand content in a thermal infrared region. All 
these studies worked with a smaller number of samples and range variability of the 
sand content than ours.

Preprocessing results for FDSG derivatives are in agreement with those found by Bilgili et al. 
(2010), Pinheiro et al. (2017), and Duda et al. (2017), who reported different R2 values 
(0.84, 0.62, and 0.25, respectively). Spectral preprocessing may emphasize the feature 
sought in the spectra and several authors have noted its benefit (Vasques et al., 2008; 
Nawar et al., 2016; Dotto et al., 2018). Sand fractions, tends to have quartz as the 
dominant mineral (Demattê et al., 2007) which has no diagnostic spectral features in the 
VIS-NIR-SWIR ranges, high values of reflectance intensity (albedo), and its reflectance 

Figure 4. Statistical difference between multivariate methods resulted by Scott Knott test (significance level of 10 %). The mean, 
maximum, and minimum values of R2 and RMSE for each method applied for sand and clay content.
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spectrum is largely unvarying (Hunt and Salisbury, 1970; Clark, 1999; Ramirez-Lopes et al., 
2013; Wight et al., 2016). Preprocessing techniques are designed for baseline corrections, 
so their effect is minimal when the baseline variance is small (Buddenbaum and Steffens, 
2012). In general, sandy soils exhibit similar spectral behavior of quartz, and this may 
explain why no preprocessing technique was very helpful in improving sand model 
performance in the present study.

For clay, MSC and NBR achieved the best performance with the SVM, GPR, and PLS 
models. These preprocessing techniques are normalization procedures commonly used 
to compensate for baseline shift and multiplicative effects in the spectral data, which are 
induced by physical effects such as particle size (Martens and Naes, 1992; Rinnan et al., 
2009; García-Sánchez et al., 2017). The MSC, which attempts to eliminate the effects of 
the spectrum by linearizing each spectrum by the average spectrum of the sample, is the 
most popular normalization technique (Martens and Naes, 1992). In NBR, each spectrum 
is divided by the range. In this study, MSC (R2 = 0.70, RMSE = 11.0 %, RPIQ = 2.4) 
exhibited slightly better performance than NBR (R2 = 0.67, RMSE = 11.7 %, RPIQ = 2.1), 
when combined with Cubist model (Table 2), albeit with the same performance as RAW 
spectra (control treatment). The NBR produced the best model result for the SVM, GPR, 
and PLS models. 

The CRR presented inferior performance than expected, given that other studies 
commonly report this technique as an effective VIS-NIR-SWIR data preprocessing technique 
(Lagacherie et al., 2008; Nawar et al., 2016; Dotto et al., 2017, 2018). In general, the 
scatter-corrective group gives similar, or better, performance than spectral-derivatives 
for sand and clay models. These results are in agreement with Dotto et al. (2017), who 
also reported better performance of the models with scatter-corrective preprocessing 
techniques compared to spectral-derivatives to predict soil organic carbon using a local 
spectral library from SC. All multivariate models applied in the present study achieved 
different performance with two spectral preprocessing groups. For clay content, the 
accuracy of the prediction models appears to depend on spectral preprocessing, except 
for Cubist model that achieved the same performance of prediction with and without 
spectral preprocessing technique. For sand, this was not so evident. The SVM seems to 
be more sensitive to spectral preprocessing applications, since R2 dropped from 0.67 to 
0.19 and from 0.77 to 0.28 for sand and clay content, respectively. The RMSE showed 
the inverse trend.

Effects of the multivariate models

Considering the performance of the models, Lacerda et al. (2016) developed a PLS 
prediction model to quantify soil texture from 3,750 soil samples using the topossequence 
model from three areas of São Paulo State, Brazil. These authors found predictions values 
in the validation set for sand (R2 = 0.96, RMSE = 137.98 g kg-1) and clay (R2 = 0.93, 
RMSE = 82.50 g kg-1) content. The R2 and RMSE values are higher than those found in 
this study. The lowest R2 found with the SC dataset can be explained in terms of the 
high heterogeneity of soil samples collected throughout the state. The soil samples used 
in this study are legacy soil samples and were sampled for another purpose than this 
spectroscopy study. Further, they were collected from the depth soil layer (0.00-0.50 m) 
showing great variability of the sand and clay content into that depth in soils with texture 
gradient. On the other hand, legacy soil samples bring new challenges and lead the 
techniques to limit. 

Higher performance was achieved by Terra et al. (2015) in the VIS-NIR-SWIR region for 
clay (R2 = 0.85, RMSE = 96.50 g kg-1) and sand content (R2 = 0.85, RMSE = 25.22 g kg-1), 
using 1,259 soil samples from four Brazilian states. In Nawar et al. (2016) the R2 and 
RMSE for clay content in the validation set ranged from 0.52 to 0.79 % and 11.35 to 
7.75 %, respectively, using different multivariate models and preprocessing techniques 
based on a spectral library with limited soil samples (n = 102) from Northern Sinai, Egypt. 
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For sand, the best results were obtained by Cubist (Table 2) based on RAW spectra 
(R2 = 0.73, RMSE = 10.60 %, RPIQ = 2.36) and MSC preprocessing techniques (R2 = 0.70, 
RMSE = 11.09 %, RPIQ = 2.25), followed by lower performances using RF with FDSG 
(R2 = 0.68, RMSE = 11.56 %, RPIQ = 2.16), SVM-RAW (R2 = 0.67, RMSE = 11.60 %, 
RPIQ = 2.16 ), and PLS-RAW (R2 = 0.67, RMSE = 11.62 %, RPIQ = 2.15). The RF outperformed 
the SVM, PLS, and GPR models only with FDSG, whereas with all remaining spectral 
preprocessing showed similar performance (Table 2). Compared to published results using 
Cubist model (R2 = 0.50) (e.g., Zeng et al., 2017), RF (R2 = 0.82) (e.g., Santana et al., 
2018), SVM (R2 = 0.25-0.90) (Viscarra Rossel and Behrens, 2010; Terra et al., 2015; 
Dotto et al., 2017), and PLSR (R2 = 0.33-0.96) (Wetterlind et al., 2008; Sawut et al., 
2014; Terra et al., 2015; Lacerda et al., 2016; Dotto et al., 2017; Pinheiro et al., 2017; 
Conforti et al., 2018) the results of the present study showed good quantitative predictions. 
However, all these studies used different soils, different methodologies, multivariate 
models, and preprocessing techniques, with different population sizes, and VIS-NIR-SWIR 
or MID-IF in some situations.

The scatter plot (Figure 5) of laboratory-measured versus VIS-NIR-SWIR-predicted 
values of sand and clay content based on Cubist model using the validation set 
showed quite low dispersion, with most of the values distributed close to the 1:1 line 
(red line), with small slope and intercept values, indicating good fit (Viscarra Rossel 
and Webster, 2012). 

The Cubist model showed the best performance in comparison with the other models 
for the prediction of clay content (Table 3). The R2 values of the validation set ranged 
from 0.69 to 0.83, whereas RMSE ranged from 9.79 to 7.29 %. This confirms the 
superior performance of Cubist in predicting soil properties, as stated in the literature 
(Minasny and Mcbratney, 2008; Viscarra Rossel and Webster, 2012; Stevens et al., 2013; 
Morellos et al., 2016; Viscarra Rossel et al., 2016). This result is in line with results 

Figure 5. Assessment set of laboratory-measured versus VIS-NIR-SWIR-predicted values using 
Cubist (with RAW spectra) for sand and (with MSC spectra) for clay. Red line indicates 1:1 line.
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reported by Viscarra Rossel and Webster (2012), who used Cubist to predict 24 soil 
properties, including sand, silt, and clay content, using a large soil dataset (n = 21,493) 
from all the states in Australia and found RMSE = 12.00 % and RMSE = 8.49 % for sand 
and clay content, respectively. They concluded that the rule-based model predicts sand 
and clay content well, working effectively with large and diverse datasets. A study 
presented by Minasny and McBratney (2008) showed that Cubist produced the best 
fit model (R2 = 0.92) and lowest error (RMSE = 7.18 %) when compared to PLS and 
another data-mining model, Treenet, using mid-infrared (2500-25000 nm) spectra of 
soil samples from Australia. 

Scatter-correction (MSC and NBR) spectral preprocessing performed well and provided the 
best results for Cubist-MSC (R2 = 0.83, RMSE = 7.29 %, RPIQ = 3.70), SVM-NBR (R2 = 0.77, 
RMSE = 8.69 %, RPIQ = 3.11), GPR-NBR (R2 = 0.76, RMSE = 8.80 %, RPIQ = 3.07), and 
PLS-NBR (R2 = 0.75, RMSE = 8.94 %, RPIQ = 3.02), respectively. These results were 
consistent with previous studies estimating clay content based on VIS-NIR-SWIR regions 
(R2 = 0.62-0.93) (Minasny and Mcbratney, 2008; Viscarra Rossel and Behrens, 2010; 
Viscarra Rossel and Webster, 2012; Ramirez-Lopes et al., 2013; Araújo et al., 2014; 
Terra et al., 2015; Lacerda et al., 2016; Dotto et al., 2017; Lucà et al., 2017; Pinheiro et al., 
2017; Santana et al., 2018). Similar performance was achieved with RF-FDSG (R2 = 0.76, 
RMSE = 8.85 %, RPIQ = 3.05). Machine learning algorithms (Cubist, SVM, GPR, and RF) 
outperformed the PLS approach (Table 3). This better performance may be explained by 
the inclusion of non-linear relationship between clay content and spectra, interaction 
effects of the regression task, as well as linear combinations of variables (Kovačević et al., 
2010; Gomez et al., 2016). In the study presented by Dotto et al. (2017), SVM and PLS 
models were applied to the prediction of soil organic carbon (SOC), sand, silt, and clay 
content using VIS-NIR-SWIR ranges. A local scale dataset of 299 soil samples from the 
central region of SC was used and statistical differences between the RMSE mean values 
of the SVM (RMSE = 7.68 %) and PLS (RMSE = 8.58 %) models were found, whereby SVM 
produced the best fitting model (R2

val = 0.62) and the lowest error (RMSEval = 6.84 %) for 
clay content estimation. For SOC, sand, and silt, they did not find any statistical differences 
between the two multivariate models. On the other hand, Santana et al. (2018) compared 
RF and PLS to assess sand and clay content and found a significant difference between 
the results of the two models, RF (RMSEval = 7.61 %) and PLS (RMSEval = 8.82 %) for clay 
content, with RF proving to be the better approach. These authors used 641 soil samples 
from several regions of Brazil.

The PLS is the most linear common multivariate model for quantitative spectroscopy 
analysis in soil. This model is based on the decomposition of spectral data into latent 
variables that capture most of the variance existing in the spectrum, and linear models 
are then created using the scores of the most correlated features (Morellos et al., 2016). 
However, in PLS, non-linear relationships can only be modeled in a limited way, and the 
model is a linear function of all wavenumbers, whereas in regression-rule models like 
Cubist, these non-linearities can be efficiently modeled using a set of comprehensible 
linear equations (Minasny and Mcbratney, 2008).

In the SK test, Cubist (R2 = 0.66, RMSE = 11.73 %), RF (R2 = 0.62, RMSE = 12.76 %), PLS 
(R2 = 0.61, RMSE = 12.54 %), GPR (R2 = 0.57, RMSE = 13.68 %), and SVM (R2 = 0.55, 
RMSE = 14.77 %) presented the same performance in sand prediction (Figure 4). However, 
when comparing R2 and RMSE performance for each model (Figure 4), it was clear that 
Cubist achieved the best performance, followed by regular performance by the PLS, RF, 
and GPS models, with the poorest performance being found for SVM, although it remained 
acceptable for sand prediction. 

For clay, the SK test results showed that the models were divided into two groups (blue 
and dark red color groups, Figure 4), of which Cubist presented the best performance. 
However, for the mean RMSE values, there was no statistical difference in the SK test 
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(α = 10 %). The prediction quality decreased from Cubist to SVM, with mean RMSE 
values increasing from 8.06 to 12.13 %, suggesting different performances between the 
models. These results again demonstrated the better performance of the Cubist model 
in comparison to the most common algorithms used in spectroscopy analysis. 

CONCLUSIONS
The performance of preprocessing techniques fluctuated between models. In addition, 
spectra preprocessing before regression analysis does not improve sand prediction. 
Scatter-corrective preprocessing groups (MSC, NBR, DET, and CRR) produced similar or 
better performance than spectral-derivatives (FDSG and SDSG). Spectral-derivatives 
only showed better results with RF models for both attributes. 

The best multivariate model to predict sand and clay content from soil VIS-NIR-SWIR 
spectra was Cubist.

The predictive ability of the multivariate models decreased in the following order: 
Cubist>PLS>RF>GPR>SVM for sand and clay. 

These legacy soil data can produce reliable information, and it can be used to populate 
a soil database as input to soil monitoring, as a primary reference to establish standards 
of the spectral behavior of soils in the Santa Catarina state. 
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