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ABSTRACT: Soil maps provide a method for graphically communicating what is known 
about the spatial distribution of soil properties in nature. We proposed an optimized 
pipeline, named dino-soil toolbox, programmed in the R software for mapping 
quantitative and categorical properties of legacy soil data. The pipeline, composed of 
four main modules (data preprocessing, covariates selection, exploratory data analysis 
and modeling), was tested across a study area of 14,537 km2 located between the 
departments of Cesar and Magdalena, Colombia. We assessed the feasibility of the toolbox 
to model three soil properties: pH at two depth intervals (0.00-0.30 and 0.30-1.00 m), 
soil taxonomy (great group) and taxonomic family by particle-size, according to a 
set of 25 environmental factors derived from auxiliary layers of climate, land cover 
and terrain. As a result, we successfully deployed the proposed semi-automatic and 
sequential pipeline, yielding rapid digital soil mapping (DSM) outputs across the study 
area. By providing multiple outputs such as tables, charts, maps, and geospatial data 
in four main modules, the pipeline offers considerable robustness to support outcomes 
and analysis of a DSM project. Future studies might be interesting to expand on further 
machine learning frameworks for predictive modeling of soil properties such as ensembles 
and deep learning models, which have shown a high performance for DSM.
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INTRODUCTION
Soil classification is a method for organizing and communicating knowledge and perceptions 
about soil properties. Soil maps provide a method for graphically communicating what 
is known about the soil properties spatial distribution in nature. Among the different 
approaches to generate those maps, there is a wide adoption of the digital soil mapping 
(DSM) framework. Incepted by McBratney et al. (2003), the framework has been widely 
applied to produce and analyze spatio-temporal patterns of soil properties according to 
environmental covariates such as climate, terrain, vegetation and land use. 

The existing methods in DSM can be grouped into two main modeling types, conventional 
(statistical and geostatistical) and machine learning (ML). In the former type, a soil 
property is modeled as a linear relationship between the property and state factors, 
accounting for the deterministic portion of the total variation, and a spatially dependent 
stochastic portion by using kriging methods (Keskin and Grunwald, 2018). While scholars 
have proposed multiple geostatistical for soil mapping, they are computationally 
demanding if the sample size and/or the number of prediction locations are large 
(Cressie and Johannesson, 2008). Moreover, modeling non-linear relationships between 
soil properties and numerous cross-correlated environmental covariates are not 
straightforward and introduces additional challenges, e.g., estimating many parameters 
(Wadoux et al., 2020a). Unlike geostatistical methods in which the transformation of 
the original observations is often required to satisfy assumptions, ML algorithms do 
not assume the observations’ distribution. In addition, they are more suitable for large 
area predictions and designed to handle non-linear relations and complexity found in 
soil data (Padarian et al., 2020).

Besides the contribution to soil research, ML-based methods have accelerated the 
production of first versions of digital soil maps at the national (Odgers et al., 2012; 
Akpa et al., 2014; Mulder et al., 2016; Padarian et al., 2017), continental (Hengl et al., 
2015; Ballabio et al., 2016) and global (Hengl et al., 2017) extent. These maps are 
aligned to global efforts in storing, coding and harmonizing legacy soil data, especially 
soil profiles with soil analytical data (Arrouays et al., 2017). In Colombia, the Geographic 
Institute Agustin Codazzi (IGAC), through the Sub-Directorate of Agrology leads the 
inventory, study, analysis and monitoring of the country’s soils for their management to 
support national land planning. As part of the Global Soil Partnership, IGAC has recently 
generated the first version of the national soil organic carbon map (Bolívar Gamboa et al., 
2021) according to FAO’s cookbook (FAO, 2018). Agrosavia recently launched the IRAKA 
platform, the first Colombian soil information system providing spatial data of multiple 
soil properties at the surface layer, from 0.00 to 0.20 m depth (so-called topsoil) across 
the Cundiboyacense high plateau (Araujo-Carrillo et al., 2021). This development roots 
from the concept of hybrid soil information system (SIS) by using both the techniques 
and data of traditional soil studies and DSM models and information technologies such 
as database management, ML-assisted modeling, and geographic web services.

To contribute to the optimization of SIS’s for generating soil-related information in 
digital formats, this study aimed to test the hypothesis that a semi-automatic and 
sequential pipeline, compiling a variety of statistical and ML algorithms commonly used 
in soil mapping research, can offer robustness and rapid experimentation required for 
a DSM project. This involves the deployment of a pipeline in the software R, named 
dinoSoil-toolbox, composed of four sequential modules (data preprocessing, covariates 
selection, exploratory data analysis and modeling) across a large heterogeneous 
geographic area. To achieve this objective, we 1) tested the proposed toolbox for a rapid 
generation of spatial data of three soil properties: pH at two soil layers (0.00-0.30 m 
and 0.30-1.00 m), soil taxonomy (great group) and taxonomic family by particle-size 
from soil databases gathered and curated by IGAC in a mountainous valley terrain of 
the Momposine depression located between the departments of Cesar and Magdalena, 
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Colombia; 2) informed the multiple formats (charts, tabular and georeferenced layers) 
of soil-related information outputs provided by the toolbox for their inspection and 
analysis; and 3) made a shareable and reproducible toolbox following open science 
principles with readable documentation, sample data, and code available in a public 
GitHub repository.

MATERIALS AND METHODS

Study area

The area of interest (AOI) encompasses a surface of 14,537 km2 located between the 
departments of Cesar and Magdalena, Colombia, between 8° 56’ 11” and 10° 52’ 4” 
north latitude and 73° 4’ 56” and -73° 57’ 39” west longitude (Figure 1). This area is part 
of the research program of land policy of IGAC’s Sub-Directorate of Agrology. It has been 
subject to multiple soil surveys, most of them compiled by this program. With elevation 
values between -31 and 5364 m and an average air temperature of 18 °C, the dominant 
landscapes are mountains and floodplains.

Input data

Soil surveys

IGAC’s Sub-Directorate of Agrology provided field and laboratory observational soil 
databases (so-called legacy soil data). Both datasets describe soil properties at a different 
level of detail but at the same unit of observation (profile). The former database contains 
1858 profiles and refers to soil morphological and taxonomical data from soil-survey 
campaigns conducted in 2020. These campaigns were conducted for defining soil 
cartographic units across the study area. After defining these units, more detailed soil 
analytical data were collected and analyzed through laboratory methods. As for laboratory 
database, this one contains information on pH(H2O) (1:2.5), soil texture (sand, silt and 
clay percentage, Bouyoucos method), organic carbon (%, Walkley-Black chromic acid wet 
oxidation method), and bulk density (Mg m-3, core method). Along with these databases, 
an additional database containing the location of soil profiles was also provided.

Auxiliary data

A total of 25 environmental covariates were constructed and harmonized from auxiliary 
layers provided by IGAC’s Sub-Directorate of Agrology and external sources representing 
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Figure 1. Location of the study area at national (a) and local (b) geographical extents. The internal 
divisions refer to administrative boundaries (Departments). 



Coca-Castro et al. Optimized data-driven pipeline for digital mapping of quantitative...

4Rev Bras Cienc Solo 2021;45:e0210084

three soil forming factors: land cover, geomorphology, and climate (Table 1). Most of 
these covariates, 21 out of 25, were derived from a digital elevation model (DEM), which 
also defined a mapping resolution of 250 m. These multiple terrain parameters were 
used to represent the role of geomorphology in the spatial variability of soil properties 
and classes. A multiband raster stack containing all environmental information was 
generated, resampled, and harmonized on a 250 × 250 m pixel size grid over the AOI. 
Note a more detailed study using the proposed pipeline was conducted over the same 
study area but due to restricted access of the DEM used of 30 m, only the results with 
the open-access DEM are reported.  While the community in general has access to 
30 m DEM data, they often require post-processing according to the amount of missing 
data, i.e., holes in the study area. For this investigation, the restricted 30 m version was 
void-filled by DEM post-processing experts. 

Proposed pipeline

The proposed semi-automatic pipeline comprises four main modules: data preprocessing, 
covariates selection, exploratory data analysis and modeling. These modules were built 
upon previous developments (code) provided by IGAC’s Sub-Directorate of Agrology 
and adjusted according to the input data described above. Making decision processes 
are needed at some points along the workflow, mainly in the data preprocessing and 
covariates selection; therefore, we brought statistical criteria that, in conjunction with 
expert knowledge, support these decisions.

Data preprocessing

This step involves constructing data matrices containing soil profiles with each target 
property and related environmental layers. This procedure was conducted by extracting, 
i.e., intersecting the covariate values of each sample point. Then, each matrix is randomly 
divided using 70 % for model training and 30 % for test purposes (Guevara et al., 2018).

Before the above data extraction and partition, some data preparation procedures were 
conducted according to the type of the target property. An additional data preparation 
step is required for quantitative properties, such as pH, before the extraction procedure. 
This preparation refers to interpolate values at user-defined depths. It mainly requires 
reshaping field and/or laboratory databases from horizontal to long format. For the study 
area, pH was interpolated at two layers, 0.00-0.30 and 0.30-1.00 m. Interpolation is a 
common procedure in DSM to make the depth of the input soil dataset uniform. In this 
regard, a quadratic function of depth with equal areas (splines) method (Bishop et al., 
1999) was implemented as part of the tool and used to interpolate pH at the target 
depths. For great group and family by particle-size, only those classes with at least five 
observations were retained following FAO (2018)´s good practices in DSM.

Table 1. Auxiliary layers for modeling soil properties in the study area

Forming 
factor

Number of 
covariates Description Source

Land cover 1

Median values of the 
Normalized Difference 

Vegetation Index (NDVI) from 
January 2019 to August 2020, 

30 m resampled to 250 m

Landsat 8 Collection 1 Surface 
Reflectance acquired from the 
Google Earth Engine platform 

(Gorelick et al., 2017)

Topography 23
Digital elevation model 
(derived layers), 250 m

Physiographic landscape and 
topography, vector

SRTM (CGIAR-CSI, 2018)
Soil map scale 1:100.000 

(IGAC, 2012)

Weather 1 Climate zones according to 
Holdridge classification, vector IDEAM (2015)



Coca-Castro et al. Optimized data-driven pipeline for digital mapping of quantitative...

5Rev Bras Cienc Solo 2021;45:e0210084

After the above data preparation, two final procedures are considered for generating 
the input matrices per target property for modeling. The first procedure refers to 
automatically removing covariates with zero or close to zero variance. The second 
consists of detecting extreme values, i.e., outliers (values below the 5th percentile, 
or above the 95th percentile) per covariate. Users can handle observed outliers by 
different methods such as removal or interpolation with mean or median. For the input 
data of this study, we use the removal option. 

Covariates selection

Recursive feature elimination with Random Forest (RFE-RF) was used to identify the 
optimal subset of covariates useful for prediction. After removing covariates with zero 
or near-zero variance, this algorithm iteratively eliminates the least remaining promising 
predictors based on an initial measurement of variable importance in a reference model, 
in this case, calibrated using the Random Forest algorithm (Guyon et al., 2002). The 
RFE-RF was set with a 5–fold repeated cross-validation, and variable importance was 
assessed by the mean decrease of Gini impurity (Guevara et al., 2018). 

Exploratory data analysis

Conducted over the training input data matrices, these analyses are complementary 
since they determine possible relationships, interactions, or dependencies between the 
covariates. For the descriptive analysis, measures of centralization and dispersion are 
reported. Regarding the statistical analysis, normality tests and non-parametric tests 
are carried out. According to a consensus of the amount of legacy soil data for DSM 
(n >50), the tests of Lilliefors and Jarque Bera are suitable to assess the assumptions 
of normality in quantitative variables. The normality test should be ignored when using 
ML algorithms to handle non-linear relationships, e.g., random forest, support vector 
machine. Kruskal-Wallis (for multiple comparisons) or Wilcoxon-Mann–Whitney U (for single 
comparison) with the Bonferroni correction tests were used to statistically determine 
differences in the distribution of each covariate among the target soil properties. 

Modeling

Model training: five algorithms were selected from different classes to model the target 
soil properties. Table 2 shows the list of ML algorithms considered with their family, 
the name stated in the R library, and the variables modeled. Only Random Forest, 
Extreme Gradient Boosting and Generalized Linear Models predict both quantitative 
and categorical variables. The support vector machine with radial kernel and cubist 
algorithms are specific to model pH as multilayer perception and multinomial logistic 
regression are categorical variables. 

Table 2. List of ML models, family, corresponding name in the R library, and variables modeled

MODEL CLASS Name in R
Variable

pH Great 
group

Texture 
classes

Random Forest Decision trees ranger X X X
Extreme Gradient Boosting Gradient Boosting xgbTree X X X
Generalized linear models Linear models glmnet X X X
Support vector machines 
with linear kernel

Support vector 
machines svmRadial X

Cubist Cubist cubist X
Multilayer Perceptron Neural network mlp X X
Multinomial logistic 
regression Regression multinom X X
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Model evaluation: For selecting the best quantitative and categorical variables model, 
10-fold repeated cross-validation was used from the training partition (Hengl et al., 2017). 
It is worth mentioning, each of these models is calibrated using a random grid search 
with a size of 20 for tuning its main parameters. The value of grid search might change 
according to the user’s knowledge in the study area or modeled soil property. A larger 
number implies longer model training times, in particular for ML algorithms such as SVM. 
It is then suggested to start with a reasonable number as we set in this research.  Once 
the best model with its calibrated parameters is identified per target variable, the external 
performance is measured using the test dataset. The main metrics for assessing model 
performance in both stages were the root mean square error (RMSE) and coefficient 
of determination (R2) for pH, and overall accuracy (OA) and kappa coefficient for the 
categorical variables. In addition to these metrics, other complementary ones were 
considered for the external validation according to the variable type. For quantitative 
variables, the metrics included the R-square (R2), coefficient of efficiency (COE), index of 
agreement (IOA), amount of variance explained (AVE) as reported by Araujo-Carrillo et al. 
(2021). For the categorical variables, the F1-score was incorporated in the assessment. 

Model uncertainty: An essential aspect of DSM involves the measurement of the 
uncertainties of the ML-based predictions. The methods are different according to the 
variable type. We propose to derive estimates of uncertainty for quantitative variables 
by fitting a quantile regression forest model (QRF). As Vaysse and Lagacherie (2017) 
suggested, this method allows interpolating the response of the best model’s residuals 
for each unobserved location. We use parallel computing at the pixel level to compute 
the standard deviation of predictions made with QRF. As this is a pixel-wise process, 
we can obtain a continuous surface of model uncertainty. Regarding the categorical 
variables, the uncertainty is measured by the scaled Shannon Entropy Index (Hs), which 
is calculated by using the probability maps of the target classes (Equation 1) in both 
great groups and taxonomic family by particle-size.

Hs(x) = ∑K
k=1 pk(x) × logK(pk(x))            Eq. 1

in which K is the number of possible classes; logK is the logarithm to base K and pk is 
the probability of class k. Ranging from 0–1, 0 indicates no ambiguity, and 1 indicates 
maximum confusion. This metric should not be confused with classification accuracy 
assessment as Hs is an internal accuracy measure derived from the model and not based 
on a comparison of predictions with validation data, such as the OA and kappa metrics 
(Hengl et al., 2017).

Model use and predictions: it mainly consists in predicting over unobserved locations by 
using the best model fitted in the previous steps. The multi-band raster stack of covariates 
was used for predicting each target variable across the whole surface of the AOI.

Software and implementation

All the steps of the pipeline presented here were implemented in R software version 4.0.2. 
SAGA version 7.8.2 was used to generate the derivatives of DEM. The main R-libraries 
used according to the key steps of the pipeline are presented in table 3. We deployed 
these steps using the sample data on a machine with a 4-core 2.5 GHz Intel Core i5 CPU, 
16 GB RAM and macOS.

RESULTS

Data preprocessing

Input data matrices were generated separately by the target variable. Table 4 presents 
the amount of data, reported with the number of soil profiles after preprocessing, i.e., 
outliers’ removal, and the corresponding sizes of the training and test partitions. The 
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number of profiles decreased from 17 % (pH) to 59 % (taxonomic family by particle-size). 
The modeled classes for the taxonomic family by particle-size and USDA great group 
were 15 and 20, respectively.

Covariates selection

The number of optimal covariates variated by target soil property. Figure 2 shows an 
example of a diagram obtained using the RFE-RF algorithm for pH 0.00-0.30 m. Eight 
covariates are suggested as the optimal number of covariates (see the dot marker). For 
the remaining variables, the optimal covariates were 5, 3 and 7 for pH 0.30-1.00 m, 
great group, and taxonomical family by particle size, respectively. The following section 
provides a list of the covariates selected.

Exploratory data analysis

According to the statistical analysis for pH, the Lilliefors and Jarque-Bera tests indicate 
that this variable is not normally distributed at two layers. The Kruskal-Wallis reveals 
significant differences (p<0.0001) in the distribution between pH 0.00-0.30 m and two 
covariates (climate and terrain) (Table 5).

The post-hoc test using Wilcoxon-Mann–Whitney U with the Bonferroni correction indicated 
the climate levels in which pH 0.00-0.30 m resulted significantly different. They were 
between humid warm and dry warm (p<0.001) as well as very dry warm and dry  
warm (p<0.05). 

Table 3. Lists of key R-libraries used by the pipeline per step

Step R libraries and versions

Preprocessing
read excel files (readxl 1.3.1), geospatial data (raster 3.13-3, rgeos 0.5-5, 

rgdal 1.5-18, sf 0.9-16, smoothr 0.1.2, gdalUtilities 1.1.1, rgee 1.0.6), 
interpolation of soil properties (GSIF 0.5-15, aqp 1.19), machine learning 
(caret 6.0-86), utilities (tidyr 1.1.2, dplyr 1.02, magrittr 1.5, stringr1.4.0)

Covariables 
selection

machine learning (caret 6.0-86, e1071 1.7-4, randomForest 4.6-14, Boruta 
7.0.0), parallel processing (doParallel 1.0.15, snow 0.4-3), utilities (dplyr 

1.02, stringr1.4.0)

Exploratory 
analysis

statistical (psych 2.0.9, nortest 1.0-4, tseries 0.10-48, rstatix 0.6.0, 
PMCMR 4.3, rcompanion 2.3.26), machine learning (caret 6.0-86), plots 

(ggplot2 3.3.2, PerformanceAnalytics 2.0.4), utilities (tidyr 1.1.2, purr 0.3.4, 
multcompView 0.1-8, stringr1.4.0)

Modeling

training (caret 6.0-86), handle geospatial data (raster 3.13-3, sf 0.9-16), 
model evaluation (Metrics 0.1.4, hydroGOF 0.4-0), model uncertainty 

(quantregForest 1.3-7), parallel processing (doParallel 1.0.15, snow 0.4-3), 
plots (ggplot2 3.3.2, ggspatial 1.1.4, viridis 0.5.1), utilities (tidyr 1.1.2, dplyr 

1.02, purr 0.3.4, stringr1.4.0)

Table 4. Number of soil profiles per target variable after preprocessing and related task type. The 
decrease is based on an initial 1858 profiles

Variable Profiles  
(% decrease) Training (70 %) Test (30 %) Task

pH (0.00-0.30 m) 1537 (17 %) 1077 460 Regression
pH (0.30-1.00 m) 1537 (17 %) 1078 459 Regression

Great groups 1069 (42 %) 756 468 Classification 
(20 classes)

Taxonomical family 
by particle-size 762 (59 %) 536 226 Classification 

(15 classes)
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For the categorical variables, the distribution of great groups was significantly different 
(p<0.0001) to DEM as taxonomic family by particle-size classes were against DEM 
(p<0.01) and terrain (p<0.0001) (Table 6). 

Modeling

Overall, Random Forest had the best performance among the five algorithms proposed 
to predict pH at two layers, great group and taxonomic family by particle-size classes. 
Figure 3 illustrates boxplots with the performance of the predictions models of 
pH 0.00-0.30 m and great groups using five trained algorithms (with different configurations,  
i.e., parameters). 

From the different configurations of trained Random Forest algorithms, the one 
that performed best in cross-validation with the training partition was used for 
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Figure 2. Diagram of the RFE-RF curve for pH 0.00-0.30 m showing the number of covariates 
(x-axis) and changes in RMSE values (y-axis).

Table 5. Spearman’s (S) rho test to determine the association between pH at two layers and their optimal continuous covariates. 
Kruskall Wallis (KW) is also provided when comparing the means of pH among groups from optimal categorical variables

pH depth Covariate Source (layer) Test Statistic p-value rho

0.00-0.30 m

Channel Network Base Level

DEM and its 
derivatives

S 178346514.49 0.00 **** 0.14
DEM S 176884870.09 0.00 **** 0.15

MRRTF S 193342679.57 0.019 * 0.07
MRVBF S 190954081.66 0.006 ** 0.08

Valley Depth S 228246417.32 0.001 ** -0.10
SkyViewFactor S 222052147.18 0.029 * -0.07

Terrain Topography KW 149.78 0.00 **** N/A
Climate Weather KW 53.76 0.00 **** N/A

0.30-1.00 m

Channel Network Base Level

DEM and its 
derivatives

S 170484456.77 0.00 **** 0.18
DEM S 170231364.19 0.00 **** 0.18

MRRTF S 188564995.90 0.001 ** 0.10
MRVBF S 202336351.40 0.311 NS 0.03

ValleyDepth S 233699592.63 0.00 **** -0.12
NS: not significant; *: p<0.05; **: p<0.01; ***: p<0.001; ****: p<0.0001. N/A: not applicable.
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independent evaluation with the test set. This assessment can be inspected through 
scatterplots and confusion matrices for quantitative and categorical variables,  
respectively (Figure 4). 

From the above outputs, a set of evaluation metrics were computed for the target 
variables. According to the main metrics, RMSE and Overall Accuracy for quantitative 

Table 6. Kruskall Wallis (KW) test compares means of optimal continuous covariates among groups 
of target categorical variables. Chi-square (CS) test when investigating relationships between 
categorical variables

Variable Covariate Source (layer) Test Statistic p-value

Great groups
Channel Network Base Level DEM and its 

derivatives
KW 742.51 0.37

DEM KW 315.79 0.00 ****
Climate Weather CS 358.28 0.00 ****

Taxonomical 
family by 
particle-size

Channel Network Base Level

DEM and its 
derivatives

KW 527.38 0.43
DEM KW 258.93 0.00 **

MRVBF KW 534.91 0.38
ValleyDepth KW 534.91 0.35

SkyViewFactor KW 522.68 0.48
PositiveOpenness KW 534.91 0.36

Terrain Topography CS 358.28 0.00 ****
**: p<0.01; ****: p<0.0001.

glmnet

glmnet

xgbTree

xgbTree

svmRadial

cubist

ranger

ranger

mlp

multinom

RMSE

0.2 0.4 0.6 0.80.2 0.4 0.6 0.8

0.1 0.2 0.3 0.4 0.5 0.6

Accuracy Kappa

Rsquared

0.1 0.2 0.3 0.4 0.5 0.6

Figure 3. Performance of the trained ML models for predicting pH 0.00-0.30 m (a) and great groups 
(b). The random forest (ranger) obtained the best performance according to the main metrics, 
RMSE and Accuracy, used for quantitative and categorical variables, respectively.
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Figure 4. Scatter plot (a) and confusion matrix (b) charts comparing predictions vs observations in the test set according to the 
best model for predicting pH 0.00-0.30 m and great groups, respectively.
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Figure 5. Uncertainty (left) and prediction (right) maps of pH 0.00-0.30 m (a, b) and great groups (c, d). Open Street Map is used 
as base map.
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and categorical variables, respectively, the best model has error values of 0.63 and 0.68 
for pH 0.00-0.30 m and 0.30-1.00 m, respectively; and accuracy values of 60 and 67 % 
for great groups and taxonomic family by particle-size, correspondingly. 

To report the predictions’ error, the uncertainty estimation was a key to highlight areas 
in which the best models tend to have a lower certainty. For instance, figure 5 shows 
maps of uncertainty and prediction of pH 0.00-0.30 m and great groups. For pH, the 
dark areas indicate a higher standard deviation of the residuals, which can be associated 
with a high error. For great groups, the interpretation remains different as the dark areas 
indicate a higher mix of the mapped classes. These mixed pixels can be related to the 
mapping unit, in this case, 250 m, which might be too coarse to discriminate against a 
dominant great group. 

DISCUSSION
The proposed pipeline, tested over a considerably large area of 14,537 km2, shows its 
feasibility to handle multiple data-driven methodologies (from preprocessing to modeling) 
to generate information related to the spatial distribution of soil properties. According to 
a review on 150 studies about mapping soil properties using ML algorithms, the use of 
legacy samples as they were tested in the pipeline, is predominant for local and regional 
scale areas (about 104 km2) (Wadoux et al., 2020a). For the deployment of the pipeline, 
1858 soil profiles or 7.8 units per km2 were considered. However, the initial density was 
reduced between 17 and 59 % after the preprocessing step per target variable. This 
number is still relatively high if compared with that found by Wadoux et al. (2020a), who 
reported an average sampling of 0.24 units per km2.

The recursive feature elimination algorithm, in this case, RFE-RF widely used in previous 
DSM studies (Shi et al., 2018; Gomes et al., 2019), recursively removes the least important 
covariates from the initial pool, with little or no decrease in model prediction accuracy. 
While the optimal subsets of environmental covariates yielded by the RFE-RF provided 
reasonable results for each target variable according to the mapping resolution of 
250 m, further covariates representing multi-scale or temporal variation should be 
incorporated. The covariates have to represent only soil-forming factors and, where 
possible, a physical explanation to ensure an unbiased ML-DSM soil knowledge generation  
(Wadoux et al., 2020b).

After the selection of covariates, a complementary component of the pipeline is the 
exploratory data analysis. The statistical analysis is an added value to this component 
as it complements the interpretation of predictions obtained by the ML algorithms. For 
instance, the statistical analysis supported a thematic validation conducted over maps 
generated for the same soil properties but with the restricted access DEM. For either 
modeling exercises using open or restricted DEM, it was evident that pH 0.00-0.30 m 
has a significant response according to the climate levels. This evidence corroborates 
previous studies, which indicate soils from different climates have distinct soil. Specifically, 
climate can affect the process of soil chemical reaction and consequently influence soil 
pH (Zhang et al., 2019).

Regarding the algorithms assessed, Random Forest yielded the best performance consistently 
for the target soil properties. This particular algorithm is the most popular for modeling 
quantitative and categorical variables in ML-DSM (Wadoux et al., 2020b). It is worth 
mentioning, the random grid search for parameter tuning allows maximizing the performance 
of all trained models. For instance, the main parameters tuned for the RF algorithm were 
the min node size, number of predictors per division and partition rule. Additionally, to 
facilitate the interpretability of the best model, the pipeline returns charts of the covariate 
importance. For the RF algorithm, the most essential covariates are identified using the 
mean decrease in the variance of the response (Wright and Ziegler, 2017). 
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After selecting the best model, the assessment with the test partition indicates an 
acceptable accuracy according to studies in similar environmental conditions, i.e., tropics 
and input data. For instance, using legacy soil data collected across the Cundiboyacense 
high plateau, Colombia, Araujo-Carrillo et al. (2021) reported a RMSE of 0.57 for pH 
at the topsoil (0.00-0.20 m) and overall accuracy of 48 % for the taxonomic family by 
particle-size classes (9 groups) modeled at a spatial resolution of 125 m using the exact 
Random Forest implementation in R (ranger). While there were no studies conducted 
at similar conditions to compare results of the second depth (0.30-1.00 m), the RMSE 
is close to the first depth. Wadoux et al. (2020a) indicate most of the existing ML-DSM 
studies (around 70 %) predicted a soil property or class for a single depth (topsoil). The 
existing studies at multiple depths mostly focus on modeling soil properties in temperate 
climates (Lacoste et al., 2014; Viscarra Rossel et al., 2015). 

It is worth mentioning the observed performances of the best predictive models are 
considered poor. One of the potential explanations for poor performance is the quality 
and robustness of datasets which are of greater importance than the classifier itself 
(Meir et al., 2018). For reproducibility purposes, we intentionally deployed the tool using 
coarse spatial datasets, harmonized on a 250 × 250 m pixel size according to the spatial 
resolution of the input DEM. Cavazzi et al. (2012) claim the landscape complexity of 
the study area can play a pivotal role in choosing the optimal resolution for modeling 
soil properties. The authors found varied morphological areas with abrupt changes in 
topography, like the Momposine depression in Colombia, can yield better prediction 
results with fine resolutions (30 m). We, therefore, expect the predictive models can 
be improved with a higher resolution DEM. In addition to the spatial datasets, the 
quality of the legacy soil data might impact models’ performance. In figure 4, the 
scatter plot between observations and predictions of pH at 0.00-0.30 m shows a poor 
performance in predicting extreme pH values and minor classes for great groups. 
Taking the imbalance distribution into account would improve the performance of the 
predictive models. In this regard, some scholars have proposed approaches to tackling 
imbalanced datasets from low-quality legacy soil data, few of them tested across 
tropical environments (Hounkpatin et al., 2018). 

Additional to the feature of modeling at multiple depths, the pipeline includes the 
estimation of uncertainty according to the variable type. As suggested by Hengl et al. 
(2017), maps of uncertainty could be potentially very useful for planning new soil surveys. 
Finally, in terms of computing performance, table 7 reports the processing times of the 
pipeline for modeling pH 0.00-0.30 m from the covariate selection step with and without 
parallel processing. This parallel processing feature provides substantial gains for both 
covariates selection and modeling steps. 

CONCLUSIONS
This investigation successfully deployed a semi-automatic and sequential pipeline, 
programmed in the R software, named dinoSoil-toolbox, to generate soil-related information 
in digital formats. As it was shown using legacy soil data from a mountainous valley 
terrain in Colombia, the proposed pipeline facilitates a rapid mapping of quantitative and 

Table 7. Processing times for pH 0.00-0.30 m with(out) parallel processing

Step
Processing time (min)

Single core Four-core (parallel)
Covariate selection 14.6 6.5
Exploratory analysis 0.2 0.2
Modeling 14.0 11.7
Total 28.8 18.4
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categorical soil properties. By providing multiple outputs such as tables, charts, maps, 
and geospatial data in four main steps, the pipeline offers considerable robustness to 
support outcomes and analysis of a DSM project. These components are aligned to 
the recommendations by Wadoux et al. (2020a) of plausibility, interpretability, and 
explainability in ML-DSM developments that enable soil scientists to couple model 
prediction with pedological explanation and understanding of the underlying soil processes. 
Furthermore, we released the pipeline on a public GitHub repository (https://github.com/
acocac/dinoSOIL-toolbox) with readable documentation and facilitating reproducibility 
by making available the input data presented in this research.

Future studies might be interesting to implement further ML frameworks such as 
ensembles and deep learning models, which have shown a high performance for DSM. 
Moreover, while the pipeline was designed under an open science framework for users 
with relative knowledge in R, it would be helpful to design a GUI that facilitates its use 
for non-programming experts. 
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