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ABSTRACT: The production of Camellia oleifera (oil tea), typically planted in acidic red 
soils in southern China, is limited by low soil fertility. Agro-farming is one way to promote 
soil fertility by increasing organic matter and microbial communities. To understand the 
impact of agro-farming activity on soil fertility, three types of agro-farming, namely, 
raising laying hens under forest (RLH), cultivating Lolium perenne grass under forest 
(LPG), and maintenance of native grass (MNG), were employed in an oil tea farm with 
acidic red soil in Changsha, China. Soil samples were collected from the farm to estimate 
microbial communities, pH, and total organic carbon (TOC) in different seasons. The results 
indicated that TOC and temperature were the dominant factors influencing the variations 
of bacterial communities, while temperature and pH affected the fungal communities 
in the soil. The most abundant bacterial phyla were Acidobacteria, Proteobacteria, 
Actinobacteria, and Chloroflexi, while the most abundant fungal phyla were Ascomycota, 
Basidiomycota, and Zygomycota. Regardless of treatment, the bacterial richness and 
diversity were both low in spring, and the fungal richness and diversity in summer and 
autumn were higher than in spring and winter. The TOC content and pH in LPG were 
significantly higher than in other treatments. Microbial communities in LPG and MNG 
were more stable than in RLH. In summary, cultivating grass under forest treatment was 
the best way to improve the microenvironment with the highest TOC content and fewer 
pathogenic microorganisms.
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INTRODUCTION
Camellia oleifera Abel. (oil tea) is an important woody oilseed plant which is mainly 
cultivated in Hunan, Jiangxi, and Guangxi provinces and is endemic to hilly areas of 
southern China with acidic red soil, which is classified as Oxisols in Soil Taxonomy 
or as Lixisols in World Reference Base for Soil Resources (Ma et al., 2011; Hu et al., 
2016; Liu et al., 2017a). The low yield is the primary factor limiting the expansion and 
development of C. oleifera (Liu et al., 2017, 2018). One critical reason for low yield is 
infertile soil. Most regions of C. oleifera plantations have acidic red soils with low levels 
of pH, microorganisms, organic carbon, and phosphorus compounds (He et al., 2011). 
Increasing soil nutrients and improving soil microbial communities are necessary to improve 
soil physical and biochemical properties. The conventional approaches to improving soil 
are through application of fertilizers and plowing (Balasubramanian et al., 1999; Xu and 
Liang, 2006; Nayak et al., 2009). However, in recent years, excessive use of chemical 
fertilizers and farming activities have caused soil compaction and loss of organic matter 
which can lead to further degradation of the soil and reductions of microbial activity in 
croplands (Liang et al., 2010; Motounu, 2010; Hegde et al., 2015; Wang et al., 2017). 

Microorganism plays a significant role in the decomposition process of soil organic matter, 
as well as litter and wood residues (Progar et al., 2000; Hamilton III and Frank, 2001; Wood et al., 
2012). Microbial community structure reflects the condition of soil nutrients and health. Some 
bacteria phyla only proliferate in copiotrophic environments, including Alphaproteobacteria, 
Betaproteobacteria, and Bacteroidetes, while others in oligotrophic environments, such as 
Acidobacteria (Martin and Macleod, 1984; Fierer et al., 2007; Nemergut et al., 2010). Some fungi 
are interdependent with the plant rhizosphere, like arbuscular mycorrhizal fungi (AMF), while 
others can cause plant disease, like Venturia inaequalis (Smith and Read, 1997; Islam et al., 
2014; Masny, 2017). Microorganisms are sensitive to many factors, such as fertilization, 
cultivation, irrigation, soil coverage, and cropping patterns (Carpenter-Boggs et al., 2003; 
Rabary et al., 2008; Singh et al., 2008; Meriles et al., 2009; Heidari et al., 2016; Nivelle et al., 
2016). These factors can further affect the soil microenvironment and vegetation growth. Thus, 
environmentally friendly and sustainable farming practices, which may improve microbial 
community structure and soil nutrient condition, have been attempted over croplands and 
forest lands (Montanaro et al., 2007; Larkin et al., 2011; Liu et al., 2016b; Wang et al., 2016a, 
2016b, 2016c, 2017). For instance, raising chickens improved soil structure and increased 
organic matter (Wang et al., 2016b); sowing grass increased soil coverage and reduced 
soil erosion (Tebrügge and Düring, 1999). All of these activities not only reduced plowing 
time and application rate of chemical fertilizers but also increased microbial diversity and 
abundance (Hodge et al., 2001; Leff et al., 2015). However, there are little researches on 
the investigation of new biological farming activities for oil tea plantation. Also, there are no 
established guidelines regarding fertilization and management to maintain soil health and 
crop productivity for farmers (Liu et al., 2018). 

Understanding the microbial community structure is essential to make scientifically sound 
recommendations to cropping systems in red soil regions for farmers. This study aimed 
to investigate the impact of three agro-farming practices on the microbial diversity in an 
oil-tea-tree forest with: (a) raising laying hens (RLH); (b) cultivating of Lolium perenne 
grass (LPG); and (c) maintenance of native grass (MNG). We assumed that (1) the RLH 
treatment could bring more abundant and various microorganisms; (2) the MNG treatment 
could stabilize soil environment and microbial community structure. 

MATERIALS AND METHODS

Study site and sample treatment

The experimental field is located at Wangcheng, Changsha, China (112° 03’ E, 20° 58’ N) 
with 15-year old C. oleifera ‘Xianglin210’. The climate is subtropical monsoon with mean 
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annual total rainfall of 1,370 mm. The mean annual temperature is 17 °C. The average 
lowest and highest temperatures are 4.4 °C in January and 30 °C in July, respectively. 
The soil at the experimental site is a Quaternary red clay with a pH of 5.3. 

Three different farming managements were employed in plots of oil-tea woodlands 
with an area of 0.67 ha each: raising 500 laying hens under the forest (RLH); cultivating 
Lolium perenne grass under the forest (LPG) at a density of 85 kg seeds per hectare 
in October 2013 and cultivating again in June 2014 and February 2015; and control 
field plots consisting of the maintenance of native grass (MNG) by removing the most 
troublesome weeds (Amaranthus retroflexus, Chenopodium glaucum, Datura stramonium, 
and Cirsium setosum) and keeping the benignant weeds (Digitaria sanguinalis, Setaria 
viridis, Chloris virgata, Eleusine indica). The height of the grasses in MNG was kept below 
0.10 m by mowing. 

For each treatment, three sampling plots with a dimension of 10 × 10 m were selected on 
December 29, 2014, May 14, 2015, September 9, 2015, and October 20, 2015, respectively. 
In each plot, soils were sampled four times at five different points between 0.00 and 
0.10 m depth from December 2014 to October 2015 (Table 1). After removing debris and 
roots, soil samples were well mixed, ground, and sieved (<2 mm). Approximately 200 g 
of each soil was placed into a sterile bag and stored at -80 °C for microbial analyses 
(Gao et al., 2015).

Determination of temperature and soil physical-chemical index 

Soil temperatures at each sampling time were recorded by a mercurial thermometer. 
The total organic carbon (TOC) of soil samples was determined using an elemental 
analyzer (Vario EL III, Germany). Soil pH (soil:distilled water = 1:2.5) of each sample was 
determined by a PHS-3C pH meter (INESA Scientific Instrument Co. Ltd). 

Bacterial and fungal community assessment

Total DNA (0.5 g wet weight) was extracted using an E.Z.N.A Soil DNA kit (OMEGA, 
USA) according to the manufacturer’s instruction. The extracted DNA was diluted in 

Table 1. Temperature, total organic content (TOC), and pH of soil samples subjected to the following treatments: raising laying 
hens under forest (RLH), cultivating Lolium perenne grass under forest (LPG), and maintenance of native grass under forest (MNG) 
collected at four times during the year
Sample time Seasons Average temperature Treatments TOC pH(H2O)

°C g kg-1

2015/05/14 Spring 24
RLH1 11.14±1.52 Cb 4.8±0.2 Ab
LPG1 22.30±2.11 Ba 5.2±0.1 ABa
MNG1 5.80±2.10 Dc 4.5±0.2 Bc

2015/09/09 Summer 31
RLH2 12.05±3.11 Cb 4.8±0.1 Ab
LPG2 23.20±1.52 Ba 5.0±0.2 Ca
MNG2 13.06±2.00 Cb 4.6±0.3 ABb

2015/10/20 Autumn 20
RLH3 16.45±0.42 Bb 4.6±0.2 Bc
LPG3 21.00±2.62 Ba 5.3±0.2 Aa
MNG3 15.22±1.80 Bb 4.8±0.2 Abc

2014/12/29 Winter 4
RLH4 18.23±2.51 Ab 4.7±0.3 BCb
LPG4 31.02±1.11 Aa 5.4±0.2 Aa
MNG4 17.85±1.02 Ab 4.5±0.1 Bc

TOC of soil samples was determined using an elemental analyzer (Vario EL III, Germany). pH(H2O) at a soil:water ratio of 1:2.5 v/v. Data presented are 
mean ± SD. Different capital letters in the same column indicate significant difference among different seasons within same treatments at p≤0.05 
(Duncan’s multiple range tests); different lowercase letters in the same column indicate significant difference among different treatments within 
same seasons at p≤0.05. The number after the treatment symbol means: 1 = spring; 2 = summer; 3 = autumn; 4 = winter.
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a TE buffer (Tris-HCl 10 mmol L-1, EDTA 1 mmol L-1, pH 8.0) and stored at -20 °C until 
analysis (Liu et al., 2014). 

An aliquot of the extracted DNA from each sample was used as a template for 
amplification. The V3-V4 hypervariable regions of the bacterial 16S rRNA gene 
were amplified with primers 338F (5’-ACTCCTACGGGAGGCAGCAG-3’) and 806R 
(5’-GGACTACHVGGGTWTCTAAT-3’) (Peng et al., 2017). The hypervariable regions of the 
fungal ITS1 gene were amplified with primers ITS1F (5’-CTTGGTCATTTAGAGGAAGTAA-3’) 
and ITS2 (5’-GCTGCGTTCTTCATCGATGC-3’) (White, 1990; Gardes et al., 1993). The 
following thermal program was used for amplification: at an initial denaturation at 
98 °C for 30 s, followed by 10 cycles of 98 °C for 10 s, 65 °C for 30 s, and 72 °C 
for 30 s, followed by an extension at 72 °C for 5 min. Each sample was amplified 
in triplicate, and the PCR products were pooled and purified using the Agarose Gel 
DNA purification kit (TaKaRa). An equal amount of the PCR product from each sample 
was combined in a single tube to be run on an Illumina MiSeq PE300 platform at 
Biomarker Technologies Co., Beijing, China. After sequencing, paired-end reads were 
assembled with a minimum overlap of 10 bp using FLASH (version 1.2.7). Sequences 
with an average quality score <20 over a 50-bp sliding window were truncated using 
Trimmomatic (version 0.33). Chimeras were identified and removed using UCHIME 
(version 4.2). 

Statistical and bioinformatics analysis

Effective sequences were clustered into operational taxonomic units (OTUs), with a 
similarity cutoff of 97 % using QIIME (version 1.8.0). Finally, the taxonomy of bacterial and 
fungal sequences were annotated by Ribosomal Database Project RDP classifier (version 
2.2) based on Silva (Release 119) and Unite (Release 7.0) databases, respectively. 
Alpha diversity indexes, including OTUs and abundance-based coverage estimator 
(ACE), which both mean the microbial richness, and Shannon diversity, which means 
the microbial diversity, were estimated by MOTHUR (version 1.30). Classification 
heatmaps, Venn diagrams, and redundancy analysis of environmental factors and 
microorganisms were drawn by the R programming language platform. The variance 
analysis of environmental factors was performed by Duncan’s multiple range tests 
using SPSS for Windows (version 17.0)

RESULTS

Physicochemical properties of soil

The TOC content increased gradually over time in all treatments during 2015 (Table 1). 
The TOC content of all treatments was significantly higher in winter than in any other 
seasons. The highest TOC content was always detected in LPG in every season. The TOC 
content in RLH, LPG, and MNG treatments ranged from 11-19 %, 20-32 %, and 5-32 %, 
respectively. The pH ranged from 4.5 to 5.4. The highest pH was detected in LPG across 
all seasons (Table 1). 

Microbial diversity and richness

In the RLH and LPG treatments, the highest bacterial richness and diversity were both 
observed in autumn (Table 2). However, in the MNG treatment, the highest bacterial 
richness was in winter and the highest bacterial diversity was in summer. According to 
table 3, in the RLH and LPG treatments, the fungal richness in summer and autumn were 
both higher than in spring and winter. In the MNG treatment, the highest fungal richness 
and diversity were both in summer and the lowest both in winter.

In spring, the rank of bacterial richness and diversity was LPG>MNG>RLH and 
MNG>LPG>RLH, respectively; in summer, the ranks of OTUs and Shannon were both 
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RLH>LPG>MNG; in autumn, the ranks of bacterial richness and diversity were both 
RLH>LPG>MNG, but they were MNG>LPG>RLH in winter (Table 2). Except in autumn, 
the highest fungal richness and diversity were observed in the MNG treatment in other 
three seasons; in autumn, the lowest fungal richness and diversity was detected in the 
RLH treatment (Table 3).

Distribution of microorganisms

Distribution of bacteria

Acidobacteria, Proteobacteria, Actinobacteria, and Chloroflexi were the dominant phyla 
in every sample (Figure 1). At the class level, Acidobacteria, Alphaproteobacteria, 
Gammaproteobacteria, and Actinobacteria were dominant in all treatments and seasons. 

Table 2. Bacterial diversity (Shannon) and richness, number of operational taxonomic units 
(OTUs), and abundance-based coverage estimator (ACE) of soil samples subjected to the following 
treatments: RLH, LPG, and MNG 
Treatments Effective reads OTUs ACE Shannon
RLH1 168177 1255 1388.7 5.55
RLH2 193436 1591 1661.2 5.89
RLH3 188959 1613 1671.9 5.93
RLH4 201415 1328 1412.0 5.03
LPG1 92925 1416 1480.6 5.56
LPG2 81368 1433 1490.1 5.62
LPG3 173387 1535 1580.2 5.77
LPG4 197364 1477 1540.9 5.76
MNG1 118779 1340 1468.5 5.61
MNG2 119741 1526 1597.1 5.78
MNG3 114777 1510 1552.6 5.73
MNG4 84372 1609 1696.1 5.78

RLH: raising laying hens under forest; LPG: cultivating Lolium perenne grass under forest; MNG: maintenance 
of native grass under forest. The number after the treatment symbol means: 1 = spring; 2 = summer; 
3 = autumn; 4 = winter.

Table 3. Fungal diversity (Shannon) and richness (OTUs, ACE) of soil samples subjected to the 
following treatments: RLH, LPG, and MNG
Treatments Effective reads OTUs ACE Shannon
RLH1 263867 451 544.42 3.059
RLH2 227738 753 763.77 4.473
RLH3 270666 685 693.93 4.213
RLH4 270622 461 492.43 3.207
LPG1 121577 594 631.44 4.110
LPG2 103082 635 657.78 3.871
LPG3 271820 772 819.98 4.328
LPG4 288909 594 628.89 3.939
MNG1 96504 727 748.37 4.883
MNG2 118700 775 780.61 5.224
MNG3 113592 744 745.95 5.084
MNG4 133504 703 730.66 4.485

RLH: raising laying hens under forest; LPG: cultivating Lolium perenne grass under forest; MNG: maintenance 
of native grass under forest. The number after the treatment symbol means: 1 = spring; 2 = summer; 3 = 
autumn; 4 = winter.
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However, the abundance of phyla and classes of the bacterial community were significantly 
more diverse among treatments and seasons. 

At the phylum level, Actinobacteria gradually increased with time and the annual dynamics 
in MNG had a similar pattern to that in LPG and RLH (Figure 1a). The distribution of 
Proteobacteria showed similar relative abundance in every sample. Annual dynamics 
of Chloroflexi, which gradually increased with time and then decreased in autumn in 
MNG, was significantly different from that in LPG and RLH which were distributed evenly 
in each season.

The major classes (Acidobacteria, Alphaproteobacteria, and Gammaproteobacteria) 
decreased gradually with time which was contrary to Actinobacteria (Figure 1b). Most 
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Figure 1. Relative abundance at the bacterial taxonomic levels of different treatments. Note: 
Bacteria phylum (a); Bacteria class (b). RLH: raising laying hens under forest; LPG: cultivating 
Lolium perenne grass under forest; MNG: maintenance of native grass under forest. The number 
after the treatment symbol means: 1 = spring; 2 = summer; 3 = autumn; 4 = winter.
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of the classes in LPG remained relatively stable in spring and autumn; yet the minor 
classes, like Actinobacteria and Bacilli, increased significantly in summer and winter while 
Acidobacteria decreased significantly. In RLH, there were significant differences between 
the four seasons. Acidobacteria in spring was much lower than in summer and winter that 
lead to a more homogenous bacterial community. It is noteworthy that Alphaproteobacteria 
always remained in relatively stable abundance ranging from 15 to 25 % in all samples. 

Distribution of fungus

At the phylum level (Figure 2a), Ascomycota were higher than other phyla in most 
samples. In MNG, Ascomycota and Basidiomycota in summer and autumn were higher 
than in spring and winter whereas Zygomycota was lower in summer and autumn than in 
spring and winter; Ascomycota remained in relatively stable abundance in four quarters. 
The variation of phyla, except Ascomycota, in LPG was similar to that in MNG, but the 
ranges of variation were greater in LPG than in MNG. In LPG treatment, Ascomycota in 
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perenne grass under forest; MNG: maintenance of native grass under forest. The number after 
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spring and winter was much higher than other phyla and lower in summer and autumn. 
In RLH, the Ascomycota gradually increased with time; Basidiomycota in summer was 
much higher than that in any other seasons and Zygomycota was highest in autumn.

At the fungal class level (Figure 2b), in MNG, Leotiomycetes were higher in summer 
and winter than in spring and winter, and Eurotiomycetes increased along with time. 
Agaricomycetes and Dothideomycetes in LPG were both significantly higher than that 
in MNG and RLH in every season. During the whole year, variation of Agaricomycetes 
in LPG was the same as in RLH. Eurotiomycetes in RLH increased along with time which 
was the same as that in MNG. In MNG, LPG, and RLH treatment, there were still many 
unknown fungi, which were between 30-50, 18-40, and 45-80 %, respectively at phylum 
level as well as between 37-65, 25-50, and 56-83 %, respectively at class level.

Relationships between microbial communities

Venn diagrams were used to show shared and unique communities in various seasons 
(Figure 3). For bacterial communities (Figure 3a), four seasons shared 1230, 984, and 1174 
OTUs, accounting for 73.35, 55.06, and 67.43 % of each total reads in LPG, RLH, and MNG, 
respectively. The variation of bacterial communities in LPG was more stable than in RLH and 
MNG because of the high ratio of shared OTUs and the lower difference in unique communities. 

For fungal communities (Figure 3b), four seasons shared 397, 240, and 426 OTUs, accounting 
for 42.78, 24.19, and 45.61 % of each total reads, in LPG, RLH, and MNG, respectively. The 
variation of fungal communities in MNG was more stable than in LPG and RLH because of 
the high ratio of sharing OTUs and the less difference of unique communities.
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To get an overall view of the identified connections among the samples, hierarchically 
clustered heatmaps were generated. The closer the color was to the red, the more dominant 
microorganism was. There were differences among every treatment and every season. 

According to the heatmaps, the fluctuation of bacterial communities in RLH was greater 
than in LPG and MNG (Figure 4 and Figure 5). At the family level, MNG1 and MNG2, LPG1 
and LPG2 clustered together, respectively. Clustering of MNG3 and LPG3 at family and 
order level showed that there were similar bacterial communities between MNG and LPG 

Figure 4. Heatmap analysis of the bacterial community of soil samples subjected to RLH, LPG, and MNG treatments collected at 
four times during the year and multiple samples similarity tree at the order level. The connecting lines on top describe the bacterial 
communities clustering of each sample. The connecting lines on the left side describe the clustering of each bacterium. The closer the 
color to red was, the more dominant microorganism was. Note: RLH: raising laying hens under forest; LPG: cultivating Lolium perenne 
grass under forest; MNG: maintenance of native grass under forest. The number after the treatment symbol means: 1 = spring; 
2 = summer; 3 = autumn; 4 = winter. 
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in autumn. In autumn, the activity of bacteria was the lowest during the whole year, and 
there were very little dominant bacteria at order and family level.

According to heatmaps of fungal communities (Figure 6 and Figure 7), the fungal 
communities in LPG were more stable than in other treatments during the whole year. 
At the order level, the clustering of LPG1 and LPG4 assembled with the clustering of LPG2 
and LPG3. The LPG1 and LPG4, MNG1 and MNG4, RLH1 and RLH4 clustered together 
respectively at the family level.

Figure 5. Heatmap analysis of the bacterial community of soil samples subjected to RLH, LPG, and MNG treatments collected at 
four times during the year and multiple samples similarity tree at the family level. The connecting lines on top describe the bacterial 
communities clustering of each sample. The connecting lines on the left side describe the clustering of each bacterium. The closer the 
color to red was, the more dominant microorganism was. Note: RLH: raising laying hens under forest; LPG: cultivating Lolium perenne 
grass under forest; MNG: maintenance of native grass under forest. The number after the treatment symbol means: 1 = spring; 
2 = summer; 3 = autumn; 4 = winter.
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The influence factor on microbial communities

Redundancy analysis (RDA) indicated that temperature and TOC were the dominant 
factors for explaining the most variations in bacterial and fungal communities of four 
seasons and three treatments (Figure 7 and Figure 9). 

According to figure 8, temperature positively influenced Bryobacter, Candidatus_
Solibacter, and Bradyrhizobium while negatively influenced Acidothermus, Paenibacillus, 
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MNGUnknown
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Filobasidiales
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Mortierellales
Archaeosporales
Hypocreales
Botryosphaeriales
Helotiales
Leotiales
Sebacinales
Septobasidiales
Chaetothyriales
Diversisporales
Geastrales
Trechisporales
Agaricales
Venturiales
Malasseziales
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Cantharellales
Paraglomerales
Glomerales
Kickxellales
Ostropales
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Hymenochaetales
Polyporales
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Figure 6. Heatmap analysis of the fungal community of soil samples subjected to RLH, LPG, and MNG treatments collected at 
four times during the year and multiple samples similarity tree at the order level. The connecting lines on top describe the fungal 
communities clustering of each sample. The connecting lines on the left side describe the clustering of each fungus. The closer 
the color close to red was, the more dominant microorganism was. Note: RLH: raising laying hens under forest; LPG: cultivating 
Lolium perenne grass under forest; MNG: maintenance of native grass under forest. The number after the treatment symbol means: 
1 = spring; 2 = summer; 3 = autumn; 4 = winter. 
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Modestobacter, and Crossiella. The TOC and pH positively influenced Burkholderia 
while negatively influenced Rhizomicrobium, Flavobacterium, Stenotrophomonas, 
Phenylobacterium, Brevundimonas, Sorangium, and Sphingomonas.

According to figure 9, temperature positively influenced Purpureocillim, Leucoagaricus, 
and Dictyophora while negatively influenced Gymnopilus, Penicillium, and Talaromyces. 
There was a significant positive influence of pH on Rasamsonia, Leucocoprinus, Gymnopus, 
and Hydropus while there was negative influence on Hyaloscypha, Scleroconidioma, 
Cephaliphora, Cladophialophora, and Cryptococcus. The TOC appeared to positively 
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Figure 7. Heatmap analysis of the fungal community of soil samples subjected to RLH, LPG, and MNG treatments collected at 
four times during the year and multiple samples similarity tree at the family level. The connecting lines on top describe the fungal 
communities clustering of each sample. The connecting lines on the left side describe the clustering of each fungus. The closer 
the color close to red was, the more dominant microorganism was. Note: RLH: raising laying hens under forest; LPG: cultivating 
Lolium perenne grass under forest; MNG: maintenance of native grass under forest. The number after the treatment symbol means: 
1 = spring; 2 = summer; 3 = autumn; 4 = winter. 
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influence Gymnopus and Aspergillus while negatively influence Clitopilus, Agaricus, 
Scleroconidioma, and Conocybe.

DISCUSSION

The effect of farming patterns on microbial communities

Growing grass is a sustainable management practice that decreases soil bulk densities, 
increases soil porosity, soil moisture, and nutrient holding capacity (Wang et al., 2013; 
Jia et al., 2014). This management practice has been adopted in many orchards (Greenham, 
1955). These factors can significantly change the microbial communities (Du et al., 
2015). There are two major ways to grow grass, including artificially cultivating grass and 
growing grass without tillage. Both ways have been identified to have beneficial effects 
on improving soil chemical properties and soil microbial communities (Chalak et al., 
2011; Yagioka et al., 2015; Boukhdoud et al., 2016). Several researchers have identified 
that poultries can contribute to improvement of soil fertility and soil structure, such as 
increasing soil nitrogen and phosphorus, and improving soil porosities and soil water 
content (Wilkins, 2008; Lin et al., 2013; Xu et al., 2014; Wang et al., 2016b). These changes 
are able to provide a more appropriate environment for microorganisms. In this study, 
the TOC and pH in LPG treatment were significantly higher than in other treatments. 
Xu et al. (2014) found that there were no remarkable changes in the soil during the 
first year of raising laying hens but the concentration of nutrients in the soil increased 
considerably when after 2 to 4 years. Wild grass was found to create more nutrients 
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Figure 8. Redundancy analysis (RDA) of the relationship between the soil physicochemical 
properties and the relative abundance of each bacterial genus of the twelve soil samples (p<0.05). 
Different symbols in the graph represent soil samples from different treatments: Circle: MNG; 
Square: LPG; and Diamond: RLH. Arrows indicate the direction and magnitude of each variable. 
Note: RLH: raising laying hens under forest; LPG: cultivating Lolium perenne grass under forest; 
MNG: maintenance of native grass under forest. The number after the treatment symbol means: 
1 = spring; 2 = summer; 3 = autumn; 4 = winter. Bottle green lines represent bacterial genus; 
red lines represent environmental factors.
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than artificially cultivated grass in an apple orchard (Yan et al., 2014). The differences 
between Yan’s research and ours might be caused by the differences in dominant cultivars, 
grass species, and soil properties. Although the TOC and pH in LPG were remarkably 
higher than in other treatments, the bacterial diversity and richness had no significant 
difference among the three treatments, which is in agreement with Tao et al. (2011). 
However, the stability of bacterial richness in LPG was the best while that in RLH was 
the worst during whole year, indicating that the grass cover could provide a relatively 
stable environment for soil bacterial communities.

Except for the unknown phyla, Ascomycota and Basidiomycota were the dominant fungal 
phyla in all treatments, which agreed with most previous studies (Buée et al., 2009; 
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Figure 9. Redundancy analysis (RDA) of the relationship between the soil physicochemical 
properties and the relative abundance of fungal genus of the twelve soil samples (p<0.05). 
Different symbols in the graph represent soil samples from different treatments: Circle = MNG; 
Square = LPG; and Diamond = RLH. Arrows indicate the direction and magnitude of variables. 
Note: RLH: raising laying hens under forest; LPG: cultivating Lolium perenne grass under forest; 
MNG: maintenance of native grass under forest. The number after the treatment symbol means: 
1 = spring; 2 = summer; 3 = autumn; 4 = winter. Bottle green lines represent fungal genus; red 
lines represent environmental factors.
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Weber et al., 2013; Coats et al., 2014). Previous studies have found that most pathogenic 
microbes were fungi (Agrios, 2005; Raaijmakers et al., 2009; Liu et al., 2016). Many 
researchers have reported that manure could dramatically increase bacterial activity 
while decrease fungal activities (Bittman et al., 2005; Liu et al., 2013). Compared to 
the control, the relative abundance of Ascomycota, which was linked to many kinds of 
pathogenic fungi by previous studies (Toledo et al., 2007; Vujanovic and Labrecque, 2008; 
Rodrigues et al., 2016), decreased under the laying hens treatment. The relative abundance 
of Agaricomycetes and Eurotiomycetes, which was similar to Zhou’s research (Zhou et al., 
2016), in LPG were significantly higher than in other treatments. Agaricomycetes, known 
as the decomposer of lignin, could increase soil nutrients but could also lead to plant white 
rot or soft rot (Morgenstern et al., 2008). Eurotiomycetes was found in high N content 
(Zhou, et al., 2016). Therefore, we could speculate that there was more N in LPG than 
in other treatments, and the fungi in LPG could facilitate the decomposition of those 
nutrients whereas the saprophytic fungi also increased the risk of plant root disease. 

Acidobacteria and Proteobacteria were the major phyla identified in soil bacterial 
communities in this study and as reported by previous studies (Barns et al., 1999; 
Janssen et al., 2002; Jones et al., 2009). Acidobacteria was regarded as oligotrophic 
bacteria. Smit et al. (2001) found a high ratio of Acidobacteria to Proteobacteria when 
the soil nutrients were low. Surprisingly, in the RLH treatment, the relative abundance 
of Acidobacteria in spring and winter were remarkably lower than other treatments, 
indicating that the activities of laying hens might improve content of some other soil 
nutrients except TOC.

Seasonal variation of microbial communities

According to the redundancy analysis, temperature was the primary factor influencing 
microbial communities, which indicated that microbial communities were strongly affected 
by seasonal dynamics. Additionally, TOC was also influential on bacteria while pH was 
influential on fungi. 

Regardless of treatment, the highest TOC content was found in winter, which was identical 
to the findings of Aanderud et al. (2010). However, Laudon et al. (2004) found that the 
highest TOC content was observed during spring. In RLH, activity from the hens, such 
as scraping soil to find insects and producing manure, enhanced microbial activity but 
drastic seasonal variations in microbial communities were observed due to the absence 
of grass covering. In LPG, the fluctuation range of microbial communities was smaller 
than in other treatments throughout the year. The single-species grass covering provided 
relatively stable microbial communities. As temperature decreased, many grass residues 
provided nutrients to bacteria, however, further declining temperatures would inhibit 
microbial activity. In MNG, the diversity of weed species made the micro-environment 
unstable but the residues of these weeds lasted longer in comparison to single grass. 
In winter, cold-hardy grass would tolerate the low temperatures and could create relatively 
suitable micro-environments for microorganisms.

Proteobacteria and especially Alphaproteobacteria remained stable throughout the year 
while Acidobacteria had the lowest relative abundance during winter and Actinobacteria 
had the lowest relative abundance during spring and summer, which was similar to the 
observations of Lipson and Schmidt (2004). As indicated by Lazzaro et al. (2012), seasonal 
changes had no effect on Alphaproteobacteria. The most dominant bacteria were found in 
spring and winter. Xanthomonadales and Burkholderiales were phytopathogens (Campos 
et al., 2016) predominant in RLH1. This means the activity of the hens during the spring 
may not improve the soil nutrition but increase the risk of plant disease. 

Similar to other studies (Schmidt et al., 2013; Weber, et al., 2013), the relative abundance 
of Ascomycota and Basidiomycota in our study were the predominant phyla during all 
seasons. The relative abundance of Agaricomycetes in summer and autumn was higher 
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than in spring and winter, indicating that the disease rate of infection of plants in summer 
and autumn was higher than in spring and winter. 

CONCLUSION
Raising laying hens may provide manure to increase the soil organic matter; however, a 
stable micro-environment for microorganisms was not achieved without grass cover. Also, 
maintaining native grasses resulted in limited quantity of soil TOC. Cultivating grasses 
under oil tea trees was the best among all options in this study for the improvement 
of the microenvironment, such as increasing TOC content and pH, stabilizing microbial 
communities, and reducing pathogenic microorganisms. In addition, cultivating 
grasses increased the relative abundance of microorganisms. These changes in soil 
microenvironment may benefit the growth of oil tea trees and further study is needed 
to quantify the beneficial effect on the performance of oil tree trees.
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