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SUMMARY

The modeling and estimation of the parameters that define the spatial
dependence structure of a regionalized variable by geostatistical methods are
fundamental, since these parameters, underlying the kriging of unsampled points,
allow the construction of thematic maps.  One or more atypical observations in the
sample data can affect the estimation of these parameters.  Thus, the assessment
of the combined influence of these observations by the analysis of Local Influence
is essential.  The purpose of this paper was to propose local influence analysis
methods for the regionalized variable, given that it has n-variate Student’s t-
distribution, and compare it with the analysis of local influence when the same
regionalized variable has n-variate normal distribution.  These local influence
analysis methods were applied to soil physical properties and soybean yield data
of an experiment carried out in a 56.68 ha commercial field in western Paraná,
Brazil.  Results showed that influential values are efficiently determined with n-
variate Student’s t-distribution.

Index terms: geostatistics, EM algorithm, spatial variability.
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RESUMO:    INFLUÊNCIA LOCAL PARA ANÁLISE ESPACIAL DOS
ATRIBUTOS FÍSICOS DO SOLO E DA PRODUTIVIDADE DA
SOJA UTILIZANDO A DISTRIBUIÇÃO t-STUDENT

A modelagem e estimação dos parâmetros que definem a estrutura de dependência espacial
de uma variável regionalizada, utilizando métodos geoestatísticos, é de fundamental
importância, pois a partir desses parâmetros é realizada a krigagem dos pontos não amostrados
para a construção dos mapas temáticos.  A presença de uma ou mais observações atípicas nos
dados amostrais podem influenciar a estimação desses parâmetros.  Assim, torna-se importante
a avaliação da influência conjunta destas observações pela análise de Influência Local.  Este
trabalho tem por objetivo apresentar métodos de análise de influência local para variável
regionalizada considerando que ela tenha distribuição t-Student n-variada e comparar com a
análise de influência local considerando que esta mesma variável regionalizada tenha
distribuição normal n-variada.  Esses métodos de análise de influência local foram aplicados
a atributos físicos do solo e produtividade da soja obtidos a partir de um experimento realizado
em uma área comercial de 56,68 ha da região Oeste do Paraná, Brasil.  O estudo mostrou que
os valores influentes são identificados eficientemente com a distribuição t-Student n-variada.

Termos de indexação: geoestatística, algoritmo EM, variabilidade espacial.

INTRODUCTION

Geostatistics is an important tool to analyze spatial
variability of soil properties and crop yield.  Thematic
maps based on geostatistics are excellent resources
for the analysis of agricultural performance, and are
considered the most complete option for the zoning of
crop spatial variability (Molin, 2002).  However, when
the data set contains influential values, the maps
diverge from reality and can therefore cause
misinterpretation.

The identification of influential observations in the
data set is known as diagnostic analysis (Paula, 2004)
and was presented by Cook (1986) as a new method
called “Local Influence” for diagnostic analysis of the
Gaussian process.  This analysis was based on the
assumption that the model is reliable, and analyzed
the power of conclusions for data or model
disturbances.

Several studies of spatial analysis have been
developed using diagnostic techniques to find
observations that influence model sets.  Christensen
et al. (1992, 1993) worked on studies that analyzed
the prediction of parameters in linear spatial models
by applying diagnostic techniques to find observations
that can influence the estimation of the covariance
matrix, used in universal kriging.  Militino et al.
(2006) tried to identify outliers in multivariate linear
spatial models.  Borssoi et al. (2009, 2011) conducted
diagnostic studies of linear Gaussian spatial models,
and developed several measures of local influence.

The purpose of this paper was to propose a method
that uses n-variate Student’s t-distribution with a fixed
degree of freedom and also uses the maximum
likelihood function as method of estimating spatial

variability parameters of soybean yield.  From the
estimation of these parameters, a study of local
influence is developed, which analyzes the existence
of influential observations in the spatial dependence
structure (graph Ci) and in the linear predictor (graph
lp), considering the yield itself as explicative variable
and soil penetration resistance (SPR) and soil density
(Des) as covariates.  Finally, these results were
compared with those obtained by using the n-variate
normal distribution.

THEORY

Student’s t linear spatial models
Let {Y(s), s ∈ S} be a stationary stochastic process,

where S ⊂ ℜd and ℜd is a d-dimensional (d ≥ 1)
Eucledian space.  The Y = (Y(s1),…, Y(sn))T process
has n-variate t-distribution with v  degrees of freedom
(v ≥ 1 fixed), where μ is the vector of location
parameters and ∑ the scaling matrix, ie Y ~ tn(μ,∑,v).
Consider that Y = (Y(s1),…, Y(sn)T are registered at
known locations in space known in si and sj for i ≠ j =
1,…,n.  Each Y(si) can be written as:

Y(si) = μ(si) + ε(si), i = 1,…, n (1)

where μ(si) is a deterministic and ε(si) a stochastic
term, both depending on the parameter space where
Y(si) operates.  It is assumed that the stochastic error
ε has zero mean, ie, (si) = E[ε(si)] = 0, i = 1,…, n and
that the variation of the points in space is determined
by a covariance function C(.) of si and sj.  This
covariance function is also specified by a parameter
vector Φ = (ϕ1,ϕ2,ϕ3)T, which are the parameters that
determine the structure of spatial dependence.
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For some known functions of S, such as
X1(s),…,Xp(s), we consider the linear spatial model in

the mean of the process μ(.), as: μ(si) = βjXj(si), i =
1,…, n, whereas X1 is a vector of um’s, X2,…,Xp are
the covariables and β1,…,βp are unknown parameters.

Equation (1) can be written in matrix form,

Y = Xβ + ε (2)

where Y = (Y(s1),…,Y(sn))T and ε = (ε(sn))T are vectors
nx1, μ = Xβ is a vector nx1, X is a matrix n x p
composed by the vector of um’s and by (p–1) covariates
and β = (β1,…,βp)T is the vector of unknown
parameters to be estimated.

Random error vector expectation ε, E(ε) = 0 is a
zero vector, and its scaling matrix is Σ = [(σij)], where
σij = C(si, sj).

Assuming Σ is not singular and that the matrix X
is full rank (rank (X) = p), the scaling matrix Σ can
assume a spatial structure of:

Σ = [(σij)] = ϕ1ln + ϕ2R (3)

where ln is the identity matrix nxn, ϕ1 is the
parameter that determines the nugget effect, ϕ2 is
the parameter that defines the sill or contribution, R
= R(ϕ3) is a symmetric nxn matrix, and the reach a
is a function of ϕ3, ie α = g(ϕ3).

The elements i and j of the matrix Σ are C(si,sj) =
C(hij) = ϕ2rij, where hij = si –sj , whereas the elements

rij are from the matrix R of the form  for i
≠ j and rij = 1, for i = j = 1,…, n.

The joint probability density function of Y is:

     (4)

where Γ(.) is the gamma function.  For v > 1, μ = Xβ

is the vector of means and for v > 2,  is the
covariance matrix.

Let θ = (βT ΦT)T be the vector of unknown
parameters and Y the vector of the observed data,
where Y ~ tn(Xβ,Σ,v) with fixed v.  The likelihood
function logarithm of the observed data Y in relation
to θ is given by

Algorithm for parameter estimation (EM
algorithm)

The parameter vector θ = (βT ΦT)T is estimated by
the EM algorithm, based on the mixture of normal
distribution that obtains Student’s t-distribution (Liu
& Rubin, 1995).

We consider Yc = (Y,Ym) as the complete data set
with a parameterized density f(Yc |θ) by a vector of n-
dimensional parameters, θ∈Θ⊂ℜs, with s=p+q (q=3),
where, Y and Ym are the observed and non-observed
data, respectively.  The maximum likelihood estimate
(ML) of θ can be obtained based on the complete data
of the likelihood function log and the EM algorithm
(Dempster et al., 1997).  This algorithm consists of two
steps: Expectation (Step E) and Maximization (Step M).

Step E: Q(θ|θ(r)) = E{Lc(θ|Yc)|Y,θ(r)} is defined; at this
step the expectation Q(θ|θ(r)) results from conditional
distribution f(Ym|Y,θ(r)) in the r th iteration.

Step M: θ(r+1) = Arg maxθ Q(θ|θ(r)); at this step a
θ(r+1) is determined, which maximizes Q(θ|θ(r)).  The
sequence derived from the EM algorithm iterations
converges to the likelihood maximum estimate of .

Local influence

A perturbation vector ω = (ω1,…,ωn)T is considered,
varying in a region Ω⊂ℜd, used as additive
perturbation of Yω = Y + ω.  Let the likelihood function
be L(θ,ω|Y) in the observed data and Lc(θ,ω|Yc) in the
complete data for the perturbed model and assuming
that there is ω0 so that L(θ,ω0|Y) = L(θ|Y) and
Lc(θ,ω0|Yc) = Lc(|Yc) for every θ, and also that (ω0) is
the ML estimator of θ for L(θ,ω|Y).  Cook (1986)
considers the displacement of the likelihood function
log LD(ω) = 2[L( |Y) – L( (ω)|Y)] to assess the local
influence of a small perturbation.  Due to the difficulty
of its application to complicated models, Zhu & Lee
(2001) proposed an option with a shift function for
LD(ω), defined by fQ(ω) = 2[Q( | ) – Q( (ω)| )], where
(ω) is the estimate of θ that maximizes Q( ,ω| ) =

E[Lc(θ,ω|Yc)Y, ].  The local influence graphic of fQ(ω)
is defined as α(ω) = [ωT,fg(ω)]T.  In this case, the normal
curve Cfg,l of α(ω) in ω0 in the direction of some unit
vector l can be used to summarize the local behavior
of fQ(ω).  The normal curvature CfQ,l for α(ω) and ω0

is defined: CfQ,l = 2[lTΔT
ω0{– θ( )}-1Δω0l], where θ( )

= ∂2Q(θ,| )/∂θ∂θT
|θ=  and Δω0 = ∂2Q(θ,ω0| )/∂θ∂ωT

|θ= (ω).
Poon & Poon (1999) include the conformal normal
curvature ΒfQ,l for ω0 in the direction of some unit
vector l, such as:

(5)

where ω0 = ∂2Q( (ω)| )/∂ω∂ ωT
|ω=ω0, and BfQ,l is a

function of one to one of the normal curvature,
considering values between [0,1].
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Given the matrix BfQ,l and considering

Ci = 2*|bii| (6)

where bii are the elements of the main diagonal of
matrix BfQ,l, we find graph Ci according to order i, to
analyze the existence of influential observations in
the spatial dependence structure.  Zhu & Lee (2001)
stated that for Ci, the ith point is influential in the
spatial dependence structure if:

, for i,j=1,…, n (7)

where bii is an element of matrix BfQ,l, 

and .

In the study of spatial data, universal kriging has
been used as a measure of prediction, to obtain values
for the regionalized variable at non-sampled points.
Let Y0 = Y(s0) be the universal kriging predictor of
location s0 ∈ S.  The mean of Y0 is given by , where

 = (x01,…,x0p)  and x0j = xj(s0) for j = 1,…,p.
The predictor of the least mean square error is

given by

thus , with hi0 = si – s0  for i =
1,…,n.

Thus, we have S(l) = lT (s0,θ), where (s0,θ) is a
vector n x1 given by

(8)

In equation (8) we have 

where  and ,

thus  and

 for j = 1,2,3.

The direction of maximum local slope for the linear
predictor is given by equation (9)

 (9)

Graph              is used to assess the influence on the
linear predictor,

MATERIAL AND METHODS

The experimental data were collected in the 2004/
2005 growing season, through a research that was
conducted in a field of commercial grain production
(56.68 ha) in Cascavel, in western Paraná (approx.
24.95º S, 53.57º W, 650 m asl).  The soil was classified
as a clayey Oxisol (specifically Latossolo Vermelho
distroférrico), with a long-term crop succession of oat
in the winter and soybean in the summer.  The local
climate is mild, mesothermal, and super humid, Cfa
(Köppen classification), with moderate temperatures
and well-distributed rainfall.  The mean winter
temperature is below 16 °C, with possible frost, and
summers are hot, with temperatures above 30 ºC.

The soybean variety COODETEC 216 (CD216) was
planted in no-tillage in the experimental area.  For
the study, 47 plots were marked, all of which were
georeferenced using a Trimble GeoExplorer 3 GPS
receiver (Global Positioning System) and the static
method with post-processed differential correction, for
the correct location in the spatial system of geographic
coordinates Universal Transverse Mercatur (UTM),
using metric coordinates.

From each of the 47 plots, the following data were
collected: soybean yield (Prod) [t ha-1], soil density (Des)
[kg dm-3] in the layers 00–10, 10–20 and 20–30 cm
and soil penetration resistance (SPR) [MPa] in the
same layers.

The Des was determined by the volumetric ring
method (Kiehl, 1979), where one repetition was applied
per depth per sampling.  The SPR in the layers examined
was measured with a penetrometer (SC-60, Soil Control;
shaft 600 mm, diameter 9.53 mm), equipped with a
cone at the tip (base area 129.3 mm², diameter
12.83 mm, corner angle 30°).  A mean value of
mechanical resistance to penetration was calculated
based on four random replications per location and
experimental plot.

Initially, descriptive statistics were obtained for
the variables: soybean yield (Prod), and penetration
resistance, and density in the soil layers 00–10, 10–20,
and 20–30 cm deep (RSP0–10, RSP10–20, e RSP20–30;
Des0–10, Des10–20 e Des20–30, respectively) to assess their
behavior, identify the presence of discrepant points
and possible causes.

Thereafter, the spatial analysis of soybean yield
was performed, considering SPR and Des as their
covariates in a linear spatial model.  Then n-variate
Student’s t-distribution and n-variate normal
distribution were taken into account, and the yield
spatial dependence structure was determined for both,
using the method of maximum likelihood.  The linear
spatial model parameters of soybean yield as a function
of covariates and of covariance structure were
estimated by:
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and

where β1,…,β1 and ϕ1,ϕ2, ϕ3 are the unknown
parameters to be estimated.

The cross-validation criterion, Akaike information
criterion (Faraco et al., 2008), and the maximum
value of the log-likelihood function (LLF) were used
for the choice of model space.  Local influence analysis
was performed to identify influential points.  Universal
kriging interpolation of the variable under study was
the final step along with the creation of thematic maps.

For data analysis software R (R Development Core
Team, 2005) was used, and its modules geoR (Ribeiro
JR & Diggle, 2001) and Splancs (Rowlingson & Diggle,
1993).

RESULTS AND DISCUSSION

The soybean yield mean was 3.23 t ha-1, standard
deviation SD = 0.38 t ha-1 and the coefficient of
variation CV = 11.79 %, identifying data homogeneity.
With increasing depth, the covariate of soil penetration
resistance (SPR) decreased the values of the mean,
first quantile (Q1), median and trird qualite (Q3), and
increased akewness and kurtosis.  It was observed
that for SPR, in all layers, there are sample data above
2.60 MPa and that in RSP0–10, 50 % of the data were
over 2.64 MPa.  According to Canarache (1990), SPR
values in the range [1.1 to 2.59] MPa are not very
restrictive for roots, but root-limiting in the range
[2.6 to 5.0] MPa.  It was also observed that the
standard deviation of SPR does not vary much in the
three layers, remaining within 0.49 and 0.56 MPa.

The three layers have homogeneity (coefficient of
variation below 30 %).  For soil density (Des), all
statistical measures showed increases from layer 0–
10 cm to layer 10–20 cm, and reduction in statistical
measures from layer 10–20 cm to layer 20–30 cm,
which features a compacter layer below the soil
surface, that prevents water infiltration.  The mean,
standard deviation, and density coefficient of variation
do not change much in the three layers.  As for SPR,
homogeneity was observed for Des in the three layers
(coefficient of variation below 30 %).

Coefficients of skewness and kurtosis were
calculated.  In covariates RSP20–30, Des10–20, and
Des20–30, the calculated coefficients do not belong to
the 95 % skewness and kurtosis coefficient confidence
intervals constructed by Jones (1969) that
characterize normal distribution of probability.

The box-plot graph of soybean yield (Figure 1a),
shows an outlier point, with a value of 2.09 t ha-1,
which is the 13th value of the data series, located in
the experimental area (Figure 1b).

Spatial analysis: Tables 1 and 2 show results of
linear spatial model parameter estimates of Equation
(10) of soybean yield, setting the following models:
exponential (Exp), Gaussian (Gaus), and Matérn with
kappa parameter at 0.7.  Student’s t-distribution was
considered for data with degrees of freedom equal to 3
(v = 3) and normal distribution.  The Kolmogorov-
Smirnov test was used to confirm the hypothesis that
the population distribution, from which the given
sample was withdrawn, follows a t-distribution
probability with v = 3 degrees of freedom.

Table 2 shows that estimates of parameters 
(nugget effect),  (contribution) and (function of
range) have small variations among the three models,
assuming Student’s t-distribution with v = 3 or with
normal distribution.  For both distributions the lowest
standard deviation was given by the Gaussian model.

Figure 1. (a) Box-plot graph of soybean yield and (b) Sketch of experimental area.
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The degree of spatial variability classified by
Canarache (1990) by using the coefficient of relative
nugget effect (RNE) shows moderate spatial
dependence of the variables studied.

Validation of models: Table 3 shows results of
the selection criteria for cross-validation models,
Akaike information criterion (AIC) and maximum
value of the log-likelihood function (LLF) for the
soybean yield variate.  Considering these results, it

appears that both by the Student’s t-distribution with
v = 3 and by normal distribution, the best-fitting was
the Gaussian model.

Local Influence Analysis: Graphs Ci in
figure 2a,b, considering the limit of the graph defined
in Equation (7), shows that by adopting t-distribution
with v = 3, elements 13 and 30 are identified as
influential for the structure of spatial dependence.
However, when adopting normal distribution, elements

Table 1. Parameters estimated by LM assuming Student’s t-distribution with v = 3 and normal for soybean
yield using theoretical models: exponential (Exp), Gaussian (Gaus), and Matérn with k = 0.7 (Matérn)

Student’s t-distribution with v = 3, N: normal distribution; In brackets, the standard deviations of each parameter estimated.

Table 2. Parameters estimated when adopting Student’s t-distribution with v = 3 and normal distribution
for the yield variable

Student’s t-distribution with v = 3, N: normal distribution; In brackets, the standard deviations of each parameter estimated.
EPR(%) = ϕ2/(ϕ1 + ϕ2): coefficient of relative nugget effect.

Table 3. Results of model validation for the soybean yield variate

t: Student’s  t-distribution with v= 3, N: normal distribution; EM: mean error, EMR: reduced mean error; S: standard deviation
of errors; SER: standard deviation of mean error and EA: absolute error; AIC: Akaike transformation criterium, LLF: maximum
value of log-likelihood function.
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13, 23, and 30 are identified as influential for the
structure of spatial dependence, with greater
emphasis on element 30.

According to graphs lp in figure 2c,d, which assess
the influence on the linear predictor, by adopting t-
distribution with v = 3, element 13 continues to be
considered influential.  However, when normal
distribution was adopted, element 31 was identified
as influential.

Following with the analysis of graphs Ci and lp, it
was decided to remove two observations; 13 (2.09 t ha-1)
and 30 (2.87 t ha-1) separately, to identify the influence
of these points in the study of spatial variability.  To
distinguish the new data sets, we considered Prod:
total data, Prod (13): data excluding element 13, and
Prod (30): data excluding element 30.

Descriptive analysis after the removal of
influential values: Table 4 shows that element 13
produced major changes in the descriptive measures
besides the removal of element 30.  The removal of
these elements also altered data skewness and
kurtosis, but according to criteria used to assess
normality, new data sets still showed normality.

Parameter vector estimate  after
the removal of influential values: The parameters
were estimated for the three models, for the t-
distribution with v = 3 and for the normal distribution,
for each one of the variables Prod, Prod (13), and Prod
(30).  Considering these results, it appears again that
both by the t-distribution with v = 3 and by normal
distribution, the best-fitting model is the Gaussian
model, ie, the removal of influential points did not
alter the choice of the set model.

Figure 2. Graphs Ci and lp for soybean yield.

Table 4. Descriptive statistics for the variables Prod, Prod (13) and Prod (30)

n: number of data; Min.: minimum value; Max.: maximum value; 

1Q

: first quartile; 3Q : third quartile; S: standard deviation; CV:
coefficient of variation; Sk: Skewness and K: kurtosis.
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Comparing the estimates of the parameter vector
 (Table 5) obtained from the data sets Prod (13) and

Prod (30), with the estimates obtained with complete
data (Prod), it appears that both for the t-distribution
(v = 3) and for the normal distribution, estimates 1
and 3 decreased, and estimates 2, 4 and 5
increased.  Estimates 6 and 7 have different
variations when adopting t-distribution and normal
distribution.

Looking at table 6 and considering the t-
distribution (v = 3), it appears that changes in the
parameters of the structure of spatial variability after
the removal of elements 13 (Prod (13)) and 30 (Prod
(30)) were the same, showing reduction of the estimates

1 and 2.  The estimate 3 was reduced when
obtained with data set Prod (13) and increased when
obtained together with the data Prod (30).  These
changes were more significant for the data set Prod
(13) than for Prod (30), when compared to yield (Prod)
of the complete data.

However, considering normal distribution, after
the removal of element 13 (Prod (13)), there was
reduction of 1 and 2 and increase of 3, and after
the removal of element 30 (Prod (30)) 1 there was an
increase and the estimates 2 and 3 were reduced.
But again these changes were more significant for

data set Prod (13) than for Prod (30), when compared
to yield (Prod) of the complete data.  Therefore, it can
be said that the points identified as influential affect
parameter estimates.

When the coefficient of relative nugget effect is
examined in the three data sets, it is possible to note
that there is no change of the spatial dependence, it
remained moderate.

Figure 3 shows the thematic maps of data sets
Prod, Prod (13), and Prod (30), based on universal
kriging interpolation, using the covariates for the
estimation of parameters .

The maps were constructed using the Gaussian
model adopting t-distribution (v = 3) and normal
distribution.  Table 7 shows the percentage of each
class on the maps of the variable.  From the maps of
figure 3 and table 7, it can be observed in figure 3a,b
that there was a reduction of the area with yield in
the first class interval (2.7 and 3.1 t ha-1) changing
from 35.84 to 31.81 % of the area, and also an increase
in areas of the other classes, more pronounced in the
3.1 and 3.3 class t ha-1, from 29.94 to 32.17 %.
Comparing figure 3a,c, it is possible to note a
reduction of the area with yield in the interval of the
1st and 4th classes, and increases of the other classes.

Table 5. Parameters estimated when adopting t-distribution with v = 3 and normal for variables Prod, Prod
(13), and Prod (30), using Gaussian (Gaus)

Student’s t-distribution with v = 3, N: normal distribution; In brackets, the standard deviations of each parameter estimated.

Table 6. Spatial parameters estimated when adopting t-distribution (v = 3) and normal for variables Prod,
Prod (13), and Prod (30), using Gaussian (Gaus)

Student’s t-distribution with v = 3, N: normal distribution; In brackets, the standard deviations of each parameter estimated.
E(%) = ϕ2/(ϕ1 + ϕ2): coefficient of relative nugget effect.
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By comparing figure 3d,e, a reduction in the areas
corresponding to the 1st, 2nd and 4th classes is observed,
and an increase in the 3rd class.  Comparing figure 3d,f
there is a reduction in the 1st and 3rd, and an increase
in the 2nd and 4th classes.  Thus, one can say that the
points identified as influential affect the thematic
maps underlying the management of the area with a
view to future interventions in the soil treatment.  It
is therefore important to take all factors into
consideration that may alter spatial analysis.

CONCLUSIONS

1. Observation 13 is not only an outlier, but also
an influential value. This element (13) had greater
influence than element 30 on the estimate of the

Table 7. Percentage of class on the maps of soybean yield

parameters, as well as on the construction of thematic
maps, when t-distributions or normal distribution is
adopted.

2. In a comparison of the maps, it was noted that
the map generated by t-distribution is less changed
with the removal of an influential value (13) than the
map generated by normal distribution. Therefore, it
is possible to perform spatial analysis from Student’s
t-distribution with little concern about influential
values, which do not influence this distribution.
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