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ABSTRACT: Rainfall erosivity (R factor) is one of the six factors of the Universal Soil 
Loss Equation, being calculated based on the product of rainfall kinetic energy multiplied 
by its 30-minute maximum intensity. However, the lack of detailed and reliable rainfall 
data in many parts of the world has driven the use of other methods to estimate rainfall 
erosivity based on daily, monthly or annual data. These methods still need to be assessed 
to determine if their estimates are consistent with the standard method for calculating 
rainfall erosivity. This study aimed to select a consistent method for such replacement in 
Brazilian conditions without access the rainfall intensity data. The tested methods included: 
modified Fournier, MF; modified Fournier by Zhang, MF-Z; modified Fournier by Men, MF-M; 
Rainfall Disaggregation, RD; TRMM Satellite with modified Fournier coefficient, TRMM-F; 
and TRMM Satellite with monthly rainfall, TRMM-M. The rainfall data were obtained from 
the USP Meteorological Station, referring to the period from 2009 to 2015. The analyses 
were performed according to the Additive Main effects and Multiplicative Interaction (AMMI) 
model and Scott-Knott statistical tests. Considering the 1:1 line, all methods had a good 
adjustment, presenting similar behavior in relation to the standard method. The methods 
behaved differently for monthly and annual periods. The MF method proved to be capable 
of consistently replacing the standard method in all aforementioned situations. Considering 
the driest period, any method can be used. For annual rainfall erosivity estimation, the 
RD, MF, TRMM-F and TRMM-M methods can be applied; highlighting that the TRMM-based 
methods are optimal for locations without on-site rain gauges. Additionally, it was computed 
that the modified Fournier by Men and the modified Fournier by Zhang underestimated 
and overestimated the rainfall erosivity, respectively.
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INTRODUCTION
Erosive potential of rainfall, defined as the rainfall erosivity index, can be calculated using 
datasets from automated weather stations or even pluviographs. The rainfall erosivity 
index –also represented as the R factor of EI30– is computed as the product of rainfall 
kinetic energy multiplied by its 30-minute maximum intensity (Wischmeier and Smith, 
1978). The R factor is one of the six factors in the Universal Soil Loss Equation (USLE) 
(Wischmeier and Smith, 1978) and its revised versions. 

In some areas of the globe there is insufficient rainfall data with high-resolution and 
also with a long data series for a reliable calculation (Trindade et al., 2016), since it is 
recommended to use historical precipitation series with more than 20 years (Renard and 
Freimund, 1994; Vantas et al., 2019), and some rainfall stations do not present homogeneity 
in their distribution (Moraes et al., 2015). Although long rain data series are ideal for 
recording extreme rainfall events, smaller historical series have been frequently applied 
throughout the world (Panagos et al., 2017). The lack of good resolution rainfall data 
–mainly rainfall intensity– is another challenge that has driven researchers to develop 
alternative methods to estimate the rainfall erosivity such as the Fournier index (Fournier, 
1960), Modified Fournier index (Arnoldus, 1980) or variations of these methods, e.g., 
adjustment of potential equations, use of erosivity per day in half a month, maximum 
daily rainfall, among others (Zhang et al., 2002; Men et al., 2008; Diodato and Bellocchi, 
2010; Diodato et al., 2013).

Other methodologies, such as rainfall disaggregation (Silveira, 2000) –considering annual 
or monthly totals for hourly or shorter periods–, or techniques based on orbital remote 
sensing to estimate rainfall depth (Duarte and Silva Filho, 2019; Li et al., 2020; Moreira 
et al., 2020), can be used at locations with low density of rain gauge data points. Rainfall 
erosivity mapping for Africa utilizing Tropical Rainfall Measurement Mission (TRMM), based 
on TMPA 3B43 satellite data (precipitation data) coupled with the modified Fournier 
index, proved to be a reliable methodology (Vrieling et al., 2010). Although regions use 
available databases and automated data collection systems –automatic rain gauges, 
and real-time data transfer– provide reliable hourly or daily rainfall records, even some 
with 5-, 10-, or 15-minute resolution (Angulo-Martínez and Beguería, 2009; Porto, 2016; 
Diodato et al., 2017; Todisco et al., 2019; Yue et al., 2020), this is not the case for less 
technologically advanced countries (Waltrick et al., 2015; Di Raimo et al., 2018).

In Brazil, a country of continental proportions and one of the world’s leading crop producers 
(USDA, 2020), the most reliable rainfall datasets are available on the websites of the 
National Water and Sanitation Agency (ANA, 2020), the National Institute of Meteorology 
(Inmet, 2020), and the Centre for Monitoring and Early Warnings of Natural Disasters 
(Cemaden, 2020). Despite these large databases, rain information is not available with 
high-resolution to calculate rainfall erosivity by Wischmeier and Smith (1978). Moreover, 
there is still a gap in utilizing the correct method for estimating rainfall erosivity based 
on the specific characteristics of the studied area (Trindade et al., 2016).

Studies conducted by Angulo-Martínez and Beguería (2009) compared different methods 
to estimate rainfall erosivity (R factor) and assessed each of them via RUSLE. They 
reported some methods that could be applied in other regions, provided the availability 
of high-resolution rainfall data (pluviographic data). Nearing et al. (2017) reported 
that calculations of rainfall erosivity resulted in underestimation of soil erosion using 
RUSLE compared to USLE and RUSLE2. In the southern region of China, six models to 
estimate rainfall erosivity were compared, including a model adjusted for Brazilian 
conditions (Zhu et al., 2021). The authors observed that a model adjusted for Brazilian 
conditions overestimated the rainfall erosivity in comparison to the other models. Thus, 
the importance of testing models already adjusted for particular climatic conditions 
is to assess their applicability in different regions. Vantas et al. (2019) presented the 
correlation between the R factor and annual precipitation for several countries using 
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parametric equations and geostatistical models. Regression models based on annual 
precipitation (coarser resolution) to estimate the R factor were compared with rainfall 
erosivity obtained by high-resolution data in Korea (Lee and Heo, 2011). Thus, these 
methodologies have proved to be useful for the estimation of rainfall erosivity in regions 
with insufficient rainfall data, as high-resolution rainfall data may not be accessible for 
locations at a certain time range.

Studies comparing methodologies for estimating rainfall erosivity are sparse. Among 
these studies, we can highlight the one conducted by Ma et al. (2014), which compared 
three models for estimating the R factor, including those proposed by Zhang et al. (2002) 
and Men et al. (2008). The different methods presented discrepancies over the months 
of the year. Thus, alternative methods should be evaluated for accuracy compared to 
the standard method.

Although there are great advancements in having readily useful rainfall erosivity data 
in Brazil (Oliveira et al., 2013), some regions still lack reliable instrumentation and 
data acquisition. For these regions, the focus is on identifying the best alternatives for 
estimating rainfall erosivity from monthly, daily, or hourly precipitation data. Currently, 
China is the country providing most researches on rainfall erosivity; therefore we opted 
to test the Modified Fournier equations of Zhang et al. (2002) and Men et al. (2008) 
to verify if they could be helpful in Southeastern Brazil conditions. 

This study aimed to statistically assess alternative methods for the estimation of the 
R factor, as proposed by Wischmeier and Smith (1978) (WS), via a comparison of 
estimations using: modified Fournier (MF); modified Fournier by Zhang (MF-Z); modified 
Fournier by Men (MF-M); rainfall disaggregation (RD); TRMM Satellite with modified 
Fournier coefficient (TRMM-F); and TRMM Satellite with monthly rainfall (TRMM-M). These 
computational tools for R factor estimation can benefit different stakeholders: engineers, 
extensionists, policy makers, and research groups across Brazil, South America and other 
developing tropical regions worldwide.

MATERIALS AND METHODS

Characterization of the study area

The selected study area was the municipality of Pirassununga, located in the state of 
São Paulo, between the coordinates of 21° 50’ and 22° 8’ south latitude and between 
47° 10’ and 47° 40’ WGr longitude. The climate of the municipality according to Köppen 
classification system is Cwb, i.e., humid subtropical climate with dry winters and rainy 
summers (Alvares et al., 2013).

Due to the difficulty in obtaining a long historical series, the rainfall data were obtained 
from the Meteorological Station of the University of São Paulo (USP) located at the 
Fernando Costa campus (Figure 1). This study was performed with a time series of 
seven years, referring to the period from 2009 to 2015. The automatic rain gauge was 
configured to record the frequency of rain every 10 min, with an accuracy of 0.1 mm, 
using the Davis climatic station, vantage pro2 model. The average rainfall in the study 
period was 1,564.4 mm.

Methods for determining rainfall erosivity

Wischmeier and Smith, WS

The methodology proposed by Wischmeier and Smith (1958), Wischmeier (1959) and 
Wischmeier and Smith (1978) is adopted as the standard method in this study according 
to studies conducted by Nearing et al. (2017). The method considers individualized 
events of rain, where the previous rain is separated from the subsequent one for at 
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least six hours for rains up to 1 mm. Rainfall events are considered erosive for rain with 
more than 10 mm, or rain duration more than 15 min and rainfall greater than 6 mm 
(Wischmeier and Smith, 1958). The kinetic energy of rainfall was calculated by equation 1:

Ec = 0.119 + 0.0873 × log I							           Eq. 1

in which: Ec is the kinetic energy (MJ ha-1 mm-1); and I is the rainfall intensity (mm h-1).

The rainfall erosivity index (EI30) is the product of the kinetic energy of the rainfall event 
by the maximum intensity in 30 min (Brown and Foster, 1987):

EI30 = Ec × I30									             Eq. 2
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campus, Pirassununga, Brazil.
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in which: EI30 is the erosivity index (MJ mm ha-1 h-1); Ec is the kinetic energy (MJ ha-1); 
and I30 is the maximum intensity in 30 min (mm h-1). For this determination, the 
RainfallErosivityFactor package (Cardoso et al., 2020) was run in the R environment 
(R Development Core Team, 2020) to compute the R factor.

Methods estimating rainfall erosivity

Modified Fournier Index, MF

To estimate the rainfall erosivity, we first computed the rainfall coefficient of the modified 
Fournier index (Arnoldus, 1980), using equation 3:

MF =
i = 1

12

∑ p2

P
									             Eq. 3

in which: MF is the rainfall coefficient (mm); p is the monthly average rainfall (mm); and 
P is the annual average rainfall (mm).

Subsequently, this rainfall coefficient was used to estimate the rainfall erosivity. The 
adjusted equation between rainfall erosivity index and rainfall coefficient for Pirassununga 
was calculated by equation 4 (Cardoso et al., 2017):

EI30 = 128.39 × MF0.7214								            Eq. 4

in which: EI30 is the rainfall erosivity index (MJ mm ha-1 h-1); and MF is the rainfall 
coefficient (mm).

Modified Fournier by Zhang, MF-Z

Rainfall erosivity index was obtained according to the methodology proposed by 
Zhang et al. (2002), with local calibrations of the parameters. The model uses daily 
rainfall amounts to estimate half-month rainfall erosivity. Thus, rainfall erosivity was 
estimated by equation 5:

Mi = α
j = 1

k

∑ (Dj)β									             Eq. 5

in which: Mi is the half-month rainfall erosivity (MJ mm ha-1 h-1); Dj is the erosive 
rainfall for day j in half-month (Dj is equal to the actual rainfall, if the actual rainfall 
is greater than 12.7 mm, otherwise Dj is equal to zero) K is the number of days in 
half-month; b and a are empirical parameters adjusted locally, determined by the  
following equations:

β = 0.8363 +
18.144

Pd12 Py12

24.455
+ 						          Eq. 6

α = 21.586β-7.1891								            Eq. 7

in which: Pd12 is the average daily rainfall greater than 12.7 mm; and Py12 is the annual 
average rainfall for days with rainfall greater than 12.7 mm.

Modified Fournier by Men, MF-M

In this method, Men et al. (2008) proposed an exponential equation to estimate the 
rainfall erosivity index by calculating the modified Fournier index (equation 8):

Ra = αMFβ									             Eq. 8

in which: Ra is the annual rainfall erosivity index (MJ mm ha-1 h-1); MF is the modified Fournier 
index calculated by equation 3; α and β are empirical parameters. The β parameter was 
calculated by equation 6, and α was determined by equation 9:
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α = 102.124 – 1.495β + 0.00214Pdmax							           Eq. 9

in which: Pdmax is the maximum daily rainfall in an average year.

Rainfall disaggregation, RD

For locations where only total annual precipitation amount is available, Cedeño and 
Villavicencio (2017) and Cedeño and Sinichenko (2017) proposed rain disaggregation to 
estimate rainfall erosivity. The procedure divides the annual total amount by the number 
of months and then to daily amounts. Originally, the aforementioned authors proposed 
15 rainfall events per month (Cedeño and Sinichenko, 2017; Cedeño and Villavicencio, 
2017). In this paper, rainfall disaggregation was applied only from monthly to daily 
amounts. However, instead of 15 events, monthly rainfall was divided by six, since, for 
months during the dry season (Figure 2), the average number of rainfall events ranged 
from one to two events per month. Considering the rainiest months are the ones with 
the greatest erosion, the number of rainfall events between November and March were 
evaluated. Thus, six rainfall events were adopted as the average number of erosive 
rainfalls per month. Then, daily rainfall was computed by dividing monthly rainfall by 6.

To apply the methodology developed by Wischmeier and Smith (1978), the daily precipitation 
was disaggregated using coefficients obtained by Silveira (2000) for Brazilian rainfall 
characteristics. Silveira (2000) proposed disaggregation coefficients considering the daily 
duration of rainfall totals for shorter durations (sub-event). Disaggregation coefficients of 
0.17 for the 10-minute duration, and 0.31 for 30-minute duration were used to estimate 
the rainfall amount as input for equations 1 and 2, respectively (Silveira, 2000). After 
estimating the rainfall erosivity for such rainfall event, the value was multiplied by six 
rain events to obtain the monthly rainfall erosivity value.

TRMM Satellite with modified Fournier coefficient, TRMM-F

For this methodology, monthly average rainfall data (Figure 4) for Pirassununga, from 
2009 to 2015, were obtained from the Tropical Rainfall Measuring Mission (TRMM) satellite. 
This information is available on the Giovanni platform of the National Aeronautics and 
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Space Administration (NASA, 2019). These monthly data were transformed into 90-m 
spatial resolution.

Using the raster calculator tool of the ArcGIS 10.3 software (ESRI, 2014), the average 
monthly and annual rainfall were extracted from TRMM satellite data. Then, equations 3 
and 4 were applied to estimate the rainfall erosivity.

TRMM Satellite with monthly rainfall, TRMM-M

Average monthly rainfall amount was also obtained from the Tropical Rainfall Measuring 
Mission (TRMM) satellite (Figure 4). However, rainfall erosivity was estimated by 
equation 10 (Cardoso et al., 2017), which was calibrated for Pirassununga and was 
based on rainfall erosivity and average monthly rainfall. The raster calculator was used 
to estimate the rainfall erosivity by the TRMM-M method, replacing p of equation 10 
with the TRMM satellite’s precipitation data, which consisted of monthly precipitation 
from January to December.

EI30 = 7.7255 × p – 213.75							          Eq. 10

in which: p is the average monthly rainfall.

Statistical assessment of the methods

The reference methodology for rainfall erosivity calculation was that one proposed by 
Wischmeier and Smith (1978). After estimation of rainfall erosivity index by the other 
utilized methods, a statistical assessment of these methods was performed using the 
Additive Main effects and Multiplicative Interaction (AMMI) model. The AMMI is a hybrid 
analysis that incorporates both, the additive and multiplicative, components of the 
two-way data structure. The AMMI model uses analysis of variance (ANOVA) followed by 
the principal component analysis (PCA) applied to the sums of squares allocated by the 
ANOVA to analyze the two-factor interaction effects (Sabaghpour et al., 2012). In this 
study, the different methods tested correspond to one factor and the month corresponds 
to the second factor. When the interaction was significant, the Scott-Knott test was 
performed at 5 % significance level to compare methods in each month.

The modified equation of Perkins and Jinks (1968) was applied to analyze the behavior 
of the different methods in the estimation of the monthly rainfall erosivity over a 
5-year period:

Yij = µ + Mei + Moj + (MeMo)ij							          Eq. 11

in which: Yii is the observation of the i-th method and j-th month; µ is the general average; 
Mei is the effect of the i-th method; Moj is the effect of the j-th month; and (MeMo)ij is 
the effect of the interaction of the i-th method and j-th month.

Principal Component Analysis (PCA) was applied to describe the structure of the interaction 
of methods and months, based on the method of least squares, allowing the experimental 
error to be estimated from the effect of the interaction and the application of the statistical 
tests. According to Hirai (2019) equation, it is possible to separate the deterministic part, 
given by k = 1, 2, …, K eigenvalues containing the highest variability of the interaction 
effect (methods × months), from the residual part (noise) k = K+1, K+2, …, n eigenvalues 
with the lowest variability of the interaction effect:

(g͡e)ij = λkγikδjk +
k = 1

K

∑ λkγikδjk =
k = K + 1

n

∑ λkγikδjk + ρij

k = 1

K

∑ 				       Eq. 12

in which: λk is the square root of the k-th eigenvalues of interaction (k-th singular value); 
γik is the i-th element of the column vector γk⃑ associated with λk; and δjk is the j-th element 
of the line vector δk⃑ associated with λk.
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Thus, the final AMMI model is expressed as:

Yij = µ + Mei + Moj + λkγMek δMok + ρij

k = 1

K

∑ 						        Eq. 13

in which: Yij is the response of the i-th method and j-th month; µ: general average; Mei is 
the effect of the i-th method; Moj is the effect of the j-th month; λk is the square root of 
the k-th eigenvalues of the matrix methods x months; γik is the i-th element of the column 
vector γk⃑ associated with λk; δjk is the j-th element of the line vector δk⃑ associated with 
λk; and ρij is the noise from the multiplicative part used as an error, being ρij ~N(0, σ2) 
considered the experimental error.

The analysis was carried out according to the AMMI model (Crossa, 1990), through the 
Stability Program. We used the Mapgen computer program developed by Ferreira and 
Zambalde (1997) to perform the Scott-Knott test.

RESULTS

Rainfall erosivity estimations

According to the coefficient of determination (Figure 3), all models had a good adjustment. 
The critical point (x-critical) of the standard model (WS) occurred at 6.69 months. This point 
corresponds to the derivative of the adjusted equation. In practical terms, it corresponds 
to the lowest value of the rainfall erosivity (EI30), consequently, it refers to the change in 
rainfall erosivity behavior. For all tested models, the inversion point occurred between 
the end of June and the beginning of July. 

Considering the critical point for the WS (6.69 months; EI30 equal to 119.06 MJ mm ha-1 h-1 
month-1), the rainfall erosivity in such point, obtained by interpolation, for the other 
methods, corresponded to 86.91, 91.49, 0.0, 0.0, 56.41, and 94.98 MJ mm ha-1 h-1 month-1 
for MF, MF-Z, MF-M, RD, TRMM-F and TRMM-M, respectively (Figure 3). Therefore, the 
evaluation of the critical points and the respective minimum rainfall erosivity values 
revealed that the methods presented minimum rainfall erosivity values lower than the 
WS, pointing out an underestimation of such values for the peak of the dry season.

The fit plots (Figure 4) presented high values of coefficient of determination, varying 
from 0.8908 (TRMM-F method) to 0.9747 (MF method). Besides a better determination 
coefficient, the MF best fitted to the WS, presenting little dispersion around the 1:1 line.

The method MF-Z overestimated the rainfall erosivity values (Figure 4) when compared 
to the WS, particularly for greater rainfall erosivity values, which are of paramount 
importance to predict water erosion. Conversely, the MF-M underestimated the rainfall 
erosivity: it is noteworthy to mention that the method shifted the adjustment above to 
the 1:1 line, underestimating the rainfall erosivity values, but maintaining the same 
proportion, both for greater and lower EI30 values.

The methods based on obtaining rainfall data by satellite or disaggregation also showed 
good adjustments (Figure 4). However, the rainfall erosivity estimation showed greater 
dispersion around the 1:1 line compared to the MF method. In these cases, methods RD, 
TRMM-F and TRMM-M may be inaccurate for the most extreme rainfall erosivity values.

Statistical comparison of methods

The selected methods were further classified by grouping, through the principal component 
analysis (Table 1) for rainfall erosivity and the Scott-Knott test –AMMI technique. The 
interaction of the methods with the months was significant at the 5 % level (Table 2). 
Therefore, the methods responded differently for the analyzed months. The principal 
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components, PC1 and PC2, explained together 79.87 % of the variation in rainfall erosivity, 
being 47.44 and 32.43 % explained by PC1 and PC2, respectively (Table 1).

The AMMI technique provides a joint analysis of ANOVA and principal component analysis. 
In this way, the significance level of the parameters was separated from the interaction 
between them, in this case, utilized methods and months. The formed groups indicated 
that the methods belong to the same group and are statistically equal, i.e., they do 
not differ from each other. In this study, for all the methods compared, the WS method 
was considered the baseline –blue color– (Figures 5, 6 and 7); in this way the compared 
methods were grouped as 1) statistically equal, 2) methods that underestimate or 3) 
methods that overestimate the rainfall erosivity index values.
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Considering the month of January (Figure 5), the methods were divided into three 
groups. The method considered a standard (WS) was the only one in group 1. Thus, all 
methods assessed overestimated the rainfall erosivity, being statistically grouped into 
Group 2: MF-M, TRMM-M and MF methods; and Group 3: TRMM-F, RD, and MF-Z –greater 
overestimation than Group 2– methods.

Considering the month of February (Figure 5), methods were statistically grouped into 
Group 1: MF-M –greatest underestimation–; Group 2: MF-Z, TRMM-F, TRMM-M, MF and RD; 
and Group 3: WS-standard method. Conversely to January, for this month all methods 
underestimated the rainfall erosivity indexes. 

Considering March (Figure 5), the methods were separated into three groups. The first 
group underestimated the EI30 (MF-M and RD), the second group was statistically equal 
(WS and MF) and the third one overestimated the rainfall erosivity indexes (TRMM-F, 
TRMM-M and MF-Z).

As well as March, for April (Figure 5), the methods were also classified into three groups. 
Group 1 (MF-M and RD), Group 2 (TRMM-F, MF, TRMM-M and WS) and Group 3 (MF-Z). 
For this month, the MF-M and RD methods underestimated, and the MF-Z method 
overestimated the rainfall erosivity index values.

Concerning May, the methods were stratified by only two groups (Figure 5), with 
underestimating rainfall erosivity values in Group 1 (MF-M and RD), and considered 
equal values for Group 2 (TRMM-F, TRMM-M, MF, MF-Z and WS). For the driest period of 
the year –June (Figure 5), July and August (Figure 6)–, there was no statistical difference 
between the methods evaluated and the standard one (WS).

For the month of September (Figure 6), the MF-M, RD and MF-Z methods (Group 1) 
underestimated the EI30, while the other methods (MF, TRMM-F and TRMM-M) showed 
to be equal to the WS. Considering October (Figure 6), there were three groups. The 
methods TRMM-F, MF, TRMM-M and MF-Z (Group 3) were equal to the WS. The methods 
MF-M (Group 1) and RD (Group 2) underestimated the rainfall erosivity index values.

Table 1. Percentages of the sum of total squares (methods × months) associated with each main 
axis, being the individual and accumulated values according to AMMI analysis for the standard 
method (WS) and the other methods (MF, MF-Z, MF-M, RD, TRMM-F and TRMM-M) use to estimate 
the rainfall erosivity of Pirassununga-SP

Principal component % Explanation % Accumulated explanation
PC1 47.44 47.44
PC2 32.43 79.87
PC3 15.73 95.60
PC4 3.48 99.08
PC5 0.86 99.94
PC6 0.06 100.00

Table 2. Summary of the analysis of variance and mean squares associated with the effect of the 
interaction between methods and months, referring to the rainfall erosivity of Pirassununga-SP

Source GL QM Fc Pr>Fc
Methods 6 167056.6107 55.23 0.00*
Monthly 11 3491670.0616 1154.36 0.00*
Methods × Monthly 42 37554.72892 12.42 1.00e-8*
Residual 24 3024.7772

* Significance level of 5 %.
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For November (Figure 6), the groups were classified as 1 (TRMM-F, TRMM-M, and 
MF-M), 2 (WS, MF, and RD) and 3 (MF-Z). The WS belongs to group 2, therefore 
group 1 underestimated and group 3 overestimated the rainfall erosivity values. Finally, 
for December (Figure 6), the methods were classified into Group 1 (MF-M), Group 2 
(WS, MF, and RD), Group 3 (TRMM-F and TRMM-M) and Group 4 (MF-Z), being the 
values of the rainfall erosivity index underestimated by Group 1 and overestimated by  
Groups 3 and 4 in comparison to the WS method.

Figure 5. The univariate grouping of methods of estimation of the monthly rainfall erosivity 
indexes (January to June), by Scott and Knott (1974), with a Chi-squared significance level of 5 %. 
The blue color refers to the standard method (WS), the shades of green or red were attributed to 
the methods that underestimate or overestimate the rainfall erosivity, respectively.
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For the rainy season (November to March), the MF method was statistically equal or 
grouped very close to the WS (Figures 5 and 6), reflecting the adequate fit between 
them (Figure 4). Therefore, in this period, with a lack of more detailed rainfall data –short 
intervals–, the MF method can replace the WS with accuracy. For the dry season (from 
June to August), the methods did not differ from WS.

Figure 6. The univariate grouping of methods for estimation of the monthly rainfall erosivity indexes 
(July to December), by Scott and Knott (1974), with a Chi-squared significance level of 5 %. The 
blue color refers to the standard method (WS), the shades of green or red, were attributed to the 
methods that underestimate or overestimate the rainfall erosivity, respectively.
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The annual rainfall erosivity or R Factor was classified into 2 groups (Figure 7), with 
Group 1 represented by the MF-M method, and Group 2 represented by the RD, WS, 
MF, TRMM-M, TRMM-F and MF-Z methods. Group 1 underestimated the rainfall erosivity 
values in relation to the WS. By analyzing the 1:1 fitting line (Figure 4), the predictions 
were parallel to the line. However, for the other methods (Figure 4), the estimates always 
crossed the 1:1 line, which means under or overestimation according to greater or lower 
rainfall erosivity values.

In general, regardless of the estimated rainfall erosivity values (monthly or annual) 
(Figures 5, 6 and 7), the MF-M, and MF-Z methods underestimated and overestimated 
EI30 values in relation to the WS method, respectively. The MF method showed to be 
always closer to the standard method (Figures 5, 6 and 7).

All models were tested for the study area located in Pirassununga (Figure 1). Thus, in areas 
around this region, all models could be used as presented by this study. Conversely, it would 
be recommended to calibrate the model equations when estimating rainfall erosivity 
in locations outside this region. Nevertheless, the applicability of the assessed models 
for rainfall erosivity estimation in Brazil, as presented in this study, would be expected. 

Based on equations proposed by WS, Cardoso et al. (2020) calculated the R factor for 
Pirassununga-SP, obtaining the value of 9,512.9 MJ mm ha-1 h-1 yr-1. Therefore, this value 
was similar to that reported by Oliveira et al. (2013), and also by Silva (2004) for the 
municipality of Pirassununga, even when estimated by equations adjusted for a proximal 
location to Pirassununga. 

DISCUSSION
According to our results, rainfall erosivity estimates are a reliable alternative to the product 
of kinetic energy and intensity of the rain. Regardless of the model employed, R-factor 
and its estimates were low between June and August, these months corresponding to 
the dry season. Additionally, coarse temporal resolution of the data, such as monthly 
data in relation to the sub-event intervals, can result in low estimated values for rainfall 

Figure 7. The univariate grouping of methods for estimation of the rainfall erosivity (R Factor), 
by Scott and Knott (1974), with a Chi-squared significance level of 5 %. The blue color refers 
to the standard method (WS), the shades of green or red were attributed to the methods that 
underestimate and overestimate the rainfall erosivity, respectively.
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erosivity. The monthly evaluation of rainfall erosivity index is important for the planning 
of farmers’ activities on a small-time scale, while the total annual soil and water losses 
estimation is crucial to assess the impacts of the cultivations for the correct management 
and adoption of conservation practices.

Irregular distribution of weather stations, lack of maintenance and failure of older stations, 
together with little automated data acquisition systems are some problems that can be 
easily overcome by using precipitation data from TRMM 3B42-v7 (Galvão et al., 2020). 
These authors compared rainfall stations data –only the ones with continuous rainfall 
data– to the data extracted from the TRMM; they found these data could be reliable and 
useful in regions with no pluviometric stations installed. Similarly, we found the usage 
of TRMM 3B42-v7 data to estimate rainfall erosivity using two adjusted equations for 
Pirassununga resulted in useful estimates for annual rainfall erosivity values. Li et al. 
(2020), mapping rainfall erosivity with TRMM in China, found underestimations when 
precipitation data pointed to great rainfall erosivity, while overestimating when rain 
data pointed to the opposite (low rainfall erosivity). However, for tropical conditions, our 
results pointed to an opposite trend.

An innovation for the assessment of different methodologies was the usage of the 
Additive Main effects and Multiplicative Interaction (AMMI) model. This AMMI model is 
a hybrid analysis that incorporates both, the additive and multiplicative, components 
of the two-way data structure. Other studies used other statistical methodologies to 
determine the accuracy of the estimates between methods: mean square root error, 
mean absolute percentage, correlation coefficient or determination coefficient (Lee and 
Heo, 2011; Ma et al., 2014; Vantas et al., 2019; Li et al., 2020). The AMMI model allowed 
to apply the ANOVA and PCA to the sums of squares allocated by the ANOVA to analyze 
the two-factor interaction effects. This way, we verified the methods’ efficiency while 
statistically grouping them and identifying them as more or less reliable estimates of 
rainfall erosivity (R factor).

According to our results, the modified Fournier (MF) index was the closest estimate to 
rainfall erosivity. This is in accordance with the results of Oğuz (2019), while it opposes what 
Angulo-Martínez and Beguería (2009) reported. Using the unit kinetic energy calculation 
of the RUSLE model, the MF index underestimated rainfall erosivity for the Ebro basin 
in Spain (Angulo-Martínez and Beguería, 2009). Nearing et al. (2017) compared three 
different methodologies (USLE, RUSLE and RUSLE2) to calculate the kinetic energy, and 
the results showed the kinetic energy values determined by the RUSLE method were 
underestimated as compared to USLE and RUSLE2. Thus, it is possible that discordance 
with Angulo-Martínez and Beguería (2009) may be due to an embedded underestimation 
of the kinetic energy due to RUSLE methodology. Although there was still no test of 
the effectiveness of the modified Fournier index –until this study–, the MF method has 
been used for Brazilian conditions as a rainfall erosivity estimator in several parts of 
the country, as the states of Santa Catarina (Back et al., 2018), Espírito Santo (Moreira 
et al., 2020), Tocantins (Avanzi et al., 2019), Mato Grosso (Di Raimo et al., 2018), São 
Paulo (Lombardi Neto, 1977), and Amazonas (Silva et al., 2020), along with large areas 
for regional studies (Mello et al., 2013, 2015; Oliveira et al., 2013).

Annual rainfall erosivity was overestimated by the MF-Z (Zhang et al., 2002) and 
underestimated by MF-M method (Men et al., 2008). These methods were developed 
for other climatic conditions, helping to explain such results. The other methods (MF, RD, 
TRMM-F and TRMM-M) used local rain characteristics, improving the estimations. Our 
results agreed well with those of Ma et al. (2014), as they presented negative values 
of MSDE; nevertheless, the MF-M had lower absolute MSDE and RMSE values than the 
MF-Z method.

Finally, the usage of precipitation data obtained by TRMM proved to be a viable alternative 
to estimate annual rainfall erosivity. Our results were in accordance with those reported 
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in other parts of the world (Vrieling et al., 2010; Fan et al., 2013). For African climatic 
conditions, the best performance was obtained using the MF index derived from monthly 
data from TRMM Multisatellite Precipitation Analysis (TMPA) 3B43 (Vrieling et al., 2010). 
In our study, the usage of this product in an adjusted equation based on the MF was less 
accurate as an estimator (R-squared values around to 0.9), although it would be useful for 
locations with scarce or irregular pluviographic or pluviometric data. Thus, regions with 
small number of meteorological stations can very well use precipitation data obtained 
by TRMM as a viable alternative for the R factor estimation.

CONCLUSIONS
The best method for rainfall erosivity estimation is the Modified Fournier Index, which 
shows great potential to replace the standard method in the absence of more detailed 
rainfall data. For monthly and annual estimations, the methods modified Fournier by Men 
and modified Fournier by Zhang underestimate and overestimate the values of rainfall 
erosivity indexes in relation to the Wischmeier and Smith method (standard), respectively. 
The rainfall data obtained through satellite (TRMM) may be a viable alternative for locations 
without on-site rainfall instrumentation, since its annual rainfall erosivity estimation is 
situated in the same statistical group as the standard method. Nevertheless, inaccuracy 
is noted for monthly estimates. For the months of low rainfall erosivity (June to August), 
the methods of estimating rainfall erosivity are not different from the standard one, 
so any method can be potentially adopted. Heterogeneous performance in estimating 
monthly rainfall erosivity is observed by the analyzed methods depending on the data 
associated with rainy or dry seasons.
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