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ABSTRACT: There is a growing demand for more detailed knowledge about soils, their 
functions, and connections with human activities and environmental services. In Brazil, 
where soil survey and mapping have been scarce since the 1990s, there is a remarkable 
sense of urgency. Recently, a national soil program was created (PronaSolos) to attend to the 
massive demand for soil information. PronaSolos is an effort to return to the systematic soil 
mapping of the national territory, which requires many pedologists who master the traditional 
knowledge of soil mapping, but above all, the modern and accurate digital soil mapping 
(DSM) techniques. Based on these aspects, this study aims to address the technical and 
educational aspects inherent in the training process of new pedologists by contextualizing 
different soil mapping methods using the pedagogy project approach (PPA). Specifically, the 
study sought to assess the following subjects: (i) evaluate the learning process of different 
apprentices in performing soil survey and mapping in a small training area; (ii) compare maps 
generated by conventional soil mapping (CSM) and DSM using two probabilistic design for 
validation (SRS -Simple Random Sampling and SSRS - Stratified Simple Random Sampling). 
The DSM techniques evaluated were: Multinomial Logistic Regression - MLR and Random 
Forest - RF. For the course, four apprentices were selected and trained in both CSM and DSM 
techniques. Finally, they were asked about the learning process in the PPA and improvement 
for future courses. This study showed that: a) the PPA is promising to train new pedologists 
since, by mixing theoretical activities and contextualized practices (a project in progress), 
it not only awakens great motivation and critical capacity but also develops the ability for 
apprentices to find solutions in a area in constant evolution; b) the quality of the maps 
changed significantly according to the validation sample design applied. The CSM present 
better quality than DSM, mainly when using SSRS. The RF presented equivalent accuracy 
to CSM using SRS. Irrespective to validation sample design, the MLR presented the lowest 
accuracy; c) The CSMs presented higher user’s accuracy while the DSMs presented higher 
producer’s accuracy; d) The quality of CSM generated by the apprentices was not clearly 
related to the previous experience and knowledge in soil science.

Keywords: digital soil mapping, conventional soil mapping, soil-landscape relationship, 
soil education, PronaSolos.
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INTRODUCTION
Pedology focuses on understanding soil genesis, including classification, soil-landscape 
relationship, and mapping (Ma et al., 2019). Soil mapping is a complex task, once the 
pedologists have to present a model of the spatial distribution of soil types, which 
demands to put together the soil knowledge of a study site (soil-landscape relationship). 
Traditionally, the soil maps have been done by pedologists incorporating the soil knowledge 
into an implicit conceptual model that is used to infer soil variation (Scull et al., 2003). 
This method has been severely criticized in the scientific literature for two reasons: a) the 
conceptual model developed by the soil surveyor is primarily implicit, being constructed 
in a heuristic manner, and b) the influence of the soil classification over the modeling 
process and map representation. In the first criticism, researchers argue that the results 
of traditional soil maps are excessively dependent upon tacit knowledge and, as such, 
incomplete information exists relative to the derivation of the ultimate soil survey 
product. The second criticism, the influence of soil classification, in practice results that 
the spatial perception of soil seems that the soil classes are homogenous units with and 
sharply defined boundaries (Burrough and McDonnell, 1998).

More recently, considering these criticisms and the evolution of the research in soil 
mapping, researchers introduced the concept of Digital Soil Mapping (DSM) and Predictive 
Soil Mapping (PSM), McBratney et al. (2003), and Scull et al. (2003), respectively. Digital 
Soil Mapping involves traditional methods of classification and mapping and mathematical 
modeling for the creation and population of spatial information systems using field 
and laboratory data coupled with environmental covariates (McBratney et al., 2003; 
Ma et al., 2019). Although the DSM represents an evolution in the soil mapping process, 
the formation of new pedologists also represents a challenge, once besides the former 
knowledge, the training process must constantly be provided in new technologies 
(remote and proximal sensors, software, and hardware), and data analysis methods and 
algorithms (Dalmolin et al., 2020). Considering that the world requires more detailed soil 
maps and information about soil security, there is an increasing demand for pedologists 
to execute DSM.

In Brazil, few detailed soil surveys can support agricultural-environmental planning, but 
with the recent launch of the National Soil Program of Brazil (PronaSolos), there is an 
expectation of resuming pedological surveys in the country (Polidoro et al., 2016), which 
are scarce since the 1990s, with only a few specific studies (Nolasco-Carvalho et al., 2013). 
As a consequence of the interruption of a systematic soil survey project in Brazil, there 
is not only a high demand for soil maps but also pedologists. Another important aspect 
of this previous situation is that most part of the pedologists with the most elevated 
experience in soil survey and mapping in Brazil, was formed using the traditional soil 
mapping methods. 

These experienced pedologists scattered along the country are very important to take 
advantage of their knowledge to plan and execute the newest soil maps and participate 
in the training process of new pedologists. Parallel to this stagnation of systematic soil 
survey projects in Brazil, in the last few years, a lot of researches and mapping studies 
have been done using DSM techniques. However, the number of new pedologists to 
meet the potential demand for mapping is still small. In short, the new soil maps are 
being done, most frequently, using digital techniques, but the experienced pedologists 
of Brazil, in general, are not up to date with the new techniques. 

This aspect was one of the main issues behind the construction of the PronaSolos project. 
The PronaSolos Project planning encompassed many challenges, such as: (a) what is 
the best scale of the maps, considering the different Brazilian regions, new demands 
of information, and the availability of legacy data?; (b) Which techniques to apply 
(Traditional, Digital, or both)?; (c) How many new pedologists must be trained to attend 
the soil mapping process along the country?; (d) How must be a training course for new 
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pedologists to acquire not only the basic knowledge of soils and mapping techniques but 
also to prepare them to master new technologies and to do soil survey with efficiency 
and accuracy.

Since 2017, the Laboratory of Soil and Water in Agroecosystem (LASA-UFRRJ) began a 
soil survey and mapping project in areas of Amazon and Bahia States. The purpose of the 
project has some similarities with the PronaSolos project. Considering the huge territory to 
be mapped in both study sites, the project’s coordination decides to train new pedologists 
to attend the demand of field activities of the soil survey and soil mapping process. 
In 2019, a group of four apprentices in Agronomy (Residency Program in Agronomy - 
REA-UFRRJ) was selected to be part of the project. Before going to the fieldwork in Bahia 
State, the apprentice took part in a soil survey and mapping course that was offered by 
professors of LASA. To develop the training of pedologists, the methodological proposal 
called Project Pedagogy was adopted. The method is based on experience, which proposes 
a connection between the student and a research project that arouses his interest. The 
role of the tutor is to favor the teaching based on the discoveries, fruit of the research 
carried out by the apprentices under his guidance. 

The method is interesting to use in soil mapping training because it fits the purpose of 
learning during project execution. Still regarding the method, the following features are 
highlighted: (a) intentionality - the project is chosen based on the objectives that the 
tutor intends for the learners to reach and on the set of knowledge they need to build, soil 
mapping, soil assessment, and applicability (capability and agricultural-environmental 
planning); (b) flexibility - learners have completely different characteristics and prior 
knowledge. Therefore, it is likely that the reception, engagement, and even the outcome 
that each learner achieves will be completely different. The tutor needs to follow up 
on activities to notice these differences and modify the plan if necessary; and (c) 
multidisciplinary - problem-solving can rarely be achieved with knowledge provided 
by a single area (in this case, soil science, mathematical modeling, cartography, 
and statistics). Based on these aspects, this study aims to address the technical and 
educational aspects inherent in the training process of new pedologists by contextualizing 
different soil mapping methods (and their specificities) using the project pedagogy 
approach. Since young pedologists with different degrees of experience, even if they 
receive the same training, will present different reception, engagement, and produce 
different soil maps and consequently different map accuracy, this study aimed to: (i) 
evaluate the learning process of different technicians in performing soil survey and 
mapping using conventional techniques in a small training area; and (ii) compare maps 
generated by conventional and digital techniques (Logistic Regression and Random 
Forest) using for validation two probabilistic approaches, simple random and stratified 
simple random sampling.

MATERIALS AND METHODS
This study was conducted in the context of the project entitled “Digital Mapping of Soils in 
Oil and Gas Exploration and Production Areas - Case Studies of the North and Northeast 
Brazilian Fields”. The project was funded by the National Petroleum Agency (ANP), under 
the agreement number 5850.0105881.17.9 (PETROBRAS/FAPUR/UFRRJ). The Laboratory 
of Soil and Water in Agroecosystem (LASA) was responsible for conducting the research 
between 2017 and 2021. Considering the areas’ extent to be mapped on a detailed and 
semi-detailed scale (1:10,000 to 1:25,000), the coordination had to recruit and train four 
new pedologists. Specifically, the new pedologists were supposed to be ready to be at 
the fieldwork in 2019.

Considering the purpose of this study, this section was organized in two parts. The first 
part explains how the pedagogical approach was performed. The second describes the 
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soil mapping project in the training study site, encompassing the fieldwork and the 
technical procedures to execute the soil mapping. 

Pedagogical project approaches

The pedagogical project approach was conducted following four steps: (i) selection of the 
apprentices and evaluation of their previous knowledge; (ii) preparation and planning; 
(iii) development, and (iv) project completion. The selection of four apprentices was 
made through a public context of the agronomy residency program of the Federal Rural 
University of Rio de Janeiro (UFRRJ, Portuguese). The apprentices were evaluated through 
theoretical tests on basic soil knowledge, curriculum analysis, and interview. Although 
the application of the test of expertise in soil, cartography and agricultural capability 
was important in the process, the program tutors already knew that agronomists who 
graduated at most two years would not have a great experience on these themes. Thus, 
the evaluation of the curriculum and the interview were decisive in selecting, where 
apprentices were sought motivated to work with multidisciplinary projects and willing to 
commit for two years in training activities and soil survey and mapping in different regions. 

The selection process also considered positive the largest possible diversity of apprentice 
profiles (race, gender, and sexual orientation, for example). The four apprentices selected 
were alumni of Agronomic Engineer course at UFRRJ. All of them, during the under-
graduation course, took part in the same formal soil science disciplines, such as: Pedology, 
Soil Physics, Soil Fertility, and Agricultural Capability of Brazilian Soils. The detailed profile 
of the four apprentices selected is presented in table 1.

Considering the information presented in table 1, the instructor ranked the apprentices 
according to the rank of experience (RE) in a scale varying from 0 to 1 that could help 

Table 1. Profile of the four apprentices selected

Apprentice Gender Age Academic Formation and Skills Experience* 

Apprentice A Male 28
Agriculture and Livestock technician. 

Undergraduate in Agronomic 
Engineer. Master Degree in Soil 

Science (PPGA-CS/UFRRJ).

Basic experience 
with soil survey and 
pedology. RE = 0.7

Apprentice B Male 27
Surveying technician. Undergraduate 

in Agronomic Engineer. Basic 
experience with geoscience and DSM.

Very basic level of 
experience with soil 
science. RE = 0.3

Apprentice C Male 28

Undergraduate in Agronomic 
Engineer. Master Degree in 

with masters in Plant Science 
(PPGF/UFRRJ), area of concentration 
in plant production, research topic in 
management and production of crops 

with economic importance.

Very basic level of 
experience with soil 
science. RE = 0.5

Apprentice D Female 25

Agriculture and Livestock technician. 
Undergraduate in Agronomic 
Engineer. Master Degree in 

with masters in Plant Science 
(PPGF/UFRRJ), area of concentration 

in agroecology, research topic in 
nutrient cycling on the soil.

Basic experience 
with soil fertility and 

soil classification 
during under 

graduation. RE=0.5

* Basic Experience: they took part in more disciplines in Pos Graduation Program in Agronomy-Soil Science 
(Soil Formation and Characterization, Soil Chemistry, Soil Physics, and Soil Fertility), however, they had not 
any experience in fieldwork related to soil survey and soil mapping; Very Basic level in Soil Science: they 
only took part in soil science disciplines of the under graduation course in Agronomic Engineer, and had 
not any experience in fieldwork related to soil survey and soil mapping. RE: Rank Experience - the rank was 
based on work experience and pos graduation course. The instructor gave the highest level to apprentice A 
(RE = 0.7 -2 years master degree in soil science), intermediate level to apprentices C and D (RE = 0.5 - 2 years 
master science and plant production), and lowest level to apprentice B (RE=0.3 - newly formed in agronomy 
as he entered the residence program). 
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explain the results along the training course, namely: apprentice A (RE = 0.7) > C 
(RE = 0.5) = D (RE = 0.5) > B (RE = 0.3). 

Based on the aims of the project and the profile of the four apprentices, the coordination 
organized the training project, which was scheduled in theoretical and practice modules. 
The theoretical course focused on the following subjects: (a) concepts of soil formation, 
soil characterization (laboratory and field methods); (b) methods of soil survey and 
mapping; (c) use of GIS, soil sensors, and soil database system; and (d) evaluation of 
validation methods to compare the accuracy of soil maps. Besides the theoretical content, 
the apprentices to new pedologists took part in all steps of a detailed soil survey and 
mapping project, which was conducted in a training site of about 10 hectares. 

The development of the project last four months and the theoretical and practical 
modules took place simultaneously. At the beginning (first week), the apprentices 
receive theoretical classes; thereafter, they applied the knowledge in the study site. 
In some weeks, the actives were only practiced in field and laboratory (soil description, 
soil sampling, field tests, and soil analysis). In the final part, the apprentices applied the 
knowledge to analyze the field and laboratory data, literature review, writing reports, 
and mapping soils of the study site using traditional and digital soil mapping techniques.

The completion of the training project was made through the evaluation of the soil map 
presented by each apprentice (validation of each soil map, comparison of each other, 
and with the maps generated by DSM techniques). Besides, each apprentice presented 
her/his perception of the main challenges they faced and a personal evaluation of the 
training course. This last part of the evaluation was made using a structured questionnaire 
developed by the tutors of the program (Table 2). 

Table 2. The questionnaire used to evaluate the program

Subject Questions

1- Which stages of the course 
were most challenging?

Degree of challenge (1 for the highest challenge and 
6 for lowest).
a-() Theoretical classes of introduction to pedology, 
soil-landscape relationship, soil survey, and classification.
b-() Practical classes to identify soil in the field (description 
and classification) and soil-landscape relationship in practice.
c-() Field tests and laboratory analysis.
d-() Theoretical classes involving digital soil mapping, GIS 
and environmental covariates processing.
e-() Theoretical classes involving statistical modeling, 
sampling, prediction, and accuracy assessment.
f-() Practical classes involving data organization, mental and 
mathematical model calibration, and prediction validation.

2- Concerning the time used 
for theoretical classes, field 
and lab practice.

-Did you think it was appropriate?
-Could it have been another proportion of time for each part?

3- About the difference of 
previous knowledge of the 
participants in the area.

-Do you think it was limiting in the course?

4- About the multidisciplinarity 
characteristic of the course.

-Do you think it is important? And/or was it limiting 
the course?

5- About automating processes 
and/or making parts of the 
survey more quantitative and 
less subjective.

-The use of pedometrics tools did help to define the 
mapping units?
-Do you think it is valid?

6- About the Pedagogic Project 
Approach.

-Was it different?
-Did you find it valid?

7- Your evaluation of the course. -What can be improved?
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Soil mapping project and the study site

The study was carried out in a small training area, 10 hectares, located at the 
Agroecological Farm (Agroecological Integrated System - SIPA, Portuguese) in 
Seropédica, Rio de Janeiro State. The SIPA is an experimental farming resulting from 
the association between the Brazilian Company of Agricultural Research (Embrapa 
Agrobiologia, Portuguese), Agricultural Research Company of the state of Rio de 
Janeiro (Pesagro-Rio, Portuguese) and UFRRJ, and it is located at the coordinates 
22° 45’ 0” S and 43° 40’ 30” W (Figure 1). The training area is used for grazing, and 
its relief is predominantly smooth, ranging up to wavy, with altitudes varying between 
18 and 52 m above sea level.

According to Alvares et al. (2013), the study site’s climate is classified as AW (Tropical 
with dry winter - Köppen classification system). The SIPA has an average temperature 
of 23.5 °C and an average annual rainfall of 1354 mm. The highest precipitation values 
are verified in the months of November to January, and the lowest in the period between 
May and August (Oliveira-Júnior et al., 2014).

Environmental covariates

The environmental covariates available in the study site (detail level) were those available 
from the digital elevation model (DEM), which represents the relief on soil formation 
equation, and from an orbital image (RapidEye from March 2014) that presents the 
organisms factor. The DEM, with a spatial resolution of 2 m, was generated from the 
contour lines with 1 m equidistance and points of elevation distributed throughout the 
study site. The contour lines and points of elevation were elaborated from a planialtimetric 
survey with the aid of a DGPS - Differential Global Positioning System.

To reconcile the spatial resolution of the image (5 m orthorectified) with that of the DEM, 
the image was interpolated to a resolution of 2 m using the value of the neighboring. 
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The image was atmospherically corrected using the 6S (Second Simulation of Satellite 
Signal in the Solar Spectrum) model (Vermote et al., 1997) to convert radiance at the 
satellite level into a physical variable, surface reflectance, and remove the atmosphere 
effect (Antunes et al., 2014). After the atmospheric correction, besides the five spectral 
bands available, there were also obtained the normalized difference vegetation index 
(NDVI) and the soil adjusted vegetation index (SAVI) by using arithmetic operations 
(Equations 1 and 2, respectively).

NDVI =
ρnir – ρred
ρnir + ρred

								            Eq. 1

SAVI =
(1 + L)(ρnir – ρred)

ρnir + ρred + L
							           Eq. 2

In which ρnir is the radiant flux reflected in the near-infrared, represented by the band 
5 of the RapidEye sensor; ρred is the radiant flux reflected in the red, represented by 
the band 3. The constant L can present values from 0 to 1, varying according to its own 
biomass; the reference values of L are (Huete, 1988):

L = 1 (for low vegetation densities)

L = 0.5 (for medium vegetation densities)

L = 0.25 (for high vegetation densities)

Considering both the DEM and the RapidEye images, 20 covariates were used (13 from 
DEM and 7 from the orbital image - 5 spectral bands, NDVI, and SAVI). Details from de 
environmental covariates are in table 3.

Fieldwork, soil classification, and mapping units definition

Along the training study site, ten trenches were opened at different landscape points 
(Figure 1). The spatial distribution of the trenches was defined using the technique of 
free walk in toposequence. It was done to cover the main variability of the relief along 
the study site. The labels and positions of the trenches are presented, as follow:  one 
pit at the top (P10), two in the middle third position (P3 and P9), one in the lower third 
(P8), three in the foothills (P2, P5, and P7) and three in the lowland area (P1, P4, and 
P6). Both the soil profiles and the soil samples were described and collected according to 
Santos et al. (2015). In each soil horizon, disturbed soil samples were collected to perform 
physical (particle size and particle density) and chemical analyses (sodium, potassium, 
calcium, magnesium, H + Al, aluminum, and total organic carbon). Soil properties were 
measured according to Teixeira et al. (2017). Besides, undisturbed samples were collected 
to determine soil bulk density, total porosity, and macro and micropores. 

The profiles were then classified according to the Brazilian Soil Classification System 
(Santos et al., 2018). These soil profiles were used as modal profiles for the pedologists 
training. Once the soil was taxonomically classified, the group of tutors and apprentices 
begun to define the mapping units to be used in the soil map. The definition of soil 
mapping units is a key point in the definition of the soil map and its validation process. 
To reduce the subjectivity and turn the process of defining mapping units into a more 
interactive and didactic activity, it was performed using the experts’ knowledge (tutors) 
and numerical methods. The Algorithm for Quantitative Pedology (APQ) was used to 
evaluate the dissimilarity between soil profiles, according to  Beaudette et al. (2013). 
The 10 soil profiles were submitted to the dissimilarity analysis using both the available 
data of the landscape and the soil attributes (soil depth and sand, silt and clay content). 
This exercise allowed the tutors to show the relationship between soil and landscape and 
how this is associated with a given classification system, in this case, SiBCS (Brazilian 
Soil Classification System).
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Covariates selection and creation of environmental strata of the landscape

As presented along item 2.2, 20 environmental covariates were considered to be potentially 
usable in soil mapping, being 13 derivate from DEM and 7 from orbital image. However, the 
use of these covariates to develop soil prediction models depends on their effectiveness 
in explaining the soil variation along the landscape. Besides, some covariates can be 
redundant, that is, more than one of them represents similar relation with soil variation 
in the landscape and are highly correlated with each other. 

Considering these aspects and facilitating the choice of the environmental covariates 
to train the predictive model, a principal component analysis (PCA) was performed to 
verify the best explanations for soil variation in the landscape. A correlation analysis 
was then performed between the previously selected covariates (those more explainable 
covariates) to eliminate redundant covariates and simplify the models. 

Table 3. Environmental covariates, soil formation factor that represents their sources, resolution, and definition

Formation factor Covariate Source unit Definition

Organism (O) Bands (1,2,3,4 
and 5) RapidEye (2014) ρ

Bands in the spectrum of 
440 – 510 nm (Blue), 520 – 590 nm 

(Green), 630 – 685 nm (Red), 690 – 730 
nm (Red Edge), 760 – 850 nm (Near IR)

NDVI RapidEye (2014) dimensionless NDVI=(NIR–Red)/(NIR+Red)
SAVI RapidEye (2014) dimensionless SAVI= (1+0.5) (NIR–Red)/(NIR+Red+0.5)

Relief (R) DEM LASA m
The digital elevation model of the area 
represents the terrain’s surface made 
by interpolation of contour lines and 

elevation points.

Slope DEM-LASA % Gradient or rate of change of elevation 
between neighboring cells

Aspect DEM-LASA degrees Represents exposure faces, values in 
degrees (0 to 360°)

Northernness DEM-LASA degrees
It indicates the direction of the 
slope relative to the northern. 

Northernness = abs (180°−Aspect)

Plan_curv DEM-LASA m-1 The shape of the hillside on the horizontal 
plane (concave, rectilinear, or convex).

Prof_curv DEM-LASA m-1 The shape of the hillside on the vertical 
plane (concave, rectilinear, or convex).

Convergence DEM-LASA % The general shape of the hillside in all 
directions (concave, rectilinear, or convex)

Cat_area DEM-LASA m-2 Related to the volume of flooding that 
reaches a certain cell

TWI DEM-LASA dimensionless Describes a tendency for a cell to 
accumulate water

LS_factor DEM-LASA dimensionless
Attribute equivalent to the topographic 
factor of the Revised Universal Soil Loss 

Equation (RUSLE)

RSP DEM-LASA dimensionless Represents relative slope position based 
on the base channel network

CHND DEM-LASA m Altitude above the channel network 
(CHNB- original elevation)

CHNB DEM-LASA m Interpolation of a channel network base 
level elevation

NDVI: normalized difference vegetation index; SAVI: soil-adjusted vegetation index; DEM: digital elevation model: Plan_curv: plan curvature; Prof_curv: 
profile curvature; Convergence: convergence index; Cat_area: catchment area; TWI: topographic wetness index; LS_factor: LS factor; RSP: relative 
slope position; CHND: channel network distance; CHNB: channel network base level; ρ: surface reflectance.



Costa et al. Training pedologist for soil mapping: Contextualizing methods and its...

9Rev Bras Cienc Solo 2021;45:e0200130

The same analysis was used to create environmental strata of the landscape, which was 
useful not only for the apprentices to develop their mental models of soil mapping but 
also to establish the sampling designs to validate both the conventional and the digital 
soil maps (item 2.7).

Conventional soil mapping approach

The conventional soil mapping (CSM) was produced based on a soil survey and soil-landscape 
relationship. A lot of soil survey aspects were discussed during the training process, in 
theory and practice, always respecting the limitation (feeling and time) of each participant. 
After theoretical and practical classes in the field and laboratory, the apprentices went 
to the part of conducting a detailed soil survey and mapping project. The first step 
(office work) consisted of gathering information about the study site that could help 
the understanding of the soil-landscape relationship of the area. The apprentices could 
evaluate each map of the relief (terrain attributes) and the land-use history through 
satellite images and indexes and ten complete soil profiles along the landscape. After 
that, the soil profiles were colleted, analyzed, and classified. To define the soil MUs a 
quantitative method using dissimilarity analysis was carried out and discussed during 
the training process. To delimited the boundaries of the MUs, each apprentice has used 
your level of knowledge/experience in soil science and the information obtained during 
the training. Afterward, some boundaries of MUs were verified and adjusted during the 
field survey depending on the apprentice feeling. 

In summary, the criteria used for the apprentices to build the mental model were: soil 
taxon, at first until the second level, and soil attributes of each profile. After discussions, the 
third and fourth categorical levels of SiBCS and the specific attributes and characteristics 
of these levels, such as E horizon thickness, texture, soil color, waxiness, and others, were 
also considered for the definition of the MUs. In addition, characteristics such as position 
in the landscape, rock outcrop, presence of gravel pebbles, drainage, and others. The 
boundaries of the MUs were generated basically from the analysis of elevation, slope, 
contour lines, image bands, and overlapping theses maps.

The process of constructing the conceptual model of pedogenesis in the study site 
was guided by training process and prior knowledge of soil formation conditions of the 
study site; as all apprentices have studied at UFRRJ, they had some prior contact with 
landscapes presenting some similarities with the training study site.

Digital soil mapping approach

The use of DSM allowed the apprentices to get in contact with algorithms commonly 
used to predict soil MUs. Besides, it was a good exercise to evaluate the advantages, 
difficulties, and limitations of each technique and compare DSM with conventional maps. 
The tutors decided to use the two most commonly used techniques for predicting soil 
MUs: Multinomial Logistic Regression and Random Forest.

a) Multinomial Logistic Regression

Multinomial Logistic Regression (MLR) is a technique used exclusively for predicting 
categorical variables such as soil types. It is a parametric method that allows predicting 
the probability of occurrence of a response variable, considering the values of a series of 
independent variables (environmental covariates) that can be qualitative or quantitative. 
The logistic function is represented by:

Logitj = log
πj (s)
πk (s)

= αjβ'j x, j = 1, ...k – 1					         Eq. 3

In which logitj is the natural logarithm of the ratio between the probability πj (s) of a given 
soil observation belonging to the jth category, conditional on the values of the covariates 
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contained in the vector x(s), and the probability πk (s) of that soil observation belongs 
to category k taken as reference (Agresti, 2002). The logit model intercepts adjusted 
for the jth category is given by αj, while β’j is a vector with the coefficients adjusted for 
each of the predictor variables whose values are contained in the x. 

The logistic model belongs to the family of generalized MLR and was used to 
model the relationships between the different soil types (map units) as categorical 
dependent variables and the environmental covariates as independent variables. A 
model with previous covariates selected was fitted to predict the spatial distribution 
of soil types.

b) Random Forest

Random Forest (RF) is an algorithm developed by (Breiman, 2001). It is based on regression 
and classification trees, where it built various regression or classification trees with 
bootstrap sampling on the input variables and internal validation (Grimm et al., 2008; 
Yang et al., 2016). RF depends only on three user-defined parameters: the number of 
trees in the forest, the minimum number of data points on each terminal node (nodesize), 
and the number of variables used to produce each tree (mtry). The values indicated by 
the literature are ntree = 500, nodesize = 5, and mtry = one-third of the total number 
of predictors (Grimm et al., 2008; Were et al., 2015; Yang et al., 2016). As done for MLR, 
a model with the same previous covariates selected was fitted in RF using the parameters 
indicated by the literature.

Sampling design for map validation

The evaluation of the soil maps’ accuracy is an important issue, and the apprentices 
also took part in all steps of this task. In the literature, it is already established that the 
probabilistic sampling is recommended for the validation of spatial predictions (Brus et al., 
2011; Brus, 2019). The design of probabilistic sampling can influence the results of the 
map validation. According to Brus et al. (2011), five basic types of sampling design can 
be considered to evaluate the accuracy of the maps (Simple Random Sampling - SRS, 
Stratified Simple Random Sampling - SSRS, Systematic Random Sampling - SY, Cluster 
Random Sampling - CL, and Two-Stage random Sampling - TS). Considering the logistic 
support and the work capacity of the group, it was decided to test the SRS and SSRS 
sample designs.

Another important aspect of the sampling for map validation is the number and the 
type of field observations used. Before deciding on the number of field observations, 
an assessment was made of what kind of observation would be used to validate 
the map (auger holes, mini trenches or regular trenches). Although auger holes 
are simpler sampling and allow greater yield in the field, these observations do not 
allow the ideal visualization of some important soil morphological aspects used to 
classify soils, such as the thickness of the horizons, shape, size, and grade of soil 
structure, quantity and size of mottles and clay films. On the other hand, although 
ideal for soil evaluation, conventional pit are very laborious for opening and closing, 
resulting in less field yield. 

Thus, it was decided to use mini trenches with dimensions of 0.60 m deep, 0.50 m wide, 
and 0.60 m long; once this kind of observation could combine two important aspects 
during the soil evaluation, that is, greater yield in the field and better morphological 
evaluation of the soil. The mini pit dimensions can be adapted to a specific study site 
to attend the most important differentiation of soil types. Considering mini trenches as 
field observation, the group realized that it was possible to open, manually, 60 mini pits 
along the study site, 30 of them for each sampling design. 

a) Simple random sampling 
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The SRS is the sampling technique where all the elements that compose the sample 
universe have the same probability of being selected for the sample, that is, the same 
likelihood of inclusion and are completely independent of each other. It would be like 
making a fair draw among the individuals of the universe: In the specific case of soil 
science would be, for example, to select any pedon of a given type of soil (class). In this 
type of sampling, only the number of samples (n) is defined. In this study, it was used 
n = 30 (Figure 2a). 

Despite being a totally probabilistic method (not biased), which is an ideal condition for 
validation, in this selected method, the spatial distribution of the mini trenches can be 
irregularity scattered along the study site. It means that there may be strong grouping 
of some locations sampling, in addition to the presence of large voids between sample 
sites. Consequently, simple random samples are not always the best option, especially 
when searching for spatially representative samples of a study site and/or covering the 
variation of terrain and landscape characteristics.

b) Stratified simple random sampling 

Just as SRS, the SSRS belongs to the same probabilistic family and consists of dividing 
the entire population or the “object of study” into different subgroups or strata so that 
an individual can only be part of a single stratum or layer. The SSRS approach was 
tested because if the subareas (strata) are internally homogeneous and heterogeneous 
between strata, the use of stratified random sampling reduces the sample error and 
may be somewhat more efficient for validation, since you certify that there are no empty 
spaces and that all soil types (or soil attributes) have at least one representative individual 
for validation. When using SSRS, it is assumed that the environmental strata is related 
to different soils types, which could not have been perfectly sampled using SRS. One 
important aspect using this sample design is the delineation of the strata. Commonly, 
the map unities are used as strata to distribute the validation points (Brus et al., 2011), 
however as the definition of map unities was being developed concurrently, and apprentices 
could generate different maps, it was decided to create environmental strata that could 
be associated to soil variation along the study site (item 2.4). 

In the specific case, the study site was subdivided into ten strata using an unsupervised 
classification, k-means algorithm, and previous selected covariates, which are the 
environmentally homogeneous areas (Figure 2b). Once the ten strata were defined, the 
30 soil samples were distributed following a proportional stratification, where the number 
of points is proportional to the stratum area (Figure 2b). 
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Figure 2. Sampling design applied to the study site. (a) Simple Random Sampling – SRS; (b) Stratified Simple Random Sampling – SSRS.
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Quality measures for categorical soil maps

The performance of each soil map predicted by the three different approaches (MLR, 
RF, and 4-CSM) was evaluated using the same independent validation dataset, being a 
probabilistic sample selected by SRS and SSRS. For assessing the quality of the predicted 
soil maps, the following quality measures were used: Overall Accuracy, Kappa coefficient 
of agreement, User’s Accuracy, and Producer’s Accuracy. All of them were based on the 
confusion matrix (Brus et al., 2011) and are calculated as the proportion of the samples 
or soil types that were correctly predicted over the total number of validation locations 
(reference field data). 

The overall accuracy was given by:

OA = Σc
i = 1 Eij

n
								            Eq. 4

In which E is the confusion or error matrix of dimensions c × c; and n is the number of 
samples (observations). In the literature, overall accuracy is also called overall purity, 
map purity, global accuracy, and general accuracy.

User’s accuracy given by:

UA =
Eu

Eiu

									             Eq. 5

In which Eiu denotes the number of points mapped as the mapping unit u that is, the 
sum of the rows in the confusion matrix; and Eu are the classes correctly classified in 
that unit u, the main diagonal of the confusion matrix. The complement of UA (1- UA) 
is referred to as the error of commission (inclusion), that is, the error ruled by the inclusion 
of pixels from other classes in the class in question. In the literature, other synonyms 
are also used for User’s Accuracy, such as map unit purity (Brus et al., 2011), which is 
about predicted classes (map).

Producer’s accuracy given by:

PA =
Eu

Eju

									             Eq. 6

In which Eju denotes the number of points mapped as the mapping unit u, that is, the 
sum of the columns in the confusion matrix, and Eu are the classes correctly classified 
in that unit u, main diagonal of the confusion matrix. The complement of PA (1- PA) 
is referred to as the omission errors (exclusion), that is, when a pixel ceases to be 
classified correctly in that mapping unit and is incorrectly classified as another unit. 
In the literature, other synonyms are also used for producer’s Accuracy, such as class 
representation on terrestrial truth (reference field data).

Kappa index was given by:

k̂ =
nΣc

i = 1 Eij – Σc
i = 1 Ei Ej

n2 – Σc
i = 1 Ei Ej

							           Eq. 7

Where c is the number of classes on the matrix, Eij values on the row i and column j, 
Ei total on the row i and Ej total on column j, and n the number of samples (observations). 

Finally, as different soil maps of the same study site using CSM and DSM techniques were 
compared, the indexes WPAI (Weighted Producer Accuracy Index) and WUAI (Weighted 
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User Accuracy Index) were also computed (Equations 8 and 9, respectively). Both user 
and producer accuracy are commonly calculated for each mapping unit. 

The WUAI and WPAI indices’ generation aims to give a global view of the user and 
producer accuracy for each map. Thus, as in each map, the mapping units have different 
territorial expression, both indexes are weighted averages of user and producer accuracy. 
The weighting is done by multiplying this accuracy by the area of each mapping unit 
(MU), divided by the total area of the map (A). The WUAI and WPAI indices allow us to 
know how the types of errors are distributed (commission or omission, respectively) in 
each map (give an overview of these errors for a specific map). Thus, after comparing 
the global accuracy and the kappa index, before entering into the detailed evaluation of 
the types of errors per mapping unit (which is conventionally done), we used the WUAI 
and WPAI indices to compare the relevance of commission and omission errors on each 
map (4 CSM generated by apprentices and 2 DSM generated by RF and MLR). The index 
values range from 0 to 1, with 0 lack of accuracy and 1 maximum accuracy.

WPAI =
A

Σn
j       × au

Eu

Eju 								            Eq. 8

In which Eju denotes the number of points mapped as the mapping unit u that is, the 
sum of the columns in the confusion matrix and Eu are the classes correctly classified in 
that unit u, main diagonal of the confusion matrix, au is the surface area of the mapped 
unit u and A is the total surface area of the map. 

WUAI =
A

Σn
i       × au

Eu

Eiu 								            Eq. 9

In which Eiu denotes the number of points mapped as the mapping unit u that is, the 
sum of the rows in the confusion matrix and Eu are the classes correctly classified in 
that unit u, main diagonal of the confusion matrix, au is the surface area of the mapped 
unit u, and A is the total surface area of the map. For simplicity, we will use the terms 
overall accuracy (for global accuracy) and user and producer accuracy (for commission 
and omission errors, respectively).

Software used

The Spring 5.2.5 (Câmara et al., 1996) and 6S software (Vermote et al., 1997; Antunes et al., 
2014) were used for atmospheric correction of the RapidEye satellite image.

The R software (R Core Team, 2019) was used for the covariates preparation and statistical 
modeling. The following packages were used: raster, rgdal, maptools, and RSAGA for data 
management, preparation, and visualization (Brenning et al., 2018; Bivand and Lewin-Koh, 
2019; Bivand et al., 2019; Hijmans, 2019); randomForest for RF (Liaw and Wiener, 2002); 
and nnet (Venables and Ripley, 2002) for MLR modeling; factoextra (Kassambara and 
Mundt, 2017) for principal component analysis (PCA); cluster (Maechler et al., 2019) for 
cluster analysis; aqp (Beaudette et al., 2013) for dissimilarity analysis and profile plots; 
and sampling (Tillé and Matei, 2016) for soil sampling selection.

RESULTS 

Soil landscape relationship and map unity definition

Figure 3 presented the ten soil profiles and their respective position according to the 
toposequence. As shown, the soil color has a strict relationship with the topography, which, 
in turn, is directly related to soil drainage and soil moisture characteristics. The profiles 
of the highest part of the landscape (P10 - Argissolo Vermelho Distrófico nitossólico; 
and P9 and P3 - Argissolo Vermelho Eutrófico nitossólico) have a reddish color, passing 
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through yellowish (P8 - Argissolo Amarelo Eutrófico típico) and light yellow or grey with 
or without mottled (P1 - Cambissolo Háplico Ta Distrófico típico; P4 and P6 - Planossolo 
Háplico Distrófico gleissólico; P2 and P7 - Planossolo Háplico Distrófico arênico; and P5 
- Planossolo Háplico Distrófico espessarênico). 

The results of the dissimilarity analysis using AQP to create five MUs is presented in 
figure 4. Further information about each MU is presented in table 4.  From the five MUs, 
only one is composed, that is, more than one soil class integrate this MU (MU1, Figure 4). 
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Figure 3. Soil profiles and position on the landscape.

Table 4. Soil map units and landscape properties

MU
Taxonomic unit

n Elev Slope
IUSS-WRB SiBCS

m %

MU1 - SXd + GXvd Gleyic Planosols + 
Gleyic Cambisols

Planossolo Háplico Distrófico gleissólico (P4 and 
P6) + Cambissolo Háplico Ta Distrófico típico (P1) 3 20.9 2.7

MU2 - SXd Stagnic Planosols
Planossolo Háplico Distrófico arênico 

(P2 and P7) + Planossolo Háplico Distrófico 
espessarênico (P5)

3 23.5 5.1

MU3 - PAd Nitic Lixisols Argissolo Amarelo Eutrófico típico (P8) 1 26.1 10.1

MU4 - PVe Nitic Lixisols Argissolo Vermelho Eutrófico nitossólico 
(P3 and P9) 2 35.0 15.2

MU5 - PVd Nitic Acrisols Argissolo Vermelho Distrófico nitossólico (P10) 1 51.3 7.8
MU: Map units; IUSS-WRB: World Reference Base updated in 2015 (IUSS Working Group WRB, 2015); SiBCS: Brazilian Soil Classification System 
(Santos et al., 2018); n: number of complete soil profile data; Elev: elevation (m); Slope (%).
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The soils with expressive sandy layer were grouped in MU2, with all profiles classified 
as Planossolo Háplico (P1, P4, and P6). Theses soils are associated with the lower third 
of the landscape. The MU1, however, despite also having soil classified as Planossolos 
Háplicos, they are closest to the order of Gleissolos and/or Cambissolo Háplico, where the 
hidromorphism is prominently defining the soil properties. These soils (P1, P4, and P6) are 
in the lower part of the landscape. The MU3 (P8) represents the soil pattern between the 
middle third and lower third of the landscape. The soil is well-drained, with a yellowish color 
and clayey subsurface horizon (Argissolo Amarelo). The color is strongly related to the soil 
moisture and geology; in this case, there is a predominance of goethite as mineral. The soils 
of MU4 (P3 and P9), despite belonging to the same taxonomic class (Argissolo Vermelho) 
as the soil of MU5 (P10 - top of the landscape), differ in depth, presence of gravel, bases 
saturation. Both on MU4 and MU3, the presence of hematite is remarkable, resulting in 
redder colors to the soil which are directly related to the better drainage condition.

Selecting covariates to simplify soil mapping

Irrespective of the method used to generate soil maps (DSM or CSM), one of the great 
challenges of soil mapping is not only how to select good environmental covariates 
among many available, but also how to make the soil mapping a simple way creating a 
parsimonious model, especially for learners.

Analyzing the PCA, we see that component 1 (dimension 1) explains 34.8 % of the data 
variation, and two explains 27 %, together 61.8 % of the data (Figure 5). Component 1 
is strongly related to the bands of the sensor 1, 2, 3, and 5 and some derivate indices, 
NDVI and SAVI (on the horizontal). Component 2 (dimension 2) features terrain attributes. 
Basically DEM, rsp, chnd twi, and cat_area.

Although these components explain most of the area’s environmental variation, some 
of them are redundant since they are highly correlated (with a correlation greater than 
90 % EX: SAVI and NDVI). To simplify the model that will be used in the stratification of 
the area it was used only environmental variables with low correlation (less than 0.9; 
Figure 6). Since DEM has high correlation with chnd (greater than 0.9) (Figure 6), it was 

Figure 4. The dissimilarity of soil profiles based on the soil key properties and landscape relationship.
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Figure 6. Correlation analysis of the environmental covariates with a higher score on the PCA analysis.
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decided to maintain DEM because its use in DSM is more common. As cat_area has high 
correlation with twi, it was chosen to maintain the twi that has more common use in the 
DSM literature.

Since bands 1, 3, and 5 have a high relation between themselves and/or NDVI and SAVI 
(greater than 0.9) (Figure 6), it was decided to use only SAVI, which already uses bands 
3 and 5 of the RapidEye sensor, and has a correction of the soil compared to NDVI, 
an advantage over NDVI use. Band 2, despite having a high correlation with SAVI, it was 
less than 0.9. In summary: the covariates of the relief selected were: DEM, rsp, and twi. 
From the satellite image (organism soil factor) band 2 and SAVI.

Soil maps and their performances

The maps generated by apprentices (conventional maps) and digital (RF and MLR) are 
shown in figure 7. In general, there is a clear difference in the patterns of the maps when 
comparing the conventional soil maps (Figures 7a and 7d) with the digital ones (Figures 7e 
and 7f). In the first case (conventional soil maps), the mapping units’ distribution has a 
pattern more similar to the contour lines of the study area. 

This pattern can be explained by the strong relationship between soil distribution and 
toposequence, which the apprentices observed during the fieldwork. Another experience 
that probably influenced the apprentices’ soil map patterns was the development of 
the stratification of the area through PCA analyses. This is commonly referred to among 
pedologists by the term “catching the pattern”. That is, when the pedologist, in the 
learning process, connects theoretical knowledge with the distribution of soils in the 
landscape and manages to build a mental model of distribution and prediction of soil 
types in the landscape (interpretation of soils in the landscape). This cognitive process 
is subjective and quite different among pedologists since cognition includes functions, 
such as learning, attention, memory, language, reasoning, decision making, etc., which 
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are part of our intellectual development and experiences. Thus, observing the maps 
of the apprentices, it is noted that the MUs are more strongly inferred in the form of 
“zones” of soil types. These zones, due to the diversity in the cognitive process between 
the apprentices, present different territorial expressions and formats (limits), especially 
for MU2 and MU3 from apprentice B comparing to the others and MU4 and MU5 from 
apprentice D comparing to the others (Figures 7 and 8).

On the other hand, DSM algorithms (RF and MLR) predict soil types through scanning 
pixel by pixel. This process ends up making the map look “salt and pepper”, that is, 
the classification by pixel treats each individualized pixel of its neighbors and will have 
a prediction probably different from the surroundings. This effect is more explicit, the 
greater the spatial resolution of the map (greater detail). Commonly, this “salt and pepper” 
happens also in land use mapping, and the effect is mitigated through the application 
of majority filters, which are usually implemented in GIS tools.

Figure 8a presents the surface area of each map unity for CSM and DSM and the number 
of validation samples per MU for SRS (Figure 8b) and SSRS design (Figure 8c).

As expected, there are significant differences in the areas of each MU for the different 
maps. However, the smaller territorial expression of MU3 and 5 is common in different 
maps (except MU3 for MLR). In both cases, only one modal profile was used to develop 
the prediction model. It is also noteworthy that the area of MU1 is much smaller on 
the map generated by the MLR algorithm than on the other maps (around half of that 
shown on the other maps). These differences in territorial expression are reflected in the 
results of the validation, especially when evaluating different sample designs (Figures 8b 
and 8c). In some cases, as an area is so small, no field validation point was selected 
(reference data) to evaluate the results, for example, MU5 in apprentice B for SRS and 
SSRS (Figures 8b and 8c) and MLR for SRS (Figure 8b).

The main difference between the two sets of samples is that the SSRS set tended to 
allocate a similar number of samples between MU1 and MU2 for the CSMs and allocate 
one sample in MU5 for the MLR map that was left with no sample in the SRS. As expected, 
the areas with the lowest number of samples were the smaller areas MU3 and MU5 in 
both the SRS and SSRS.

In addition to the differences in the visualization pattern of the maps, the accuracy of 
the referred maps are presented through the conventional metrics (Kappa and overall 
accuracy) and the weighted producer accuracy index (WPAI) and weighted user accuracy 
index (WUAI) (Figures 9a, 9b, 9c, and 9d). Also, to facilitate the analysis, in figures 9a, 9c, 
and 9d are shown the RE. Figures 9a and 9c refer to the quality measures of the maps 
(WPAI, WUAI, overall accuracy, and Kappa index) and the RE, using validation based on 
SRS design, while figures 9b and 9d refers to the same indexes using validation based 
on SSRS design. 

Comparing the measurements of agreement indices, it is possible to notice the great 
difference that the same map presents depending on the sample design adopted for 
validation. If the accuracy of the maps is evaluated based on SRS, considering the Kappa 
index classification, the quality of the maps has the following order: CSM-D > DSMRF > CSM-C 
> CSM-A > CSM-B > DSM-MLR (Figure 9a) while RE follows the sequence A > D = C > B. 
In this case, the conventional map generated by the apprentice D (RE = 0.5) and the digital 
algorithm RF are equivalent, and a substantial agreement between what was predicted 
and what was observed in the field is observed (Kappa index between 0.61 and 0.8). The 
maps generated by apprentices A (RE = 0.7) and C (RE = 0.5) are classified as of moderate 
agreement (Kappa index between 0.41-0.6), while the maps generated by apprentices 
B (RE = 0.3) and the MLR technique are of fair agreement (Kappa index 0.21-0.40). 
Analyzing the results based on SRS design, it is possible to affirm that the map generated 
by apprentice B (lowest RE) present the lowest values of both the OA and the Kappa index 
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of the CSM (Figure 9a), which was not repeated in the SSRS sampling (Figure 9b). Using the 
same sample design (SRS), the map generated by apprentice D (with RE = 0.5) was the 
best, and the map generated by apprentice A (RE = 0.7) did not significantly surpass the 
quality of the map generated by apprentice C (RE = 0.5). In this case, the master degree 
in soil science (apprentice A) did not result in a better soil quality map.

On the other hand, the interpretation changes if the same maps’ quality is analyzed 
based on a SSRS design (Figure 9b). In this case, the conventional maps generated by 
the apprentices A, B, C, and D show, irrespective of the difference of experience (RE), 
a strong agreement (Kappa index ≥0.70). These CSMs are substantially better than 
the maps generated by the RF and MLR techniques (moderate Kappa index). Although 
the digital map generated through the MLR algorithm presents the worst and second 
worst performance in SRS and SSRS, respectively, indicating a worse performance 
compared to the others, the same cannot be said about the maps generated through 
the RF algorithm and the conventional by apprentices A, B, and D. The maps generated 
by apprentices A and B showed significant improvement when comparing the OA and 
Kappa indexes through validation using SSRS sampling. For example, the OA and 
the kappa index of the apprentice A increased from 0.63 and 0.51 to 0.80 and 0.62 
(best accuracy), respectively. Similarly, the map generated by apprentice B increased 
from 0.57 and 0.40 (penultimate in the validation with SRS design) to 0.73 and 0.61 
(second-best accuracy in the SSRS design), respectively. 

In the opposite direction, the maps generated by apprentice D and the RF algorithm 
showed a decrease in accuracy, especially the RF that reduced OA and the Kappa index 
from 0.70 and 0.61 (second-best accuracy in SRS design) to 0.57 and 0.42 (worst accuracy 
with SSRS design), respectively. These results demonstrate that the evaluation of the 
quality of a map can vary considerably depending on the sample design used during the 

Figure 8. Map unity area of each soil map and number of validation samples per MU. A: apprentice A; B: apprentice B; C: apprentice 
C; D: apprentice D; E: Random Forest; F: Multiple Logistic Regression.
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validation and that other aspects must be observed, such as the types of errors observed 
and the consequences of these errors in the final use of the map.

The producer accuracy (WPAI) is systematically higher than the user accuracy (WUAI) 
in conventional soil maps (greater accuracy of omission than commission), based 
on SRS design. On the other hand, digital soil maps presented the inverse relation 
(WUAI>WPAI), especially using the SSRS design (Figure 9d). Except the map generated 
by RF algorithm and the apprentice D (RE = 0.5), all maps presented better quality 
(higher WUAI and WPAI values) when the SSRS design for validation was adopted. 
Besides, proportionally, the sample design change from SRS to SSRS resulted in a 
greater relative improvement of user accuracy (WUAI) of conventional soil maps. On the 
other hand, the MLR algorithm’s map presented a higher relative improvement of both 
producer's and user’s accuracy (WPAI and WUAI).

Figure 9. Quality indexes measures of the maps. A: apprentice A; B: apprentice B; C: apprentice 
C; D: apprentice D; E: Random Forest; F: Multiple Logistic Regression; WPAI: weighted producer 
accuracy index; WUAI: weighted user accuracy index; RE: Rank of experience. The producer and 
user accuracy values for each map (conventional and digital) in figures 9c and 9d were calculated 
using the weighted average of these indices, based on each mapping unit’s area in relation to 
the total area of the maps. The values PA and UA were scaled in the same range from 0 to 1 for 
comparative visualization.
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By evaluating the confusion matrix in detail, it is possible to observe that the MU with 
less producer accuracy for the SRS validation dataset was MU2, where apprentices A, B, 
and C classified some profiles of this class as being MU1. Apprentice D classified most 
of the profiles of MU3 as being MU1 (Table 5). For DSM techniques, the lowest producer 
accuracy was for MU5, which was confused with MU2 in the RF as seen in the upper right 
corner of the map (Figure 7e) and MU1, which had some profiles classified as MU3 in the 
MLR (Table 5). Still, for the same validation dataset (SRS), the biggest commission errors, 
that is, lower user accuracy values were observed in MU1 for apprentices A, B, and D, 
which mainly MU2 profiles were classified as being MU1 (Table 5). As for apprentice C, 
the worst performance was for MU5, as some profiles of MU4 were classified as being 
MU5 and for the two DSM methods, the lowest accuracy of the user was seen in MU3 
because several points of MU1 were classified in this MU (Table 5).

Table 5. Confusion matrix of soil mapping units using SRS validation dataset

A
Reference data (Field)

MU1 MU2 MU3 MU4 MU5 Total User

M
ap

MU1 3 6 0 1 0 10 30
MU2 0 4 1 0 0 5 80
MU3 0 0 1 1 0 2 50
MU4 0 0 0 10 0 10 100
MU5 0 0 0 2 1 3 33.3
Total 3 10 2 14 1 30 ---

Producer 100 40 50 71.4 100 --- ---
Overall accuracy 63.33
Kappa 0.51

B
Reference data (Field)

MU1 MU2 MU3 MU4 MU5 Total User

M
ap

MU1 3 4 0 3 0 10 30
MU2 2 3 0 0 0 5 60
MU3 0 1 * 1 0 2 ---
MU4 0 0 0 10 0 10 100
MU5 0 0 0 2 1 3 3.33
Total 5 8 0 16 1 30 ---

Producer 60 37.5 --- 62.5 100 --- ---
Overall accuracy 56.66
Kappa 0.4

C
Reference data (Field)

MU1 MU2 MU3 MU4 MU5 Total User

M
ap

MU1 4 4 1 1 0 10 40
MU2 1 4 0 0 0 5 80
MU3 0 1 * 1 0 2 ---
MU4 0 0 0 10 0 10 100
MU5 0 0 0 2 1 3 33.3
Total 5 9 1 14 1 30 ---

Producer 80 44.4 --- 71.4 100 --- ---
Overall accuracy 63.33
Kappa 0.5

Continue
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When evaluating the SSRS sample dataset, the same standard was observed by the 
producer accuracy for apprentices A, B, and C in which the lowest producer accuracy 
was MU2, as some profiles of this class were classified mainly as being MU1 (Table 6). For 
apprentice D, the lowest producer accuracy was from MU5, which were predominantly 
classified as MU4. In this sample dataset, both the RF and the RLM showed a greater 
omission error in MU1 in which a good part of the profiles was classified as being from 
units 2 and 3 (Table 6).

When it comes to user accuracy for the same sample set, SSRS, there was a greater 
disagreement between apprentices and DSM algorithms. For apprentice A, the lowest 
accuracy was for MU1, which had part of the profiles of MU2 classified in this unit, while 

Continuation

D
Reference data (Field)

MU1 MU2 MU3 MU4 MU5 Total User

M
ap

MU1 3 4 3 0 0 10 30
MU2 0 5 0 0 0 5 100
MU3 0 0 2 0 0 2 100
MU4 0 0 0 9 1 10 90
MU5 0 0 0 0 3 3 100
Total 3 9 5 9 4 30 ---

Producer 100 55.6 40 100 75 --- ---
Overall accuracy 73.33
Kappa 0.66

E
Reference data (Field)

MU1 MU2 MU3 MU4 MU5 Total User

M
ap

MU1 5 0 0 0 0 5 100
MU2 2 5 1 0 2 10 50
MU3 3 0 1 0 0 4 25
MU4 0 0 0 9 0 9 100
MU5 0 0 0 1 1 2 50
Total 10 5 2 10 3 30 ---

Producer 50 100 50 90 33.3 --- ---
Overall accuracy 70
Kappa 0.61

F
Reference data (Field)

MU1 MU2 MU3 MU4 MU5 Total User

M
ap

MU1 1 0 0 0 0 1 100
MU2 2 3 1 0 0 6 60
MU3 7 2 1 0 0 10 10
MU4 0 0 0 10 3 13 76.9
MU5 0 0 0 0 * 0 ---
Total 10 2 2 10 3 30 ---

Producer 10 50 50 100 --- --- ---
Overall accuracy 50
Kappa 0.37

Producers: Producers accuracy (%); User: Users accuracy (%); Overall accuracy (%); A: apprentice A; 
B: apprentice B; C: apprentice C; D: apprentice D; E: Random Forest; F: Multiple Logistic Regression. * There 
is no reference class in the validation dataset.
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apprentice B the worst result was for MU2, since it classified mainly profiles of MU1 in MU2. 
Apprentice C classified MU2 and MU4 profiles in MU3, which led to the worst performance 
of this class for this apprentice in terms of commission errors. Apprentice D, although 
like A, presented less user accuracy for MU1, different from it, classified mainly profiles 
of MU4 in MU1 (Table 6). In that case, the DSM methods differed among themselves. 
The RF showed less accuracy of MU5, since most of the profiles of MU4 were classified 
in this class. The RLM, on the other hand, classified MU1 profiles in MU3, which raised 
the commission error of this class. In general, most apprentices were confused by errors 
of commission and omission in MU1 and MU2, as these occupy a similar position in the 
landscape and the limits of each unit are difficult to define precisely.

Apprentices challenges

Based on the answer to the questionnaire, among the six items raised in the first question, 
the more challenging theme was: “Theoretical class involving statistical modeling, 

Table 6. Confusion matrix of soil mapping units SSRS validation dataset

A
Reference data (Field)

MU1 MU2 MU3 MU4 MU5 Total User

M
ap

MU1 5 4 0 0 0 9 55.6
MU2 2 3 0 0 0 5 60
MU3 0 0 3 0 0 3 100
MU4 0 0 0 12 0 12 100
MU5 0 0 0 0 1 1 100
Total 7 7 3 12 1 30 ---

Producer 71.74 42.9 100 100 100 --- ---
Overall accuracy 80
Kappa 0.72

B
Reference data (Field)

MU1 MU2 MU3 MU4 MU5 Total User

M
ap

MU1 6 1 0 2 0 9 66.7
MU2 2 3 0 0 0 5 60
MU3 0 1 * 2 0 3 ---
MU4 0 0 0 12 0 12 100
MU5 0 0 0 0 1 1 100
Total 8 4 0 16 1 30 ---

Producer 75 60 --- 75 100 --- ---
Overall accuracy 73.33
Kappa 0.61

C
Reference data (Field)

MU1 MU2 MU3 MU4 MU5 Total User

M
ap

MU1 5 3 0 1 0 9 55.6
MU2 2 3 0 0 0 5 60
MU3 0 1 1 1 0 3 33.3
MU4 0 0 0 12 0 12 100
MU5 0 0 0 0 1 1 100
Total 7 7 1 14 1 30 ---

Producer 71.4 42.9 100 85.7 100 --- ---
Overall accuracy 73.33
Kappa 0.62

Continue
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sampling, prediction, and accuracy assessment”. This item is among the top 3 challenging 
(number 1, 2, and 3 of rank) for all apprentices. Followed by the item “Practical class 
involving data organization, mental, and mathematical model calibration and prediction 
validation”, which is also in the top three for most of them, only in one case where it 
was in fourth place (number rank 4) (Figure 10). The item “Theoretical class involving 
digital soil mapping, GIS and environmental covariates processing” was also assessed 
as challenging for most apprentices (on the top 3 for three of them A, C, and D), just for 
one of the apprentices (apprentice B), who already had a little experience in the topic 
placed the item as the least challenging (Figure 10).

Apprentices who are Agriculture and Livestock technician (apprentices A with RE = 0.7 
and D with RE = 0.5) or have previous experience with soil science, classified the item 
“Theoretical classes of introduction to pedology, soil-landscape relationship, soil survey 

Continuation

D
Reference data (Field)

MU1 MU2 MU3 MU4 MU5 Total User

M
ap

MU1 5 1 3 0 0 9 55.6
MU2 1 4 0 0 0 5 80
MU3 0 0 3 0 0 3 100
MU4 0 1 1 8 2 12 66.7
MU5 0 0 0 0 1 1 100
Total 6 6 7 8 3 30 ---

Producer 83.3 66.7 72.9 100 33.3 --- ---
Overall accuracy 70
Kappa 0.61

E
Reference data (Field)

MU1 MU2 MU3 MU4 MU5 Total User

M
ap

MU1 2 1 0 0 0 3 66.7
MU2 5 4 2 0 0 11 36.4
MU3 2 0 * 0 0 2 ---
MU4 0 0 1 10 0 11 90.9
MU5 0 0 0 2 1 3 33.3
Total 9 5 3 12 1 30 ---

Producer 22.2 80 --- 83.3 100 --- ---
Overall accuracy 56.67
Kappa 0.42

F
Reference data (Field)

MU1 MU2 MU3 MU4 MU5 Total User

M
ap

MU1 2 1 0 0 0 3 66.7
MU2 3 3 0 0 0 6 50
MU3 4 1 2 0 0 7 28.6
MU4 0 0 1 12 0 13 92.3
MU5 0 0 0 0 1 1 100
Total 9 5 3 12 1 30 ---

Producer 22.2 60 66.7 100 100 --- ---
Overall accuracy 66.66
Kappa 0.55

Producers: Producers accuracy (%); User: Users accuracy (%); Overall accuracy (%); A: apprentice A; B: apprentice 
B; C: apprentice C; D: apprentice D; E: Random, Forest; F: Multiple Logistic Regression. * There is no reference 
class in the validation dataset.
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and classification” and “Practical classes to identify soil in the field (description and 
classification) and soil-landscape relationship in practice” as being the least challenging 
and/or the easiest to understand, whereas apprentices (B with RE = 0.3 and C with 
RE = 0.5), who do not have this previous experience classified the practical classes as 
one of the most challenging. Despite the little experience in soil science of apprentice 
B, RE = 0.3, this is the apprentice who had the most exposure to related computer 
programs from GIS processing that reflected his rank (Figure 10). 

DISCUSSION 

Pedology and soil mapping

Irrespective of the technique applied to generate soil maps (conventional or digital), MU’s 
definition is a common process. For example, if only soil classes of a given taxonomic 
system are used for differentiation, some authors argue that the class is a theoretical 
concept and therefore cannot be mapped. Also, with an emphasis on profile characteristics, 
many soil scientists tend to have a tunnel vision, looking only inside the soil pits without 
integrating them in the landscape (Lepsch, 2013). On the other hand, if aspects of the 
landscape are considered (perhaps too much), some authors argue that the mapping is 
of landscape and not soils. So, one of the very important steps in the development of soil 
survey is a definition and characterization of the MU, which among other things, depend 
on the objective and the level of detail of the soil survey. The number of trenches and 
the training sampling design seems that it did not limit too much the performance of the 
CSM, but could interfere in the ability of the DSM algorithm to capture and differentiate 
the soil pattern along the study site. The number of soil observation during the soil survey 
is always a matter of discussion, which involves financial and logistic availability, but, 
for the purpose of this study, the trenches and the sampling design met the proposed 
goal of contextualizing the application of CSM and DSM techniques.

There is a strong relationship between soil types (its attributes such as color, horizon 
types, depth, and presence of gravel and pebbles) and the elevation along the study 

Figure 10. Degree of challenge in ascending order (1 for the highest challenge and 6 for 
lowest). a-Theoretical classes of introduction to pedology, soil-landscape relationship, soil 
survey and classification, b-Practical classes to identify soil in the field (description and 
classification) and soil-landscape relationship in practice, c- Field tests and laboratory analysis, 
d- Theoretical classes involving digital soil mapping, GIS and environmental covariates 
processing, e- Theoretical classes involving statistical modeling, sampling, prediction, and 
accuracy assessment, f- Practical classes involving data organization, mental and mathematical 
model calibration and prediction validation.
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site. During the fieldwork, the apprentices were able to experience this variation of soil 
types throughout the toposequence, which was fundamental for each one to be able to 
develop a mental model of soil MU. This task is difficult since the model will transpose 
a specific knowledge (attributes of the landscape and soil type) to a spatial prediction 
of an entity called a MU, which can be simple (a taxonomic unit - Taxon) or compound 
(more than one taxonomic unit - Taxa).

In this sense, the dissimilarity analysis was useful to separate different groups of soil 
profiles (MU), based on key soil properties and landscape characteristics as proposed 
by Lepsch (2013) numerically and less subjectively as was done by (Pinheiro et al., 
2016, 2018). This approach is interesting and can help surpass an important gap in 
soil mapping, defining the mapping unit from a study site for detailed soil mapping. 
In addition, the pedometrics tools are very useful in the teaching and learning process in 
the formation of theoretical and practical knowledge of new pedologists, demonstrating 
relevance and synergy of traditional pedology and pedometrics tools in the soil mapping 
learning-teaching process (Ma et al., 2019).

Another important aspect of mapping is the selection of environmental covariates out 
of the huge amount available since the advance of technology and computer process 
capacity have boosted the production of data. In addition to simplifying the mental or 
mathematical model and creating the strata for SSRS design, the idea is to select those 
that are directly related to soil formation factors and pedological explanation. There are 
several selection methods in the DSM (Costa et al., 2020), but few techniques common 
to both, digital and conventional. Thus, the PCA technique combined to the correlation 
analysis was used, which can be common to two methods and strata creation, since it 
assumes a close relationship between soil types and the landscape. In summary, the 
covariates that most explain the distribution of soil in the landscape were selected 
without a pre-defined model as in DSM, that is, not an automatic process of a specific 
model (algorithm).

Different from studies that use the components instead of the covariate, if we use the 
covariates, we want to preserve the pedological explanation (ten Caten et al., 2011) and 
the possibility of the apprentices using it in the CSM. Both, PCA (ten Caten et al., 2011; 
Levi and Rasmussen, 2014) and correlation analysis (Jeune et al., 2018) are techniques 
commonly used in DSM to select covariates seeking to optimize models and improve 
prediction performance, and it can also be used to simplify the mental models used by 
pedologists in CSM. The analysis clearly shows that PCA can perform covariates selection 
and select a number of important environmental variables from all the feature components. 
For Levi and Rasmussen (2014) data reduction using a PCA combined with a cLHS design 
produced a sampling design that effectively captured the variability of soil types as a 
function of the relative area of the published soil map. Bringing this to validation data 
of this study, the PCA was equally useful to define the environmental strata used in the 
SSRS sampling and to optimize mental and digital soil model.

Along with analyzing the CSM and DSM results and the influence of the sampling method 
on these results, some important aspects should be highlighted. In a general assessment, 
when using the SRS data set, the DSM using the RF technique was as good as the CSM, 
and as observed by Jeune et al. (2018), the RF algorithm performed better than MLR. 
On the other hand, when the SSRS data set is used, the CSM remains relatively more 
accurate than the DSM, and among the algorithms, the MLR showed superior performance 
corroborating with Zeraatpisheh et al. (2017). This indicates that the sampling strategy 
for validation can result in different selected DSM models and different results between 
CSM and DSM. The different algorithms developed can present different performances 
between study areas and between mapping units within the same study area. That is, 
only by testing and comparing the best technique or combination of techniques, the 
best accuracy will be found.
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Concerning the apprentices’ performance, it is natural to believe that previous knowledge, 
especially when it comes to the basic concepts of pedology and the soil-landscape 
relationship, may be favorable. However, the results of this study are not so clear to 
sustain these beliefs. It was observed that the results of more experienced apprentices 
were similar to those with little experience in soil science, and again, the evaluation 
depends on the sample design used to validate de maps. Analyzing the results based on 
SRS design, it is possible to affirm that the map generated by apprentice B (lowest RE) 
present the lowest values of both the Overall Accuracy and the Kappa Index. In this case, 
the previous knowledge and experience, especially when it comes to the basic concepts 
of pedology and the soil-landscape relationship, may produce a better soil map. But 
at the same sample design (SRS), the map generated by apprentice D (with RE = 0.5) 
was the best, and the map generated by apprentice A (RE = 0.7) did not significantly 
surpass the quality of the map generated by apprentice C (RE = 0.5). In this case, the 
master degree in soil science (apprentice A) did not result in a better soil map. However, 
considering the SSRS design, this difference practically disappears. There is only a higher 
difference between apprentice A and the others in relation to the overall accuracy. The 
Kappa index is almost the same for all the apprentices.

Comparing the indexes WUAI and WPAI between the CSM, the map generated by the 
apprentice B presented the lowest WUAI both in SRS and SSRS sample design. It means 
that, in general, considering the SRS sample design, only 55 % of the surface area 
depicted on the map generated by apprentice B is that soil in reality. Considering the 
SSRS design, this value increased to 70 %. In terms of PA, the apprentice B presented 
equivalent results to the others.

In the specific case of DSM techniques, the greatest confusion was observed in MU with 
a small coverage area and/or with a small amount of modal profile in the unit. The small 
number of modal profiles in a MU can hamper the development of a prediction model 
because during the training step, the algorithm does not have many samples to establish 
relationships between the types of soils in that MU with the variations of the covariates 
along the landscape. A possible explanation for the better performance of conventional 
maps in predicting MUs with less data available may be because pedologists have several 
mental mechanisms to outline MUs that the machine algorithms do not have. For example, 
an experienced pedologist can (based on past work in regions with a similar pattern) use 
this knowledge to solve a local information limitation. According to Zare et al. (2018), 
the experienced surveyor can use few morphological field observations to classify soil 
profiles into predefined classification systems and extrapolates the soil types to make 
a map based on aerial photographs.

Furthermore, units with a smaller area occupy a position in the landscape that is 
difficult to discern, both by the mathematical model and by the apprentice, even 
using landscape characteristics that most separate these classes, which are elevation, 
slope and position in the landscape that influences the drainage condition, which are 
the covariates of the terrain selected by the PCA (DEM, rsp, and twi). Despite being 
selected in the PCA (band2 and SAVI), the covariates that represent the organism 
factor have a little contribution in the models since the variation in vegetation cover 
is small (predominating pasture). 

Another important aspect is the level of detail of the soil survey. The map generated in 
the training site can be classified as detailed or ultra-detailed level. In this case, some 
soil properties used to differentiate soil mapping unities have no direct relationship 
with the landscape. As an example, compare the classification of soil belonged to 
MU4 and MU5. In the first case (MU4), the modal profile was classified as Nitic Lixisol 
(Argissolo Vermelho Eutrófico nitossólico - PVe), while in the second case (MU5), the 
modal profile was classified as Nitic Acrisols (Argissolo Vermelho Distrófico nitossólico - 
PVd). The MU4 and MU5, in addition to differences in some morphological and physical 
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properties, differ between themselves in base saturation level of the soils, the presence 
of pebble and cobble, and the soil depths where these fragments occur. Analyzing 
the covariates used for DSM algorithm (DEM, RSP, TWI, Band 2, and SAVI), there is 
no clear relation of them with base saturation and pebbles and cobble presence. 
These aspects are an important reflection, as detailed and ultra-detailed soil maps are 
recommended to utilitarian decisions (like irrigation, drainage, and soil management). 
Maybe the DSM techniques should be more efficient in predicting soil properties (such 
as texture, water retention capacity, and nutrient content). Besides, considering soil 
maps with lower detailment level (1:25.000-1:250.000, for example), DSM could have 
similar or better results than those obtained by the conventional technique while 
providing additional information about each soil’s landscape. In addition, DSM has 
the advantages of producing available information useful for applications in future 
surveys of similar areas (Bazaglia Filho et al., 2013) with associated uncertainty 
(Poggio and Gimona, 2017), automate and make mapping processes reproducible 
and easy to update with the entry of new soil data set or covariates. Finally, the DSM 
products can be used as input for further modeling in a number of areas related to 
agriculture and environmental science (Poggio and Gimona, 2017). The combination 
of DSM techniques and pedometrics tools and knowledge of bases of pedology can 
promote greater interactions between DSM and pedology and can help in forming 
new hypotheses and gaining new insights about soil and soil processes and mapping 
(Pinheiro et al., 2016, 2018; Maechler et al., 2019)

Pedagogic project and teaching-learning process

Based on the questionnaire’s answer, among the six items raised in the first question the 
more challenging theme was: “Theoretical class involving statistical modeling, sampling, 
prediction, and accuracy assessment”. This item is among the top three challenging for 
all apprentices. Followed by the item “Practical class involving data organization, mental 
and mathematical model calibration, prediction, and validation”, which is also in the top 
three for most of them, only in one case where it was in fourth place.

The item “Theoretical class involving digital soil mapping, GIS, and environmental 
covariates processing” was also assessed as challenging for most apprentices (on the 
top 3 for three of them), just for the apprentice B, who already had experience in the 
topic, placed the item as the least challenging. 

Apprentices A and D who have previous experience with soil science, classified the item 
“Theoretical classes of introduction to pedology, soil-landscape relationship, soil survey 
and classification” and “Practical classes to identify soil in the field (description and 
classification) and soil-landscape relationship in practice"  as being the lowest challenging 
and/or the easiest to understand, whereas apprentices (B and C), which do not have 
this previous experience classified the practical classes as one of the most challenging.

In summary, for apprentices who had no experience with a theoretical and practical 
part involving the topics of digital soil mapping, GIS, modeling, statistics, mental and 
mathematical model calibration, and validation of predictions, these were the most 
difficult topics. For apprentices who had no experience with soil science other than the 
topics mentioned, practical classes in soil-landscape relations and description of soil 
profiles in the field were the most challenging and should pay particular attention.

When asked about the course time and time distribution between theoretical and 
practical classes, all participants found the course duration appropriate; but the ratio 
between theoretical and practical classes for each theme must be balanced according 
to the learners’ needs. As in this course there was a lot of practical classes to describe 
the field and study the relationship between the soil and the landscape (one of the 
group’s needs for use later on in the project), perhaps it would be interesting to have 
more theoretical and practical time (use of software) focused on statistical modeling and 
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digital tools. About having prior knowledge of the subjects covered, apprentices do not 
think that the lack of prior experience has been a limiting factor. However, it facilitates 
the teaching and learning process. In addition, it is very difficult to carry out a course 
in which all participants are aligned. For this, the course must start from a more basic 
theory to level the class and balance the activities according to the deficiency presented 
by each apprentice, then to reduce the effects of the lack of prior knowledge and speed 
up the learning process.

About the course be multidisciplinary, none of the participants found this a limiting 
factor, one factor that may have helped is that they all have a degree in Agronomy, 
a course that is already multidisciplinary and has disciplines in almost all departments 
of the university, so integrating information from different areas is not new to them. 
They also report that multidisciplinary is extremely important, since today’s professional 
must have basic notions of different areas to solve problems in the modern world. 
Besides the fact that being multidisciplinary makes the course more interesting, the 
learning process is less tiring. For them, it is challenging to integrate information but 
extremely necessary.

When asked about automating processes using pedometric tools, which were previously 
done manually and subjectively in the past, they are motivated and see this as a real 
need, especially with regard to the optimization of financial and human resources; they 
report that the use of technologies available brings several benefits and facilities to 
the mapping process, reducing subjectivity facilitates soil mapping and makes it more 
dynamic and fluid. And this can be decisive for the maintenance of survey projects 
across the country, especially within the scope of PronaSolos. And this can be decisive 
for the maintenance of survey projects across the country, especially within the scope 
of PronaSolos (Dalmolin et al., 2020). We believe that the approach showed in this paper 
can be implemented with the PronaSolos program using the infrastructure that already 
exists in Brazilian Universities and the Residency Program in Agronomy, which is already 
implemented at UFRRJ.

About learning a subject while being involved in a research project on the theme, the 
apprentices believe that whenever it is possible to align a learning with its practical 
application in a project, the course utilization becomes greater, which is different 
from just reading and hearing about the theme, the opportunity to execute the newly 
acquired knowledge facilitates its fixation. This result corroborates that found by 
Hupy et al. (2005), who describe that students learn and understand relationships among 
physical landscape variables better by mapping them than they would in a classroom-
based experience. Training using the project pedagogy approach can promote greater 
interactions between DSM and pedology (CSM) and demonstrate the importance of 
linking traditional pedology and pedometrics (Ma et al., 2019). Also, the use of DSM 
tools in GIS environment adds abstract analyses and quantitative assessment, which 
is a complementary learning style to fieldwork that mostly focuses on practical skills 
(Marra et al., 2017). In terms of previous experience, the project pedagogy approach 
can be a highly useful pedagogical tool and can be employed even among groups where 
the ability/skill levels are highly variable, as seen by our results and corroborated by 
Hupy et al. (2005).

The existence of the project increases the involvement with the activity learned and 
facilitates learning and makes a big difference in relation to the needs to qualify. As the 
theoretical and practical classes were totally focused on what they were going to do on 
the project, so they describe that although it is not possible to see everything during 
the course, for example, unforeseen problems that compromise the planning, the basis 
that they have today will help the team on to know how to identify problems and find 
solutions. Being involved in a project, the apprentices can learn in practice; in this case, 
the task does the teaching, not the professor.
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As for evaluating the course and what can be improved, everyone found the course 
good and suitable for the training of new pedologists, especially those who will work 
at PronaSolos. The main suggestions are: (a) increase the participation of other 
professionals, to add with regard to the multidisciplinarity of the basic knowledge of 
the professional of Quantitative Pedology (Pedometrics); (b) the practical classes of soil 
description could approach more soil types so that a greater range of characteristics 
could be seen in the field, as this knowledge is of great help in the day-to-day soil 
survey; (c) increase the workload and deepen the practical part of modeling and 
DSM techniques, especially to meet those with little or no previous experience of 
the subject. 

CONCLUSIONS
The project pedagogy approach is promising to train new pedologists since, by mixing 
theoretical activities and contextualized practices (a project in progress), it not only 
awakens great motivation and critical capacity, but also develops the ability for apprentices 
to find solutions in a area in constant evolution.

The quality of the maps (both CSM and DSM) changed significantly according to the 
validation sample design applied. The CSM present better quality than DSM, mainly when 
using SSRS validation design. Random Forest algorithm showed equivalent accuracy 
to CSM using SRS sample design. Irrespective to sample validation design, the MLR 
algorithm presented the lowest accuracy.

The CSMs presented higher producer's accuracy (WPAI), while the DSM presented higher 
user's accuracy (WUAI)

The quality of CSM generated by the apprentices was not clearly related to the previous 
experience and knowledge in soil science.
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