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SUMMARY

Although the determination of remaining phosphorus (Prem) is simple,
accurate values could also be estimated with a pedotransfer function (PTF) aiming
at the additional use of soil analysis data and/or Prem replacement by an even
simpler determination.  The purpose of this paper was to develop a pedotransfer
function to estimate Prem values of soils of the State of São Paulo based on
properties with easier or routine laboratory determination.  A pedotransfer function
was developed by artificial neural networks (ANN) from a database of Prem values,
pH values measured in 1 mol L-1 NaF solution (pH NaF) and soil chemical and
physical properties of samples collected during soil classification activities carried
out in the State of São Paulo by the Agronomic Institute of Campinas (IAC).
Furthermore, a pedotransfer function was developed by regressing Prem values
against the same predictor variables of the ANN-based PTF.  Results showed that
Prem values can be calculated more accurately with the ANN-based pedotransfer
function with the input variables pH NaF values along with the sum of exchangeable
bases (SB) and the exchangeable aluminum (Al3+) soil content.  In addition, the
accuracy of the Prem estimates by ANN-based PTF were more sensitive to increases
in the experimental database size.  Although the database used in this study was
not comprehensive enough for the establishment of a definitive pedotrasnfer
function for Prem estimation, results indicated the inclusion of Prem and pH NaF
measurements among the soil testing evaluations as promising ind order to provide
a greater database for the development of an ANN-based pedotransfer function
for accurate Prem estimates from pH NaF, SB, and Al3+ values.

Index terms: Artificial neural networks, Modeling, Multiple regression analysis.
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RESUMO:      ESTIMATIVA DO FÓSFORO REMANESCENTE POR FUNÇÃO
DE PEDOTRANSFERÊNCIA

Embora de simples determinação, valores exatos de fósforo remanescente (Prem) poderiam
ser estimados com uma função de pedotransferência visando ao aproveitamento adicional de
resultados de análises de avaliação da fertilidade do solo ou sua substituição por uma
determinação ainda mais simples.  O objetivo do presente trabalho foi desenvolver uma função
de pedotransferência para estimar o Prem em amostras de solos do Estado de São Paulo a
partir de atributos de mais fácil ou rotineira determinação laboratorial.  Uma função de
pedotransferência foi desenvolvida por meio de redes neurais artificiais a partir de um conjunto
de dados formado por valores de Prem, de pH determinado em solução de NaF 1 mol L-1 (pH
NaF) e de outros atributos de amostras coletadas durante as atividades de classificação de solo
realizadas no Estado de São Paulo pelo Instituto Agronômico de Campinas.  Adicionalmente,
uma função de pedotransferência foi ajustada por meio de regressão linear múltipla,
considerando-se o Prem como variável dependente das mesmas variáveis de entrada da função
de pedotransferência desenvolvida via redes neurais artificiais.  Os resultados indicaram que
valores mais exatos de Prem podem ser estimados pela função de pedotransferência baseada
em redes neurais artificiais tendo como variáveis de entrada valores de pH NaF, da soma de
bases trocáveis (SB) e do teor de alumínio trocável (Al3+).  Adicionalmente, observou-se que a
exatidão das estimativas de Prem fornecidas pela rede neural artificial foi mais sensível ao
aumento do número de dados experimentais utilizados para o desenvolvimento da função de
pedotransferência.  Apesar de o conjunto de dados utilizado não ser suficientemente abrangente
para o estabelecimento de uma função de pedotransferência definitiva para estimativas de
Prem, os resultados sugerem como promissora a inclusão de medidas de Prem e de pH NaF
entre as análises de avaliação da fertilidade do solo com vistas à formação de um maior banco
de dados, que permita o desenvolvimento de uma função de pedotransferência baseada em
redes neurais artificiais para o cálculo de valores suficientemente exatos de Prem a partir de
valores de pH NaF, SB e Al3+.

Termos de indexação: regressão linear múltipla, modelagem, redes neurais artificiais.

INTRODUCTION

The remaining phosphorus (Prem) refers to the P
concentration that remains in solution after shaking
a soil sample for a certain period with a solution with
known initial P concentration.  Since the soil adsorbs
part or almost all added P, the Prem values are lower
than the initial P concentration.  This index was
proposed by Bache & Williams (1971) to estimate the
P adsorption capacity based on only one measurement
and similarly to the adsorption isotherm method.  The
reference method for Prem measurement consists of
shaking 2.5 g of air-dried fine earth (ADFE) for one
hour with 25 mL of 0.01 mol L-1 CaCl2 containing
60 mg L-1 P, filtering and/or centrifuging the soil
suspension and determining the P concentration in
the clear solution (Alvarez V. et al., 2000).

Although unlike anions such as nitrate that are
adsorbed through electrostatic attraction, phosphate
is mainly adsorbed by exchange with surface –OH
groups of minerals such as kaolinite, gibbisite, and
goethite (Mott, 1981), it can be stated that soils with
low Prem values tend to have higher levels of positive
surface charges.  In general, minerals such as gibbsite
and goethite are more abundant in highly weathered

soils; since these minerals have surface –OH groups
that can be changed with the phosphate anion and
high values of point of zero charge, not only P
adsorption is high in gibbsite and goethite-richer soils
but also the number of positive surface charges, even
under moderate acidity.  Therefore, one can infer that
soils with low Prem values can adsorb greater
amounts of anions through both inner- and outer-
sphere complexations.

The advantage of using Prem as anion-adsorption
index is associated to its simpler and faster
determination and the greater Prem dependency on
the soil mineralogy than the clay content.  The values
of Prem and anion exchange capacity (AEC) in two
soils with identical contents of clay-sized particles and
same pH value measured in 0.01 mol L-1 CaCl2 can
therefore differ considerably.  Although the organic
matter can delay P adsorption (Afif et al., 1995), in
general, most tropical soils have low organic C contents
and it can therefore be considered that the Prem values
are essentially defined by the mineralogical
compositions of the silt and clay fractions.

Phosphorus adsorption is related to the agronomic
efficiency of P-bearing fertilizers (Novais & Smyth,
1999); for this reason, the amount of P fertilizer applied
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to a soil to ensure an adequate P nutrition of a crop
must be greater in soils with higher gibbsite and
goethite amounts; therefore, it is possible that the
values of phosphate buffering capacity differ in two
soils with the same clay contents.  Likewise, tropical
soils with low organic matter contents and identical
clay contents can also differ in the acid buffering
capacity due to mineralogical differences.  The
existence of soils with equal clay contents but different
mineralogies makes Prem more adequate than the
clay content as an auxiliary attribute for the
interpretation of chemical soil analysis results in
relation to the availability of some plant nutrients
such as phosphorus, sulfur, and zinc, as well as for
the calculation of the soil lime requirement as
suggested by Alvarez V. et al. (2000).

In general, the soil P adsorption capacity is
evaluated by the adsorption isotherm method; this
approach is however rather time-consuming for
routine chemical analyses in soil testing laboratories.
Besides Prem, another possibility of evaluating the
soil P adsorption consists of the soil pH values
measured in 1 mol L-1 NaF (pH NaF).  This
measurement was promising for the indirect
evaluation of P adsorption in Australian soils (Singh
& Gilkes, 1991; Gilkes & Hughes, 1994; Bolland et
al., 1996).  Afterwards, Alves & Lavorenti (2004)
verified that higher pH NaF values are observed in
soils with greater gibbsite contents, which partially
explains the inverse correlation between Prem and
pH NaF values.  This consistent correlation and the
simpler measurement could suggest the use of pH
NaF instead of Prem as ancillary variable for the
recommendation of P, S and lime requirements.
However, the logarithmic scale makes the capacity of
differentiating soils of pH NaF far lower than that of
Prem, i.e., two soils having different Prem values can
present similar pH NaF ones.  Nevertheless, Alves &
Lavorenti (2006) observed that the soil clay content
could be replaced by pH NaF as predictive variable of
Prem in multiple regression models.

Although the laboratory determination of Prem is
quite simple, the possibility of estimating it with
sufficient accuracy by other variables of routine or
even simpler determination can make this
determination quicker and cheaper.  Such estimates
can be obtained by so-called pedotransfer functions,
which consist of equations or sets of equations that
allow for estimating the value of a soil property from
others with simpler and faster determination
(Budiman et al., 2003).  Usually, pedotransfer
functions are developed from multiple linear regression
models; however, more recently, these functions can
be developed by using the artificial neural networks
(ANN) approach, which are capable of identifying non-
explicit relationships among the variables of a dataset
(Tafner et al., 1996; Haykin, 2001; Braga, et al., 2007).

The purpose of this study was to develop
pedotransfer functions by artificial neural networks

and multiple linear regression for the calculation of
remaining P values for soils in the State of São Paulo.

MATERIAL AND METHODS

The 89 soil samples used in this research were
gotten from the collection formed along the soil
classification activities carried out by the Agronomic
Institute of Campinas (IAC) on the São Paulo State.
These samples were collected from profiles and used
as air-dried fine earth for Prem determinations
according to the reference method proposed by Alvarez
V. et al. (2000).  Furthermore, pH measurements were
conducted after shaking 1 g of soil for 1 h with 40 mL
of 1 mol L-1 NaF (Bolland et al., 1996).  The other
data characterized were the soil contents of clay-sized
particles, of oxidazable C, and of exchangeable Al, Ca,
Mg, and K.  Additionally, the total acidity (H + Al),
the pH values measured in water and in 1 mol L-1

KCl and the soil contents of Fe, Al, and Si extractable
with 9 mol L-1 H2SO4 under boiling were also
considered in the dataset used for the pedotransfer
function development.  Except for Prem and pH NaF,
the values of the above-mentioned properties were
provided by IAC; some of them had been cited in
publications of Valladares et al. (1971), Oliveira et al.
(1976), Oliveira et al. (1979), Oliveira & Prado (1984;
1987), Prado et al. (1999), Bertolani et al. (2000),
Menk & Coelho (2000), Bognola et al. (2003), and Prado
et al. (2003).

The artificial neural network-based pedotransfer
function was developed with the option neural network
toolbox of the MATLAB software.  The applied network
consisted of the perceptron multilayer whose topology
was defined through successive tests.  The dataset
was normalized in the interval [0;1] and split in test
subsets consisting of 50, 70, and 90 % of the total data.
Several trainings and validations were carried out in
order to find the best combination of input variables
and the best network topology.  Basically, the ANN
was developed based on the so-called supervised
training (Braga et al., 2007), a procedure in which
the inputs and outputs are provided so as to fit the
network parameters.  The linear, the hyperbolic
tangent sigmoid and the logistic sigmoid activation
functions were tested, whereas the learning
algorithms consisted of variations of backpropagation
one (Levenberg-Marquartd, resilient backpropagation,
and scaled conjugate gradient).  The conclusion
criterion used in the network test was the early
stopping whereas the network performance was
evaluated by the mean square error in the test stage
and by the sum of the squared differences between
measured and estimated Prem values by the
pedotransfer function.

A second pedotransfer function was developed by
multiple linear regression analysis with the software
Statistical Analysis System – SAS 9.1 with the
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objective of establishing a functional relationship
between Prem and the input variables that gave rise
to the best artificial neural network.  Similarly to the
ANN, the regression equations were fitted with 50,
70 and 90 % of the total data and tested with the
respective complimentary validation datasets.

The predictive capacities of the two pedotransfer
functions were compared based on the fitting of the
equation Preme = a + b Premm and by the calculation
of the sum of the squared differences between the
estimated (Preme) and the respective measured
remaining phosphorus (Premm) values.

RESULTS AND DISCUSSION

The studied samples derived from different soil
orders, mainly Latosols and Argisols (Embrapa, 2006)
(Table 1).  Most soils were clayey or very clayey (clay
> 350 g kg-1), strongly (4.3 < pH H2O < 5.3) to
moderately acidic (5.4 < pH H2O < 6.5) (Embrapa,
2006) with differing weathering degrees
(0.21 < Ki < 4.98).  Although 73 % of the samples can
be considered highly weathered (Ki < 2.0), only 17 %
can be considered oxidic (Kr < 0.75) (Embrapa, 2006).
The pH NaF values ranged from 8.3 to 10.5 and were
inversely correlated with the Kr index (r = 0.51**),
indicating an increasing trend of pH NaF when the
samples become less kaolinitic (Alves & Lavorenti,
2004).  Base saturation was low (V < 50 %) in about
75 % of the samples and the clay fraction activity low
(T < 27 cmolc kg-1) (Embrapa, 2006) in almost all
samples and the net surface charge negative (ΔpH < 0)
(Mekaru & Uehara, 1972).  The exchangeable Al3+

contents ranged from 0 to 5 cmolc kg-1 whereas the
respective values of Al saturation and total acidity
(H + Al) ranged from 0 to 98.5 % and from 0 to
15.4 cmolc kg-1.  The sum of bases was directly
correlated with the Ki index (r = 0.53**), in agreement
with the loss of exchangeable bases that occurs as
weathering advances.

The Prem values ranged from 0 to 47.3 mg L-1 and
although being inversely correlated with the soil clay
content (r = -0.67**), were better correlated with pH
NaF (r = -0.92**).  This higher correlation can be
ascribed to the inclusion in the pH NaF values of OH-

ions displaced from the mineral surfaces by the F- ion
(Perrott et al., 1976).  Considering that the released
OH- surface groups are those that would be exchanged
with phosphate ions in the adsorption process, higher
pH NaF imply in lower Prem values.

The ANN-based pedotransfer function indicated
that Prem values could be estimated from pH NaF
values along with the correspondent soil contents of
exchangeable Al3+ and of the sum of exchangeable
bases (SB) (SB = Ca2++ Mg2+ + K+).  The best developed
network used the logistic sigmoid model as activation

function and the resilient backpropagation test
algorithm with 21 cycles.  The network topology was
[3 14 1], corresponding to 3 neurons in the activation
layer, 14 neurons in the intermediary and one neuron
in the output layer.

Despite the high correlation of pH NaF with Prem,
the latter was not correlated with Al3+ nor with SB
values.  On the other hand, Falcão & Silva (2004)
observed that the soil maximum P adsorption capacity
was directly correlated with the soil content of
exchangeable Al and inversely correlated with base
saturation in Amazonian alic soils.  These correlations
are possibly associated to the soil pH effect on P
adsorption since soils rich in exchangeable Al are
necessarily acidic, which favors P adsorption; likewise,
pH values in soils with higher base sum and/or base
saturation are normally higher, which, in turn,
hampers P adsorption (Novais & Smyth, 1999).  The
fact that the variables SB and Al3+ are not correlated
with Prem but nevertheless constitute, along with
pH NaF, the best set of Prem predictive variables in
the ANN-based pedotransfer function can be ascribed
to the ANN capability of extracting non-explicit
information from the dataset as well as solving non-
linear problems.

The pedotransfer function developed by multiple
regression analysis was fitted from the variables pH
NaF, SB, and Al3+ considering the three subsets of
adjustment (50, 70, and 90 % of total data) and
validation (50, 30, and 10 % of total data).  In all cases,
the estimate of Al3+ coefficient was statistically zero
(p > t > 5 %); for the adjustment subset with 90 % of
data, only the pH NaF coefficient was statistically
not zero (Table 2).

Although for both pedotransfer functions the
accuracy of the Prem estimates increased with the
augment of the dataset used for training or fitting
(Figure 1), it was observed that this effect was greater
for the ANN-based pedotransfer function.  The
summarized results (Table 3) show a reduction of
almost 10 times in the sum of squared differences
between the estimated and the respective Prem values
of the validation subset when the network training
subset consisted of 90 % instead of 50 % of the total
data.  For this same variation in the data subsets
used to fit the multiple linear regression model, the
sum of squared differences between estimated and
measured Prem values was reduced by about six times.

The superior performance of artificial neural
networks can be ascribed to their capacity of detecting
relationships between input and output variables,
which in most cases are either unknown or unnoticed.
Another probable reason can be associated to the
presence of distorted or incorrect information in the
dataset.  The artificial neural networks are less
vulnerable to approximated data and/or to the presence
of distorted data since they are able to manipulate
approximated or even inaccurate information, a rather
unusual feature in other mathematical models.
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Figure 1. Scatter diagrams relating the measured remaining phosphorus (Prem) to the estimated values by
the artificial neural network (a, b, c) and by multiple regression analysis (d, e, f). nD = dataset size used
in the development of the pedotransfer function; nV = dataset size used in the validation of the
pedotransfer function.

The use of Prem as determinant variable for soil
stratification in classes of P, S, and Zn availability
was presented by Alvarez V. et al. (2000).  In this
paper, the authors also suggested Prem as an estimator
of the soil acidity buffering capacity for the calculation
of lime requirements of cropped soils.  This Prem use
can, for instance, allow for the identification of different
buffering capacities in soils with identical clay-sized

particle contents.  In this context, soils poor in organic
matter and with low Prem values tend, due to their
greater oxide contents, to require greater lime
amounts for a same pH variation than soils with
higher Prem values.  The utility of the ANN-based
pedotransfer function to estimate the acidity buffering
factor Y proposed by Alvarez V. et al. (2000) (  = 4.002
– 0.125901 Prem + 0.001205 Prem2 – 0.00000362 Prem3)

Table 2. Results of the multiple regression analyses relating remaining phosphorus (Prem) to soil pH
measured in 1 mol L-1 NaF (pH NaF) and to sum of bases (SB) (Prem = a0 + a1 pH NaF + a2SB) based on
different sizes of measured data sets
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was tested considering the three subsets of training
and validation data used in the development of the
pedotransfer function.  The results (Figure 2)
reiterated the higher sensitivity of the ANN-based
pedotransfer function to the increase in the test
database in relation to the accuracy of the Prem
estimates.  The comparisons of the Y values calculated
from measured with estimated Prem values revealed
a progressive decrease in the sum of the squared
differences (SSD) between the Y values calculated from
measured and estimated Prem values as the ANN
was developed from 50 % (SDD = 8.7) to 70 % (SDD =
2.8) and 90 % (SDD =0.9) of total input data in the
training phase.

Despite the simple laboratory determination of
Prem, the establishment of Prem estimates by a ANN-
based pedotransfer function that are accurate enough
for agricultural applications would allow for an
additional use of both SB and Al3+ values routinely

Figure 2. Scatter diagrams relating the soil acidity buffering factor Y calculated from measured remaining
phosphorus (Y-Premm) to values calculated from remaining phosphorus (Y-Preme) estimated by artificial
neural network-based pedotransfer functions developed from testing datasets consisting of 50 (a), 30
(b) and 10 % (c) of the total data.  = 4.002 – 0.125901 Prem + 0.001205 Prem2 – 0.00000362 Prem3 (Alvarez
V. et al., 2000).

determined in the different Brazilian soil fertility
laboratories.  Although the number of samples used
in this study did not allow for the development of a
definitive pedotransfer function for Prem estimates,
it is believed that the formation of a massive database
containing Prem, pH NaF, SB, and Al3+ values is
advisable for the posterior development of an ANN-
based pedotransfer function which, once implemented
as software, wil make an immediate calculation of
remaining P values possible.

CONCLUSIONS

1. It was possible to estimate remaining P values
with an artificial neural network-based pedotransfer
function using soil pH values measured in 1 mol L-1

NaF, soil contents of exchangeable Al, and the sum of
soil contents of Ca, K and Mg as predictor variables.

Table 3. Results of the simple linear regression analyses relating measured remaining phosphorus (Premm)
with estimated values (Preme) based on pedotransfer functions developed by artificial neural networks
(ANN) and by multiple regression analysis (MRA)

(1) y = a + bx. (2) and (3) Respective confidence intervals calculated at 95 % for the intercept a and slope b. (4) Sum of squared
differences between the measured remaining phosphorus values  of the subset of validation data and the respective values
estimated by the pedotransfer function.
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2. The remaining P values estimated by the
artificial neural network approach were more accurate
than those obtained by multiple regression analysis.
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