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Restrição de água em plantas de feijão-caupi [Vigna unguiculata (L.) Walp.]: 
Alterações metabólicas e indução de tolerância

Alberto S. de Melo2* , Yuri L. Melo2 , Claudivan F. de Lacerda3 ,
Pedro R. A. Viégas4 , Rener L. de S. Ferraz5  & Hans R. Gheyi5

ABSTRACT: Global climate change tends to intensify water unavailability, especially in semi-arid regions, directly 
impacting agricultural production. Cowpea is one of the crops with great socio-economic importance in the Brazilian 
semi-arid region, cultivated mainly under rainfed farming and considered moderately tolerant to water restriction. 
This species has physiological and biochemical mechanisms of adaptation to these stress factors, but there is still no 
clear vision of how these responses can not only allow survival, but also ensure yield advances in the field. Besides 
acclimation mechanisms, the exogenous application of abiotic (salicylic acid, silicon, proline, methionine, and 
potassium nitrate) and biotic (rhizobacteria) elicitors is promising in mitigating the effects of water restriction. 
The present literature review discusses the acclimation mechanisms of cowpea and some cultivation techniques, 
especially the application of elicitors, which can contribute to maintaining crop yield under different water scenarios. 
The application of elicitors is an alternative way to increase the sustainability of production in rainfed farming in 
semi-arid regions. However, the use of eliciting substances in cowpea still needs to be carefully explored, given the 
difficulties caused by genotypic and edaphoclimatic variability under field conditions.
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RESUMO: As mudanças climáticas globais tendem intensificar a indisponibilidade de água, principalmente na 
região semiarida brasileira, impactando diretamente a produção agrícola. O feijão-caupi é uma das culturas de 
grande importância socioeconômica no semiárido, cultivado principalmente em regime de sequeiro e considerado 
moderadamente tolerante à restrição hídrica. Essa espécie apresenta mecanismos fisiológicos e bioquímicos de 
adaptação a esses fatores de estresse, mas ainda não há uma visão clara de como essas respostas podem permitir 
não apenas a sobrevivência, mas também garantir avanços na produtividade no campo. Além dos mecanismos de 
aclimatação, a aplicação exógena de eliciadores abióticos (ácido salicílico, silício, prolina, metionina e nitrato de 
potássio) e bióticos (rizobactérias) é promissora na mitigação dos efeitos da restrição hídrica. A presente revisão 
de literatura pretende discutir os mecanismos de aclimatação do feijão-caupi e algumas técnicas de cultivo, 
principalmente a aplicação de eliciadores, que podem contribuir para a manutenção da produtividade da cultura 
em diferentes cenários hídricos. A aplicação de eliciadores é uma forma alternativa de aumentar a sustentabilidade 
da produção em sistemas de sequeiro no semiárido. No entanto, o uso de substâncias eliciadoras no feijão-caupi 
ainda apresenta um campo a ser explorado com cautela, dadas as dificuldades causadas pela variabilidade genotípica 
e edafoclimática em condições de cultivo no campo.
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HIGHLIGHTS:
Acclimation mechanisms of cowpea include metabolite synthesis for reactive oxygen species elimination and drought tolerance.
Elicitors modulate the activity of antioxidant metabolism enzymes in cowpea plants.
Interaction between Bradyrhizobium and salicylic acid modulates water deficit effects on cowpea crop.
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Introduction

Semi-arid region has a high variation in the pattern and 
total annual rainfall, as well as high levels of solar radiation and 
air temperature. In this region, rainfed farming is a high-risk 
acitivity concerning the number and intensity of dry spells 
through the rainy season, especially in the years of severe 
drought (Marengo et al., 2017; Cavalcante et al., 2021). Besides, 
in this region, a portion of the water sources has high salt levels, 
which, associated with low technological level employed in 
agriculture, make it even more difficult to grow cowpea [Vigna 
unguiculata (L.) Walp.] in this region (Oliveira, 2015; Chagas 
et al., 2018; Tavares et al., 2021). 

Thus, efforts are required to increase drought tolerance 
in genotypes adapted to semi-arid conditions and, currently, 
cultivated by farmers (Gomes et al., 2020; Tankari et al., 2021). 
There is also a reason for the improvement of cultivars with 
good performance as well as using techniques such as abiotic 
elicitors that minimize the effects caused by environmental 
stresses and strengthen this tolerance in cowpea (Boukar et 
al., 2019; Andrade et al., 2021; Narayana & Angamuthu, 2021). 

This literature review presents the results of research on 
cowpea production in semi-arid regions, particularly in the 
Brazilian semi-arid region, and highlights the concern with 
rainfed and irrigated crops due to global climate changes. The 
stress tolerance mechanisms and use of elicitors to mitigate the 
effects of water deficit on cowpea are also discussed, focusing 
on physiological and biochemical processes, especially those 
related to osmotic adjustment and antioxidant metabolism.

Climate Change and Cowpea Cultivation 
in Semi-Arid Environments

Global climate change scenarios result in increasingly 
higher temperatures and deregulate rainfall patterns (Stocker et 
al., 2014), which intensifies the problems of water shortage and 
harms all sectors of the economy, mainly in semi-arid regions 
(Marengo et al., 2017; Del Buono, 2020). These scenarios 
have important implications for global food policy. The Food 
and Agriculture Organization (FAO) of the United Nations 
(UN) predicts a 34% increase in the human population by 
2050, concentrated mainly in urban areas, which will restrict 
the production and distribution of food and result in hunger 
and malnutrition, especially among low-income groups 
(Philippidis et al., 2021). In this context, the combined effect 
of population growth and climate change will have a major 
impact on agricultural production, driven by increased demand 
for food production (Blattner, 2020).

Although climate change is a threat to socio-economic 
development, agricultural production activities are generally 
more vulnerable to environmental constraints than other 
production sectors. The problem becomes more complex for 
semi-arid regions, such as the Northeastern region of Brazil, 
which has a difficulty in keeping the farmer in the countryside 
because it is hampered by the delimitation of agricultural areas 
due to drought problems, the main constraints for agricultural 
development (Camara et al., 2018). In this region, it is necessary 
to use irrigation and nutrient application to achieve adequate 

yield levels, which raises the cost of crop production each 
year and encourages producers to seek new options for their 
production arrangements (Liu et al., 2020; Melo et al., 2020).

In semi-arid regions knowledge of the crops that are 
tolerant to soil salinity and drought conditions is of great 
importance for the success of small and large farms, and their 
harvests could improve as climatic risks are minimized. In the 
concept of Climate-Smart Agriculture (CSA), FAO indicates 
leguminous crops as one of the most promising to integrate 
into the set of innovations, tools, and agricultural policies that 
can help farmers to produce food under new climate change 
scenarios (Palombi & Sessa, 2013).  Legume plants are still an 
important part of the subsistence cultivation system in the 
arid and semi-arid regions in the world since they are a rich 
source of nutrients and require simple cultivation techniques 
(Choudhary, 2013).

Among leguminous species, cowpea is a plant with good 
adaptability in tropical and subtropical regions in the world 
(Rathore et al., 2015; Narayana & Angamuthu, 2021). In semi-
arid regions, cowpea plays a fundamental role because it has 
low demands for agricultural inputs, and it tolerates water 
deficit. As consequence, this species shows relatively better 
growth and development than other crops in the regions with 
semi-arid climate (Silva et al., 2016). 

In this scenario, cowpea stands out as one of the main 
cultivation alternatives in the semi-arid region, mainly due 
to its moderate degree of tolerance to water deficit, wide 
temperature range (between 18 to 34 °C), and high nutritional 
value for human consumption (Silva et al., 2016). This species 
is grown on more than 10 million hectares worldwide, located 
mainly in the tropical and subtropical regions of America, Asia, 
and Africa, with global production of around 5.5 million tons 
(FAO, 2017). Thus, the main motivations to increase the yield 
of this crop are the profitability and efficiency of the cultivation 
system (Freitas et al., 2019; Azevedo et al., 2021).

The high nutritional value of cowpea is evidenced by the 
excellent source of energy (64-69% of carbohydrates), mineral 
nutrients (K, Ca, Mg, P, Zn, Fe, Na) (Famata et al., 2013), and 
high protein content (20-25%), with emphasis on the levels of 
globulins (51% of total proteins) and albumin (45% of total 
proteins) (Freitas et al., 2004). Its nutritional characteristics 
provide enormous potential to combat malnutrition in 
vulnerable populations in tropical and subtropical areas of the 
world because the quality of its protein is an essential natural 
supplement to the diet, especially of children, pregnant women, 
and breastfeeding women (Modu et al., 2010).

Unlike the common bean (Phaseolus vulgaris L.) production 
scenario, the cultivation of cowpea in Northeastern Brazil 
has increasing demand and reached 1.05 million hectares of 
cultivated area and production of 409.3 thousand tons in the 
2018/2019 harvest, which represents 67% of the cultivated area 
and 55% of the production of total beans production in this 
region (CONAB, 2019). Adaptability to drought conditions, 
low production costs, short time to complete phenological 
cycle, and seed production under adverse edaphoclimatic 
conditions are characteristics that increase its farming and 
relevance to the local economy (Colman et al., 2014; Medeiros 
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et al., 2017; Martins et al., 2018). Growing cowpea is extremely 
important because it provides employment and generates 
profits for small and medium farmers (Camara et al., 2018).

Despite the low water demand compared between the 
harvests 2010/2011 and 2018/2019, there was a reduction of 
around 33%, both in planted area and yield in the Northeast 
region of Brazil (CONAB, 2019). This decrease overlies the 
drought and severe drought scenarios in this region between 
the years 2012 and 2016, associated with irregular and poorly 
distributed rainfall during the rainy season (Marengo et 
al., 2017; Martins & Vasconcelos Júnior, 2017). In addition, 
the production of cowpea cultivars can also be affected by 
air temperature, and when the night temperature reaches 
around 35 °C, cowpea flowers abort due to the little pollen 
development, resulting in pod malformation (Hall, 1993). In 
this case, global warming may damage cowpea yield even more, 
especially in the tropical semi-arid region.

Cowpea Development and Metabolic 
Changes Under Water Deficit

Despite the adaptability and tolerance to water deficit 
shown by cowpea (Dutra et al., 2015), this species has most 
of its physiological and biochemical processes affected by 
water restriction. The germination capacity of cowpea seeds 
is one of the most common methods to ascertain the species 
tolerance to water deficit since it corresponds to one of the 
most critical stages of its life cycle (Araújo et al., 2017). During 
the germination process, water restriction increases the time 
and decreases the efficiency of germination (Araújo et al., 
2018). Impairment in the seed’s reserves degradation inhibits 
metabolic and biochemical processes, which slows down and/
or reduces germination, impacting the initial development 
of more sensitive cowpea genotypes under water restriction.

Disturbances caused by water deficit in the germination 
process have a direct effect on the initial growth of seedlings, 
in which the inhibition of cell expansion and division can 
reduce their height by up to 80%, as well as negatively affect 
the cowpea biomass (Araújo et al., 2017). At the beginning of 
the vegetative stage, decreasing cell water content destabilizes 
the membrane system because the damage to its structures 
impairs its functionality. In the thylakoid membrane, for 
example, dehydration causes a reduction in the concentrations 
of chlorophylls, photosynthetic pigments necessary in the light 
energy conversion into carbohydrates (Khadour et al., 2020).

In cowpea, the damage to membrane systems induces 
reactive oxygen species (ROS) production during the 
beginning of vegetative growth. Increasing ROS stimulates the 
synthesis of carotenoids, pigments that protect plants against 
oxidative damage when chlorophyll ‘a’ and ‘b’ production is 
compromised. However, in a substrate water potential lower 
than -0.8 MPa, ROS production generates serious consequences 
to shoot and root biomass accumulation of cowpea, in addition 
to limiting seedling height (Araújo et al., 2017; Dutra et al., 
2017; Araújo et al., 2018; Tavares et al., 2021).

In cowpea, the water potential of tissue is reduced under 
water deficit conditions, which decreases cell turgor (Goufo et 
al., 2017; Merwad et al., 2018; Silva et al., 2019). During water 

stress, the decline of leaf water potential alters the permeability 
and sustainability of the membranes and interferes with the 
regular plants’ functions mainly due to osmotic and redox 
system imbalance, which causes losses in the developing 
organs during the growth stage (Silva et al., 2019). As a result 
of the oxidative stress, an increment in lipid peroxidation is 
observed in cowpea under water restriction, mainly due to 
the overproduction of hydrogen peroxide (H2O2). Cowpea 
genotypes more susceptible to stress have higher levels of 
malonaldehyde (MDA) than more tolerant ones (Carvalho et 
al., 2019) (Figure 1).

For mitigating the impacts of free radicals, cowpea plants 
have developed an efficient antioxidant metabolism with 
superoxide dismutase (SOD, EC 1.15.1.1), an enzyme that 
metabolizes the superoxide ion (O2

•-) into H2O2, ascorbate 
peroxidase (APX, EC 1.11.1.11) and catalase (CAT), which act 
in hydrogen peroxide (H2O2) removal. In addition, guaiacol 
peroxidase (POX, EC 1.11.1.7) and glutathione reductase (GR, 
EC 1.6.4.2) control ROS levels, at suitable concentrations for 
cellular function, and promote important changes in the water 
deficit tolerance mechanism (Dutra et al., 2017; Carvalho et 
al., 2019; Silva et al., 2019; Andrade et al., 2021) (Figure 1).

There is strong evidence of osmoprotective action 
associated with antioxidant metabolism, mediated by 
compatible solutes that contribute to cellular homeostasis and 
support development in the plant. In an attempt to minimize 
cellular water imbalance, cowpea seedlings produce compatible 
osmolytes, for example, proline, which promotes osmotic 
adjustment and prevents tissue dehydration (Araújo et al., 
2017). The root proline synthesis, at the beginning of vegetative 
growth is an important cowpea tolerance strategy, because this 
organ is the first in contact with the substrate and responsible 
for absorbing the soil solution. Proline concentration is 
generally higher in shoot and root of tolerant genotypes when 
compared to those susceptible to stress (Dutra et al., 2017) 
(Figure 1).

It is important to highlight that the non-enzymatic 
components, such as flavonoids and proline, have antioxidant 
activities in cowpea under water deficit, becoming an integral 
part of the adaptive response, rather than just indicators of 
stress (Goufo et al., 2017; Silva et al., 2019; Andrade et al., 
2021). Proline accumulation is compatible with osmoprotective 
strategies, that is, it is regulated between source and sink organs 
in the plant similarly, regardless of the genotype (Zegaoui et 
al., 2017). In cowpea under water restriction, proline synthesis 
induction can increase the osmolyte concentration by more 
than 100% (Silva et al., 2019; Andrade et al., 2021), which 
confirms its importance in maintaining the cell water status 
of this species.

At the end of the cowpea vegetative stage, water restriction 
decreases stomatal opening and makes carbon assimilation 
difficult in photosynthetic metabolism (Melo et al., 2018b), 
which impairs growth, dry mass production, leaf area expansion 
(Melo et al., 2018a; Andrade et al., 2021), pod weight, and yield 
(Dutra et al., 2015). The regulation of stomatal conductance is 
controversial, since the assimilation of CO2 under water stress 
contributes to the inefficiency of water use by the plant, while 
the water regulation by stomatal closure decreases water loss 



Water restriction in cowpea plants [Vigna unguiculata (L.) Walp.]: Metabolic changes and tolerance induction 193

Rev. Bras. Eng. Agríc. Ambiental, v.26, n.3, p.190-197, 2022.

SA - Salicylic acid; Si - Silicon; PR - Proline; Me - Methionine; PH - Plant hormones; H2O2 - Hydrogen peroxide; O2
●- - Superoxide anion; ᴪw - Water potential; RWC - Relative water 

content; ASC - Ascorbate; SOD - Superoxide dismutase; APX - Ascorbate peroxidase; CAT - Catalase; POX - Phenol peroxidase; GR - Glutathione reductase; CAR - Carotenoids; FP 
- Free proline; SP - Soluble proteins; TC - Total carbohydrates; RB - Rhizobacteria; ROS - Reactive oxygen species; Aux - auxins; Gib - Gibberellin; Cyt - Cytokinin; ABA - Abscisic 
acid; ET - Ethylene; (+) - Increase  and (-) - Reduction

Figure 1. Water deficit in cowpea plants: metabolic changes and tolerance induction

through transpiration. However, stomatal closure restricts CO2 
input and induces a decline in cowpea net photosynthetic rate 
(Figure 1). Such effects reduce the efficiency of instantaneous 
carboxylation, due to the unavailability of ATP and NADPH, 
in addition to the substrate for Ribulose-1,5-bisphosphate 
carboxylase/oxygenase (RuBisCO) (Melo et al., 2018b; Osei-
Bonsu et al., 2021).

More severe drought conditions gradually impose 
non-stomatal limitations in the photosynthetic pathway 
because of deficiencies in the chloroplast components, such 
as membrane integrity, lipid composition, photosynthetic 
pigments, photosystem efficiency, and activity of enzymes 
such as RuBisCO (Gomes et al., 2020). However, during the 
cowpea vegetative stage, there is evidence that reductions in 
photosynthetic capacity, observed in some genotypes, are 
mainly attributed to stomatal closure, being considered one 

of the first responses of the species and an efficient adaptive 
mechanism for transpiration control. The decrease in stomatal 
opening also limits the supply of CO2 to RuBisCO, which 
causes metabolic regulation through the reduction of net 
photosynthesis (Melo et al., 2018b; Carvalho et al., 2019; 
Gomes et al., 2020). Osei-Bonsu et al. (2021) add that cowpea 
appears to have mechanisms that allow the light reactions to 
maintain high activity and low propensity for ROS generation, 
through a combination of highly active alternative energy 
sinks, including photorespiration and other, yet undefined, 
electron sinks.

For most cowpea genotypes, a reduction in grain yield, 
after water deficit, can be caused by water status reduction 
that decreases stomatal conductance and compromises 
photosynthetic processes, as well as energy expenditure to 
synthesize secondary metabolites, which compromises leaf 
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area and production (Dutra et al., 2015). It should be noted 
that leaf area is more sensitive to water deficit than the rate 
of photosynthesis because its reduction is related to a change 
in the elasticity of the cell wall and a possible decrease in its 
turgor pressure.

Understanding the biochemical and physiological 
mechanisms, as well as the evident joint action between 
different mechanisms of water deficit tolerance, supported 
by the genetic basis of cowpea tolerance, demonstrates the 
existence of intergenotypic variability concerning the response 
to drought. These differential responses provide relevant 
information on the physiological and metabolic mechanisms 
bearing stress tolerance in different cowpea cultivars.

Farming Strategies to Induce Cowpea 
Tolerance to Water Deficit

Conventional cowpea breeding has been widely carried 
out by different national and international research programs 
to strengthen this crop, including increasing abiotic stress 
tolerance. However, this process is time-consuming, laborious, 
and expensive. Agricultural practices, which minimize the 
effects of stress on plants, have received more attention and, the 
most promising ones involve exogenous use of biotic or abiotic 
compounds applied exogenously (Chakraborty et al., 2019).

The use of elicitors, due to their low molecular weight, 
stimulates a range of biochemical reactions that modify the 
secondary metabolism of plants (Chakraborty et al., 2019). 
In cowpea, for example, the eliciting action of salicylic 
acid, silicon, and rhizobacterial inoculation contributes to 
the adaptive mechanism of plants under water restriction 
conditions (Silva et al., 2019; Andrade et al., 2021).

Exogenous elicitors are important to intensify the 
mechanisms of stress tolerance in plants and include growth 
regulators or their derivative products such as salicylic acid, 
silicon, jasmonic acid, nitric oxide, sugars, amino acids, and 
phytohormones (Ahmad et al., 2019a, b). These exogenous 
elicitors have been advantageous and could be a new strategy 
for inducing adaptative responses in plants, whether they are 
constitutive or induced in nature. Thus, studies with these 
substances are necessary because they contribute to the 
improvement of production chains in modern agriculture 
and, at the same time, they collaborate to reduce harmful 
compounds to the environment and human health.

As an abiotic elicitor, the inoculation of diazotrophic 
bacteria Bradyrhizobium can be used to improve cowpea 
cultivation because it has the potential to increase the grain 
yield of this species, and it may provide an amount of nitrogen 
equivalent to fertilization with 70 kg ha-1 of urea in the Brazilian 
savanna (Batista et al., 2017). Additionally, inoculation with 
Bradyrhizobium promotes improvements in water homeostasis 
and redox metabolism of cowpea, in addition to ensuring the 
maintenance of crop growth and increments of up to 100% 
in biomass of this species under deficit irrigation (Andrade 
et al., 2021).

Diazotrophic bacteria establish beneficial relationships 
with bean plants. In this symbiosis, the bacteria use part of 
the host plant’s photoassimilates as an energy source and, in 

return, fix atmospheric nitrogen (N2) to the plant. Besides 
fixing nitrogen, rhizobium promotes crop development 
under drought conditions (Barbosa et al., 2018; Verma et al., 
2020). However, the efficient symbiotic compatibility between 
Bradyrhizobium and cowpea under stress conditions depends 
on the genotype. Overall, rhizobacterial inoculation is an 
important tool that ensures the maintenance of antioxidant 
metabolism because it preserves low levels of ROS and 
enhances the activity of enzymes such as SOD, CAT, and APX, 
improving photosynthesis and the development of cowpea 
(Andrade et al., 2021) (Figure 1).

Biotic agents (rhizobacteria) associated with inorganic 
compounds (salicylic acid) improve the efficiency of nitrogen 
assimilation of cowpea, regardless of the phenological stage, as 
there is an improvement in the biochemical reactions of plants 
due to the considerable production of proteins and enzymes. 
In these cases, nitrogen fertilization can induce positive effects 
on enzymes and proteins responsible for the synthesis and 
maintenance of plasma membranes, which allows a better 
arrangement of their structures during the storage period 
and seed germination (Possenti & Villela, 2010). The process 
of soaking cowpea seeds into a potassium nitrate solution 
(10-5 M) for eight hours promotes an increase in germination 
percentage, emergence speed index, seedling height, activities 
of SOD, CAT and APX, and proline, even under water deficit 
(Araújo et al., 2017).

The joint action of biotic and abiotic elicitors under stress 
conditions, such as the inoculation of Bradyrhizobium plus 
the foliar application of salicylic acid (SA), is also an efficient 
strategy to maintain leaf water status and plant growth, 
mediated by increasing the concentration of osmoregulators 
and antioxidant enzymes activity (Andrade et al., 2021). This 
interaction is positive and suggests a good joint action of these 
two factors mitigating the effects of water deficit and increasing 
cowpea drought tolerance. While SA increases the synthesis 
of osmoprotectants and the activity of antioxidant enzymes, 
rhizobium acts by increasing the levels of nutrients and 
compatible osmolytes, represented by increments in growth 
indicators and proline (Andrade et al., 2021).

The use of SA alone induces metabolic responses in cowpea, 
despite the effects of water restriction (Figure 1). Classified 
as a phenolic compound, SA is derived from two metabolic 
pathways: the isochorismate and phenylalanine pathways, 
both from the chorismate (Lefevere et al., 2020). Widely 
distributed in plants, SA is related to numerous regulatory 
functions of metabolism and promotes the activation of defense 
mechanisms against water deficit.

Soaking cowpea seeds with 10–5 M SA increases the 
germination percentage and the antioxidant activity of SOD, 
CAT, and APX in seedlings under negative water potential in 
the substrate (Dutra et al., 2017; Araújo et al., 2018; Uddin et al., 
2021). In cowpea under water restriction, 1 mM of SA prevents 
damage to membranes and increases proline content (Araújo et 
al., 2018). Besides this, 1 mM of SA regulates the initial growth 
and increases the levels of chlorophyll ‘a’, ‘b’, and carotenoids 
under water deficit (Araújo et al., 2018). After foliar application 
of 300 ppm of SA on cowpea irrigated with 70% of available 
water, this species reached an yield of approximately 2,732 and 
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2,640 kg ha-1 in the first and second crop cycles, respectively 
(Nassef, 2017). For Nassef (2017), SA induces the expression 
of 11 new proteins in cowpea under water deficit, which are 
related to improved growth and production of this species.

As an elicitor of agricultural interest, 100 and 200 mg L-1 
of silicon minimize the deleterious effects of water deficit on 
different cowpea cultivars by increasing leaf water potential, 
proline concentration, and ascorbate peroxidase activity, 
which guarantees the growth of the species (Silva et al., 2019). 
Additionally, Si improves the anatomical characteristics of 
cowpea leaf under water restriction, which ensures better 
translocation of photoassimilates and nutrients to be used 
in different metabolic processes. Such effects contribute to 
vigorous growth and promote structural changes in xylem 
diameter, mesophyll, and epidermis thickness, and in cross-
sectional area occupied by the collenchyma, resulting in 
a satisfactory yield under moderate or severe water stress 
(Merwad et al., 2018).

Si deposition occurs in various parts of the plants, especially 
on the epidermis of shoots. This element effectively contributes 
to increase the absorption of other nutrients, alters the gas 
exchange mechanism, increases antioxidant defense system, 
promotes changes of osmolytes and phytohormones, besides 
acting directly in reducing transpiration with its deposition into 
leaf apoplast, even in leguminous plants (Zhang et al., 2017).

Exogenous doses of 6.0 mM of proline and 4.0 mM of 
methionine applied to cowpea plants under water deficit also 
change the osmotic metabolism and activity of antioxidant 
enzymes, which contributes to the absorption of N, P, and K, 
improving the growth and production (Merwad et al., 2018). 
Under moderate water deficit, both proline, and methionine 
enhance the activities of SOD, CAT, and peroxidase (POD) 
enzymes, which eliminate ROS from cellular metabolism and 
ensure the maintenance of water status and membrane integrity 
by reducing leakage of electrolytes that guarantee the regulation 
of photosynthetic processes (Sharma et al., 2012; Merwad et 
al., 2018; Oliveira, 2020).

Proline and methionine regulate cellular water status 
and promote the efficient use of water by plants due to cell 
membrane stability improvement. This action has a positive 
impact on the integrity of photosynthetic pigments, increasing 
the concentration of compatible osmolytes and improving the 
growth and yield of cowpea (Merwad et al., 2018; Oliveira, 
2020). The application of 20 mM proline in two cowpea 
development stages (six leaves and flowering) also increases 
seed production under water restriction (Ardabili et al., 2013).

Due to its relative rusticity and efficient defense mechanisms 
to overcome the adverse effects of water restriction, cowpea has 
developed several changes in its metabolism that involve cellular 
signaling pathways, which ensure survival at the expense of 
production. To surpass the effects of water restriction, in 
addition to cowpea’s endogenous apparatus, it has been 
demonstrated that the exogenous application of biotic and/
or abiotic elicitors agents can increase secondary metabolism 
and induce a wide range of defense mechanisms in plants to 
improve drought tolerance. Under such circumstances, it is 
relevant to develop procedures that increase the yield of the 
crop at a low cost so that it can, at the same time, be profitable 
to the farmer and accessible to the entire population.

Conclusions

1. Drought conditions impact cowpea physiology and 
yield under tropical semi-arid conditions. Technology that 
can mitigate these effects was developed to improve the 
capacity for internal defense by the exogenous application of 
eliciting substances. This technology can increase cowpea yield 
even when subjected to moderate water deficit, ensuring the 
sustainability and profitability of crops.

2. Several biotic (diazotrophic bacteria) and abiotic (silicon, 
salicylic acid, jasmonate, selenium, ascorbate, potassium nitrate) 
elicitors act simultaneously in different adaptive ways, especially 
inducing antioxidant defense (enzymatic and non-enzymatic), 
osmoprotection and secondary metabolism, and increase the 
capacity of cowpea plants to face water restriction.
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