rbeaa
Revista Brasileira de Engenharia Agrícola e Ambiental
Rev. bras. eng. agríc. ambient.
1415-4366
1807-1929
Departamento de Engenharia Agrícola - UFCG
RESUMO
Congea tomentosa é uma trepadeira indicada para cobertura de mandris, grades e cercas. A determinação da área foliar é útil para entender a relação planta-ambiente e facilitar estudos agronômicos sobre transpiração, necessidade de água, interceptação de luz e atividade fotossintética. O objetivo deste estudo foi obter uma equação alométrica para estimar a área foliar de C. tomentosa através da medição das dimensões foliares. As análises foram realizadas em 200 folhas de diferentes formas e tamanhos de 10 plantas adultas escolhidas aleatoriamente cultivadas em condições de campo. O comprimento da folha, a largura da folha, o produto do comprimento pela largura e a área foliar foram determinados. Modelos de regressão linear, linear sem intercepto, quadrático, cúbico, potência e exponencial foram utilizados para estimar a área foliar. O coeficiente de determinação, índice de concordância de Willmott, critério de informação de Akaike, raiz do quadrado médio do erro e índice BIAS foram usados para determinar o melhor modelo. A área foliar de C. tomentosa pode ser satisfatoriamente estimada por meio de um método não destrutivo que utiliza medidas de dimensões foliares. A equação ŷ = 0,63 × LW (Folha: L = comprimento, W = largura) estima a área foliar de C. tomentosa de forma prática e rápida, com 99,15% de precisão. A estimativa da área foliar de C. tomentosa utilizando modelos estatísticos é menos dispendiosa e de fácil acesso aos pesquisadores e produtores desta planta.
Introduction
Congea tomentosa (Verbenaceae) is a woody species and a perennial vine native to India and Malaysia. The leaves are 10 to 16 cm in length and arranged oppositely, with elliptical oval, tomentose, and cartaceous type characteristics, marked by veins on the adaxial surface (Silva et al., 2017). This plant is used in ornamental gardens, including arbors, railings, and fences, in full sun (Sartin et al., 2014) and is used for medicinal purposes by indigenous people (Faruque et al., 2019). Therefore, evaluating its growth, development, and reproduction is relevant, considering the scarcity of information about this plant and its importance in gardening.
Leaves are important for controlling photosynthesis, respiration, transpiration, and other physiological attributes related to different ecosystem processes (Wales et al., 2020). Leaf area directly influences the use of natural resources, such as water, nutrients, and light. Estimation of the leaf area of C. tomentosa is of great importance because the plant is cultivated mainly for its leaves. Leaf area can be measured using direct or indirect and destructive or non-destructive methods (Keramatlou et al., 2015). Successive evaluations of the same plant can be performed quickly and accurately using indirect and non-destructive methods with allometric equations based on the length and width of the leaf (Ribeiro et al., 2020; Silva et al., 2020). Knowledge of the leaf area of ornamental plants is necessary for planning the plant’s acclimatization conditions because of its landscape uses (Toscano et al., 2019) and, at physiological levels, knowing the plant’s growth potential. The objective of this study was to obtain an allometric equation to estimate the leaf area of C. tomentosa by measuring the leaf dimensions.
Material and Methods
The research was performed at the Teaching, Research, and Extension Unit (UEPE), Floricultura-Belvedere, Universidade Federal de Viçosa, Viçosa, Minas Gerais State, Brazil (20º 45’ S, 42° 52’, and altitude of 690 m). Congea tomentosa seedlings were produced in 10 L pots filled with soil and manure (2:1, v:v). The seedlings were transplanted to the soil and placed in a panel (1 × 2.4 m) after the formation of roots and leaves. The plants were grown for 12 months before leaf collection. Two hundred leaves of different shapes and sizes (with greater data variability) were randomly collected from 10 adult plants grown under field conditions in March 2021. Healthy leaves without symptoms of attack by pests, diseases, or the influence of abiotic factors were selected (Figure 1).
Figure 1
Maximum length (L) and width (W) of leaf of Congea tomentosa used to estimate leaf area
The maximum length (L) and maximum width (W) was measured from digitized images using a digital flatbed scanner (Epson Scan I365) with a known scale. The leaf area was measured with ImageJ® software (LA) (Ribeiro et al., 2018). In ImageJ, the images of the leaves were contrasted to facilitate the determination of the leaf area. Descriptive analysis was used to obtain the maximum and minimum values, mean, median, total amplitude, variance, standard deviation, standard error, and coefficient of variation from the length (L), width (W), product (LW), and digital leaf area (LA).
Regression analysis was used to obtain equations for calculating the leaf area of C. tomentosa. The following statistical equations were used for the analysis: linear, linear without intercept (0.0), quadratic, cubic, power, and exponential (Table 1).
Table 1
Statistical models used to estimate the leaf area of Congea tomentosa
Model
Model description
Linear
y
^
=
β
0
+
β
1
*
x
+
e
i
Linear (0.0)
y
^
=
β
1
*
x
+
e
i
Quadratic
y
^
=
β
0
+
β
1
*
x
+
β
2
*
x
2
+
e
i
Cubic
y
^
=
β
0
+
β
1
*
x
+
β
2
*
x
2
+
β
3
*
x
3
+
e
i
Power
y
^
=
β
0
*
x
β
1
+
e
i
Exponential
y
^
=
β
0
*
β
1
x
+
e
i
* - Significant at p ≤ 0.05 by F test
ŷ - Leaf area; x - Leaf dimensios; β0, β1, β2, β3 - Model coefficients; ei - Random error
The criteria of the highest coefficient of determination (R2), Pearson’s correlation coefficient (r), Willmott’s agreement index (d) (Willmott,1981), lower Akaike information criterion (AIC) (Akaike, 1974), mean absolute error (MAE), root mean square error (RMSE) (Janssen & Heuberger, 1995), and BIAS index closest to zero (Leite & Andrade, 2002) were used to select the best equations. The statistical program R (R Core Team, 2021) was used to perform all analyses.
Results and Discussion
The descriptive analysis of the data obtained from C. tomentosa, including the minimum, maximum, mean, median, variance, total amplitude, standard deviation, standard error, and coefficient of variation, is presented in Table 2.
Table 2
Minimum, maximum, mean, total amplitude, median, variance, standard deviation, standard error, and coefficient of variation (CV) for length (L), width (W), length by width (L.W) and digital leaf area (LA) of Congea tomentosa leaves
Descriptive statistic
L
W
LW
LA
(cm)
(cm2)
Minimum
6.56
2.28
14.94
9.79
Maximum
17.77
8.38
143.09
93.91
Mean
12.28
5.48
69.80
43.97
Total amplitude
11.20
6.11
128.15
84.13
Median
12.16
5.39
65.93
41.55
Variance
5.49
1.40
721.56
275.80
Standard deviation
2.34
1.18
26.86
16.61
Standard error
0.17
0.08
1.90
1.17
CV (%)
19.08
21.61
38.48
37.77
Leaf length (L) varied from 6.56 to 17.77 cm, with an average of 12.28-11.20 cm in amplitude. The average leaf width was 5.48 cm, with values ranging from 2.28 to 8.38 cm and 6.11 cm in amplitude. The length and width (LW) product ranged from 14.94 to 143.09 cm2, with an average of 69.80 cm2 and 128.15 cm in amplitude. The digital leaf area (LA) had an average of 43.97 cm2, with a variation from 9.79 to 93.91 cm2 and 84.13 in amplitude. Variation among the leaf dimensions is common in plants, especially those with a climbing habit. Climbing plants can adapt to diverse habitats (Fiorello et al., 2020). The statistical models used in this study have several advantages over destructive leaf area methods, as they are simple to use in field conditions and do not require plant destruction (Leite et al., 2019). The scatter plots between the pairs of variables L, W, and LA showed different relationships suggesting adjustments to linear and non-linear models (Figure 2).
Figure 2
Histograms and model adjustments between leaf length (L), leaf width (W), product of length and width (LW) and digital leaf area (LA) of Congea tomentosa leaves
The percentage distribution of the 200 leaves of C. tomentosa concerning size range was determined (Figure 3). The leaf area of more than 20% of the leaves varied between 36.51 to 45.50 cm². This factor is positive for this study because it has different leaf sizes, and the analyses have satisfactory accuracy and good data distribution (Shi et al., 2019).
Figure 3
Percentage distribution of actual leaf area (LA) size classes of 200 leaves of Congea tomentosa
Using simple linear measures to predict the leaf area of horticultural plants eliminates the need for expensive leaf area measurements (Hernández-Fernandéz et al., 2021). Small-scale farmers and researchers with limited financial resources could use this method. Regression models relating length (L), width (W), and their product (LW) to leaf area (LA) were evaluated (Table 3). The coefficient of determination for the linear models ranged from 0.8991 to 0.9978; quadratic models from 0.9115 to 0.9830; cubic models from 0.9130 to 0.9830, and power models from 0.9124 to 0.9832. The exponentials with smaller R² ranged from 0.8991 to 0.9348. Therefore, all the models estimated the leaf area of C. tomentosa with coefficients of determination (R²) of 0.8991-0.9978. Such variations were reported for Triticum aestivum (Apolo-Apolo et al., 2020) and Vitis vinifera (Teobaldelli et al., 2020). The decision on which model to use depends mainly on the study’s objective and the desired accuracy of the estimates (Teobaldelli et al., 2019).
Table 3
Equations, Pearson’s correlation coefficient (r), coefficient of determination (R²), Akaike information (AIC), root mean square error (RMSE), mean absolute error (MAE), and Willmott’ agreement index (d), obtained as a function of measurements of dimensions of Congea tomentosa leaves
Model
x
r
R²
AIC
RMSE
MAE
d
Equation
CV (%)
Linear
L
0.9485
0.8991
1236.86
5.2500
3.9781
0.9729
y
^
=
-
38
.
59
+
6
.
72
*
*
×
L
36.76
Linear
W
0.9733
0.9471
1107.62
3.8004
2.8562
0.9863
y
^
=
-
30
.
84
+
13
.
65
*
*
×
W
37.22
Linear
LW
0.9917
0.9832
880.02
2.1300
1.6525
0.9958
y
^
=
1
.
18
+
0
.
61
*
*
×
L
W
37.56
Linear (0.0)
LW
0.9915
0.9978
885.59
2.1925
1.7095
0.9957
y
^
=
0
.
63
*
*
×
L
W
37.25
Quadratic
L
0.9552
0.9115
1211.49
4.9027
3.6013
0.9766
y
^
=
-
1
.
78
+
0
.
43
n
s
×
L
+
0
.
26
*
*
×
L
2
36.88
Quadratic
W
0.9765
0.9530
1084.91
3.5728
2.6538
0.9880
y
^
=
-
9
.
93
+
5
.
75
*
*
×
W
+
0
.
71
*
*
×
W
2
37.28
Quadratic
LW
0.9915
0.9830
881.91
2.1508
1.6754
0.9957
y
^
=
0
.
89
+
0
.
62
*
*
×
L
W
-
0
.
00005
n
s
×
L
W
2
37.56
Cubic
L
0.9562
0.9130
1209.07
4.8488
3.5910
0.9771
y
^
=
48
.
44
-
13
.
06
*
×
L
+
1
.
42
*
×
L
2
-
0
.
03
*
×
L
3
36.90
Cubic
W
0.9767
0.9532
1085.09
3.5565
2.6443
0.9881
y
^
=
5
.
60
-
3
.
61
n
s
×
W
+
2
.
51
*
×
W
2
-
0
.
11
n
s
×
W
3
37.28
Cubic
LW
0.9915
0.9830
880.01
2.1514
1.6815
0.9957
y
^
=
-
2
.
3
+
0
.
78
*
*
×
L
W
-
0
.
002
*
×
L
W
2
+
0
.
00001
n
s
×
L
W
3
37.56
Power
L
0.9552
0.9124
1209.43
4.9020
3.6008
0.9766
y
^
=
0
.
31
*
*
×
L
1
.
96
*
*
36.85
Power
W
0.9763
0.9531
1084.58
3.5877
2.6734
0.9878
y
^
=
2
.
26
*
*
×
W
1
.
73
*
*
37.16
Power
LW
0.9915
0.9832
879.64
2.1494
1.6662
0.9957
y
^
=
0
.
71
*
*
×
L
W
0
.
97
*
*
37.56
Exponential
L
0.9482
0.8991
1239.13
5.2798
3.8593
0.9719
y
^
=
6
.
74
*
*
×
1
.
16
*
*
L
36.25
Exponential
W
0.9668
0.9348
1153.10
4.2581
3.2546
0.9822
y
^
=
8
.
59
*
*
×
1
.
33
*
*
W
36.53
Exponential
LW
0.9668
0.9348
1116.72
4.2581
3.2546
0.9822
y
^
=
17
.
89
*
*
×
1
.
01
*
*
L
W
36.56
x - Measurements of leaf dimensions; ŷ - Estimated leaf area (LA). **, *, ns - Significant at p ≤ 0.01, 0.05 and not significant, respectively, by F test; CV - Coefficient of variation
The equation that satisfactorily estimated the leaf area of C. tomentosa as a function of leaf measurements was the linear model without the intercept using the product of length and width (LW), which had the highest R² value (0.9978) and d (0.9957), with low RMSE (2.1925) and AIC values (885.59) (Table 3). The equation ŷ = 0.63 × LW constructed from this model is the most suitable to estimate the leaf area of C. tomentosa. Similar results were obtained in studies on Tectona grandis(Silva et al., 2020), Theobroma cacao (Schmildt et al., 2017), Manihot sp. (Leite et al., 2021), Erythrina velutina (Ribeiro et al., 2022), Juglans regia (Keramatlou et al., 2015), Talinum triangulare, Talinum paniculatum (Oliveira et al., 2019) and Eustoma grandiflorum (Dias et al., 2022). By estimating the leaf area using non-destructive models, it is possible to explain plants’ agronomic and physiological behavior concerning the availability of radiation and water (Salazar et al., 2018).
The relationship between the digital leaf area and length × width (Figure 4A) and the estimated and observed digital leaf area (Figure 4B) was evaluated. The coefficient of determination (R2) is almost similar (0.9832 and 0.9831), suggesting that the data dispersions were minimal with the objective line, indicating that the linear model with the intercept satisfactorily describes the leaf area (Oliveira et al., 2019).
Figure 4
Relationship between digital leaf area (LA) and length × width (LW) (A) and relationship between estimated digital leaf area and observed digital leaf area (B)
** - Significant at p ≤ 0.01 by F test
Leaf area estimation by non-destructive methods is used widely in studies of photosynthetic capacity, fertilization levels, and water availability, among others (Suárez et al., 2022), and is an excellent low-cost tool for use in field crops.
Conclusions
The leaf area of C. tomentosa can be estimated reasonably with a non-destructive method, which uses measurements of leaf dimensions.
The equation ŷ = 0.63 × LW (where L and W are, respectively, the length and width of the leaf) estimates the leaf area of C. tomentosa in a practical and fast way, with a correlation coefficient of 0.9915.
The estimation of the leaf area of C. tomentosa by statistical models is less expensive and easily accessible to researchers and producers of this plant.
Acknowledgments
The authors thanks to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (financial code 001) and to the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) for the scholarships awarded to authors.
Literature Cited
Akaike, H. A new look at the statistical model identification. IEEE Transactions on Automatic Control, v.19, p.716-723, 1974. https://doi.org/10.1109/TAC.1974.1100705
Akaike
H.
A new look at the statistical model identification
IEEE Transactions on Automatic Control
19
716
723
1974
https://doi.org/10.1109/TAC.1974.1100705
Apolo-Apolo, O. E.; Pérez-Ruiz, M.; Martínez-Guanter, J.; Egea, G. A mixed databased deep neural network to estimate leaf area index in wheat breeding trials. Agronomy, v.10, p.1-21, 2020. https://doi.org/10.3390/agronomy10020175
Apolo-Apolo
O. E.
Pérez-Ruiz
M.
Martínez-Guanter
J.
Egea
G.
A mixed databased deep neural network to estimate leaf area index in wheat breeding trials
Agronomy
10
1
21
2020
https://doi.org/10.3390/agronomy10020175
Dias, M. G.; Silva, T. I. da; Ribeiro, J. E. da S.; Grossi, J. A. S.; Barbosa, J. G. Allometric models for estimating the leaf area of lisianthus (Eustoma grandiflorum) using a non-destructive method. Revista Ceres, v.69, p.7-12, 2022. https://doi.org/10.1590/0034-737X202269010002
Dias
M. G.
Silva
T. I. da
Ribeiro
J. E. da S.
Grossi
J. A. S.
Barbosa
J. G.
Allometric models for estimating the leaf area of lisianthus (Eustoma grandiflorum) using a non-destructive method
Revista Ceres
69
7
12
2022
https://doi.org/10.1590/0034-737X202269010002
Faruque, M. O.; Ankhi, U. R.; Kamaruzzaman, M.; Barlow, J. W.; Zhou, B.; Hao, J.; Hu, X. Chemical composition and antimicrobial activity of Congea tomentosa, an ethnomedicinal plant from Bangladesh. Industrial Crops and Products, v.141, p.1-10, 2019. https://doi.org/10.1016/j.indcrop.2019.111745
Faruque
M. O.
Ankhi
U. R.
Kamaruzzaman
M.
Barlow
J. W.
Zhou
B.
Hao
J.
Hu
X.
Chemical composition and antimicrobial activity of Congea tomentosa, an ethnomedicinal plant from Bangladesh
Industrial Crops and Products
141
1
10
2019
https://doi.org/10.1016/j.indcrop.2019.111745
Fiorello, I.; Tricinci, O.; Naselli, G. A.; Mondini, A.; Filippeschi, C.; Tramacere, F.; Mishra, A. K.; Mazzolai, B. Climbing plant-inspired micropatterned devices for reversible attachment. Advanced Functional Materials, v.30, p.1-11, 2020. https://doi.org/10.1002/adfm.202003380
Fiorello
I.
Tricinci
O.
Naselli
G. A.
Mondini
A.
Filippeschi
C.
Tramacere
F.
Mishra
A. K.
Mazzolai
B.
Climbing plant-inspired micropatterned devices for reversible attachment
Advanced Functional Materials
30
1
11
2020
https://doi.org/10.1002/adfm.202003380
Hernández-Fernandéz, I. A.; Jarma-Orozco, A.; Pompelli, M. F. Allometric models for non-destructive leaf area measurement of stevia: an in depth and complete analysis. Horticultura Brasileira, v.39, p.205-215, 2021. https://doi.org/10.1590/s0102-0536-20210212
Hernández-Fernandéz
I. A.
Jarma-Orozco
A.
Pompelli
M. F.
Allometric models for non-destructive leaf area measurement of stevia: an in depth and complete analysis
Horticultura Brasileira
39
205
215
2021
https://doi.org/10.1590/s0102-0536-20210212
Janssen, P. H. M.; Heuberger, P. S. C. Calibration of process - oriented models. Ecological Modelling, v.83, p.55-56, 1995. https://doi.org/10.1016/0304-3800(95)00084-9
Janssen
P. H. M.
Heuberger
P. S. C.
Calibration of process - oriented models
Ecological Modelling
83
55
56
1995
https://doi.org/10.1016/0304-3800(95)00084-9
Keramatlou, I.; Sharifani, M.; Sabouri, H.; Alizadeh, M.; Kamkar, B. A simple linear model for leaf area estimation in Persian walnut (Juglans regia L.). Scientia Horticulturae, v.184, p.36-39, 2015. https://doi.org/10.1016/j.scienta.2014.12.017
Keramatlou
I.
Sharifani
M.
Sabouri
H.
Alizadeh
M.
Kamkar
B.
A simple linear model for leaf area estimation in Persian walnut (Juglans regia L.)
Scientia Horticulturae
184
36
39
2015
https://doi.org/10.1016/j.scienta.2014.12.017
Leite, H. G.; Andrade, V. C. L. de. Um método para condução de inventários florestais sem o uso de equações volumétricas. Revista Árvore, v.26, p.321-328, 2002. https://doi.org/10.1590/S0100-67622002000300007
Leite
H. G.
Andrade
V. C. L. de
Um método para condução de inventários florestais sem o uso de equações volumétricas
Revista Árvore
26
321
328
2002
https://doi.org/10.1590/S0100-67622002000300007
Leite, M. L. de M. V.; Lucena, L. R. R. de; Cruz, M. G. da; Sá Junior, E. H. de; Simões, V. J. L. P. Leaf area estimate of Pennisetum glaucum by linear dimensions. Acta Scientiarum: Animal Sciences, v.41, p.1-7, 2019. http://dx.doi.org/10.4025/actascianimsci.v41i1.42808
Leite
M. L. de M. V.
Lucena
L. R. R. de
Cruz
M. G. da
Sá
E. H. de
Junior
Simões
V. J. L. P.
Leaf area estimate of Pennisetum glaucum by linear dimensions
Acta Scientiarum: Animal Sciences
41
1
7
2019
http://dx.doi.org/10.4025/actascianimsci.v41i1.42808
Leite, M. L. de M. V.; Moura, G. A. de; Moura, E. A. de; Lucena, L. R. R. de; Sales, A. T.; Sampaio, E. V. de S. B. Comparison of methods for estimating leaf area in pornunça (Manihotsp.). Revista Brasileira de Engenharia Agrícola e Ambiental, v.25, p.733-740, 2021. https://doi.org/10.1590/1807-1929/agriambi.v25n11p733-740
Leite
M. L. de M. V.
Moura
G. A. de
Moura
E. A. de
Lucena
L. R. R. de
Sales
A. T.
Sampaio
E. V. de S. B.
Comparison of methods for estimating leaf area in pornunça (Manihot sp.)
Revista Brasileira de Engenharia Agrícola e Ambiental
25
733
740
2021
https://doi.org/10.1590/1807-1929/agriambi.v25n11p733-740
Oliveira, R. F.; Jakelaitis, A.; Alexandre, E. C. F.; Pereira, L. S.; Silva, M. N. da; Oliveira, D. E. C. de; Sousa, G. D. de; Oliveira, G. S. de. Utilização de modelos alométricos para estimar a área foliar de Talinum triangulare e Talinum paniculatum. Revista Brasileira de Agropecuária Sustentável, v.9, p.112-119, 2019.
Oliveira
R. F.
Jakelaitis
A.
Alexandre
E. C. F.
Pereira
L. S.
Silva
M. N. da
Oliveira
D. E. C. de
Sousa
G. D. de
Oliveira
G. S. de
Utilização de modelos alométricos para estimar a área foliar de Talinum triangulare e Talinum paniculatum
Revista Brasileira de Agropecuária Sustentável
9
112
119
2019
R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 2021.
R Core Team
R: A language and environment for statistical computing
Vienna
R Foundation for Statistical Computing
2021
Ribeiro, J. E. da S.; Barbosa, A. J. S.; Albuquerque, M. B. de. Leaf area estimate of Erythroxylum simonis Plowman by linear dimensions. Floresta e Ambiente, v.25, p.1-7, 2018. https://doi.org/10.1590/2179-8087.010817
Ribeiro
J. E. da S.
Barbosa
A. J. S.
Albuquerque
M. B. de
Leaf area estimate of Erythroxylum simonis Plowman by linear dimensions
Floresta e Ambiente
25
1
7
2018
https://doi.org/10.1590/2179-8087.010817
Ribeiro, J. E. da S.; Figueiredo, F. R. A.; Nóbrega, J. S.; Coêlho, E. dos S.; Melo, M. F. Leaf area of Erythrina velutina Willd. (Fabaceae) through allometric equations. Revista Floresta, v.52, p.93-102, 2022. http://dx.doi.org/10.5380/rf.v52i1.78059
Ribeiro
J. E. da S.
Figueiredo
F. R. A.
Nóbrega
J. S.
Coêlho
E. dos S.
Melo
M. F.
Leaf area of Erythrina velutina Willd. (Fabaceae) through allometric equations
Revista Floresta
52
93
102
2022
http://dx.doi.org/10.5380/rf.v52i1.78059
Ribeiro, J. E. da S.; Nóbrega, J. S.; Figueiredo, F. R. A.; Ferreira, J. T. A.; Pereira, W. E.; Bruno, R. de L. A.; Albuquerque, M. B. de. Estimativa da área foliar de Mesosphaerum suaveolens a partir de relações alométricas. Rodriguésia, v.71, p.1-9, 2020. https://doi.org/10.1590/2175-7860202071115
Ribeiro
J. E. da S.
Nóbrega
J. S.
Figueiredo
F. R. A.
Ferreira
J. T. A.
Pereira
W. E.
Bruno
R. de L. A.
Albuquerque
M. B. de
Estimativa da área foliar de Mesosphaerum suaveolens a partir de relações alométricas
Rodriguésia
71
1
9
2020
https://doi.org/10.1590/2175-7860202071115
Salazar, J. C. S.; Melgarejo, L. M.; Bautista, E. H. D.; Di Rienzo, J. A.; Casanoves, F. Non-destructive estimation of the leaf weight and leaf area in cacao (Theobroma cacao L.). Scientia Horticulturae , v.229, p.19-24, 2018. https://doi.org/10.1016/j.scienta.2017.10.034
Salazar
J. C. S.
Melgarejo
L. M.
Bautista
E. H. D.
Di Rienzo
J. A.
Casanoves
F.
Non-destructive estimation of the leaf weight and leaf area in cacao (Theobroma cacao L.)
Scientia Horticulturae
229
19
24
2018
https://doi.org/10.1016/j.scienta.2017.10.034
Sartin, R. D.; Peixoto, J. de C.; Lopes, D. B.; Paula, J. R. de. Flora do Bioma Cerrado: Abordagem de estudos da família Acanthaceae Juss - espécies ornamentais no Brasil. Fronteiras, v.3, p.164-179, 2014. https://doi.org/10.21664/2238-8869.2014v3i2.p164-179
Sartin
R. D.
Peixoto
J. de C.
Lopes
D. B.
Paula
J. R. de
Flora do Bioma Cerrado: Abordagem de estudos da família Acanthaceae Juss - espécies ornamentais no Brasil
Fronteiras
3
164
179
2014
https://doi.org/10.21664/2238-8869.2014v3i2.p164-179
Schmildt, E. R.; Trevisan, E.; Belique, M.; Schmildt, O. Modelos alométricos para determinação da área foliar de cacaueiro ‘PH-16’ em sombreamento e pleno sol. Revista Agro@mbiente, v.11, p.47-55, 2017. http://dx.doi.org/10.18227/1982-8470ragro.v11i1.3938
Schmildt
E. R.
Trevisan
E.
Belique
M.
Schmildt
O.
Modelos alométricos para determinação da área foliar de cacaueiro ‘PH-16’ em sombreamento e pleno sol
Revista Agro@mbiente
11
47
55
2017
http://dx.doi.org/10.18227/1982-8470ragro.v11i1.3938
Shi, P.; Liu, M.; Yu, X.; Gielis, J.; Ratkowsky, D. A. Proportional relationship between leaf area and the product of leaf length and width of four types of special leaf shapes. Forests, v.10, p.1-13, 2019. https://doi.org/10.3390/f10020178
Shi
P.
Liu
M.
Yu
X.
Gielis
J.
Ratkowsky
D. A.
Proportional relationship between leaf area and the product of leaf length and width of four types of special leaf shapes
Forests
10
1
13
2019
https://doi.org/10.3390/f10020178
Silva, C. C. da; Souza, A. P.; Bouvié, L.; Ferneda, B. G.; Leite Neto, A.; Monteiro, E. B. Modelos alométricos para estimar a área do limbo foliar de teca. Nativa, v.8, p.129-136, 2020. http://orcid.org/0000-0002-1079-8728
Silva
C. C. da
Souza
A. P.
Bouvié
L.
Ferneda
B. G.
Leite
A.
Neto
Monteiro
E. B.
Modelos alométricos para estimar a área do limbo foliar de teca
Nativa
8
129
136
2020
http://orcid.org/0000-0002-1079-8728
Silva, G. P. V. da; Possamai, B. T.; Schroeder, G. da R.; Vieira Junior, N. P.; Dec, E.; Mouga, D. M. D. da S. Palynological characterization of species of Verbenaceae J. St.-Hil. and Lamiaceae Martinov (Lamiales Bromhead). Acta Biológica Catarinense, v.4, p.68-76, 2017.
Silva
G. P. V. da
Possamai
B. T.
Schroeder
G. da R.
Vieira
N. P.
Junior
Dec
E.
Mouga
D. M. D. da S.
Palynological characterization of species of Verbenaceae J. St.-Hil. and Lamiaceae Martinov (Lamiales Bromhead)
Acta Biológica Catarinense
4
68
76
2017
Suárez, J. C.; Casanoves, F.; Di Rienzo, J. Non-Destructive estimation of the leaf weight and leaf area in common bean. Agronomy, v.12, p.1-14, 2022. https://doi.org/10.3390/agronomy12030711
Suárez
J. C.
Casanoves
F.
Di Rienzo
J.
Non-Destructive estimation of the leaf weight and leaf area in common bean
Agronomy
12
1
14
2022
https://doi.org/10.3390/agronomy12030711
Teobaldelli, M.; Rouphael, Y.; Fascella, G.; Cristofori, V.; Rivera, C. M.; Basile, B. Developing an accurate and fast non-destructive single leaf area model for loquat (Eriobotrya japonica Lindl) cultivars. Plants, v.8, p.1-12, 2019. http://dx.doi.org/10.3390/plants8070230
Teobaldelli
M.
Rouphael
Y.
Fascella
G.
Cristofori
V.
Rivera
C. M.
Basile
B.
Developing an accurate and fast non-destructive single leaf area model for loquat (Eriobotrya japonica Lindl) cultivars
Plants
8
1
12
2019
http://dx.doi.org/10.3390/plants8070230
Teobaldelli, M.; Rouphael, Y.; Gonnella, M.; Buttaro, D.; Rivera, C. M.; Muganu, M.; Basile, B. Developing a fast and accurate model to estimate allometrically the total shoot leaf area in grapevines. Scientia Horticulturae , v.259, p.1-9, 2020. https://doi.org/10.1016/j.scienta.2019.108794
Teobaldelli
M.
Rouphael
Y.
Gonnella
M.
Buttaro
D.
Rivera
C. M.
Muganu
M.
Basile
B.
Developing a fast and accurate model to estimate allometrically the total shoot leaf area in grapevines
Scientia Horticulturae
259
1
9
2020
https://doi.org/10.1016/j.scienta.2019.108794
Toscano, S.; Ferrante, A.; Romano, D. Response of Mediterranean ornamental plants to drought stress. Horticulturae, v.51, p.1-20, 2019. https://doi.org/10.3390/horticulturae5010006
Toscano
S.
Ferrante
A.
Romano
D.
Response of Mediterranean ornamental plants to drought stress
Horticulturae
51
1
20
2019
https://doi.org/10.3390/horticulturae5010006
Wales, S. B.; Kreider, M. R.; Atkins, J.; Hulshof, C. M.; Fahey, R. T.; Nave, L. E.; Nadelhoffer, K. J.; Gough, C. M. Stand age, disturbance history and the temporal stability of forest production. Forest Ecology and Management, v.460, p.1-9, 2020. https://doi.org/10.1016/j.foreco.2020.117865
Wales
S. B.
Kreider
M. R.
Atkins
J.
Hulshof
C. M.
Fahey
R. T.
Nave
L. E.
Nadelhoffer
K. J.
Gough
C. M.
Stand age, disturbance history and the temporal stability of forest production
Forest Ecology and Management
460
1
9
2020
https://doi.org/10.1016/j.foreco.2020.117865
Willmott, C. J. On the validation of models. Physical Geography, v.2, p.184-194, 1981. https://doi.org/10.1080/02723646.1981.10642213
Willmott
C. J.
On the validation of models
Physical Geography
2
184
194
1981
https://doi.org/10.1080/02723646.1981.10642213
1 Research developed at Universidade Federal de Viçosa, Viçosa, MG, Brazil
Autoria
Marlon G. Dias
Universidade Federal de Viçosa/Departamento de Agronomia, Viçosa, MG, BrazilUniversidade Federal de ViçosaBrazilViçosa, MG, Brazil Universidade Federal de Viçosa/Departamento de Agronomia, Viçosa, MG, Brazil
Universidade Federal de Viçosa/Departamento de Arquitetura e Urbanismo, Viçosa, MG, BrazilUniversidade Federal de ViçosaBrazilViçosa, MG, Brazil Universidade Federal de Viçosa/Departamento de Arquitetura e Urbanismo, Viçosa, MG, Brazil
Toshik I. da Silva ** Corresponding author - E-mail: iarley.toshik@gmail.com
Universidade Federal de Viçosa/Departamento de Agronomia, Viçosa, MG, BrazilUniversidade Federal de ViçosaBrazilViçosa, MG, Brazil Universidade Federal de Viçosa/Departamento de Agronomia, Viçosa, MG, Brazil
Instituto Nacional do Semiárido, Campina Grande, PB, BrazilInstituto Nacional do SemiáridoBrazilCampina Grande, PB, Brazil Instituto Nacional do Semiárido, Campina Grande, PB, Brazil
Universidade Federal de Viçosa/Departamento de Agronomia, Viçosa, MG, BrazilUniversidade Federal de ViçosaBrazilViçosa, MG, Brazil Universidade Federal de Viçosa/Departamento de Agronomia, Viçosa, MG, Brazil
Universidade Federal de Viçosa/Departamento de Agronomia, Viçosa, MG, BrazilUniversidade Federal de ViçosaBrazilViçosa, MG, Brazil Universidade Federal de Viçosa/Departamento de Agronomia, Viçosa, MG, Brazil
Universidade Federal de Viçosa/Departamento de Arquitetura e Urbanismo, Viçosa, MG, BrazilUniversidade Federal de ViçosaBrazilViçosa, MG, Brazil Universidade Federal de Viçosa/Departamento de Arquitetura e Urbanismo, Viçosa, MG, Brazil
Universidade Federal de Viçosa/Departamento de Agronomia, Viçosa, MG, BrazilUniversidade Federal de ViçosaBrazilViçosa, MG, Brazil Universidade Federal de Viçosa/Departamento de Agronomia, Viçosa, MG, Brazil
Editors: Lauriane Almeida dos Anjos Soares & Carlos Alberto Vieira de Azevedo
SCIMAGO INSTITUTIONS RANKINGS
Universidade Federal de Viçosa/Departamento de Agronomia, Viçosa, MG, BrazilUniversidade Federal de ViçosaBrazilViçosa, MG, Brazil Universidade Federal de Viçosa/Departamento de Agronomia, Viçosa, MG, Brazil
Universidade Federal de Viçosa/Departamento de Arquitetura e Urbanismo, Viçosa, MG, BrazilUniversidade Federal de ViçosaBrazilViçosa, MG, Brazil Universidade Federal de Viçosa/Departamento de Arquitetura e Urbanismo, Viçosa, MG, Brazil
Instituto Nacional do Semiárido, Campina Grande, PB, BrazilInstituto Nacional do SemiáridoBrazilCampina Grande, PB, Brazil Instituto Nacional do Semiárido, Campina Grande, PB, Brazil
Figure 2
Histograms and model adjustments between leaf length (L), leaf width (W), product of length and width (LW) and digital leaf area (LA) of Congea tomentosa leaves
Figure 4
Relationship between digital leaf area (LA) and length × width (LW) (A) and relationship between estimated digital leaf area and observed digital leaf area (B)
Table 2
Minimum, maximum, mean, total amplitude, median, variance, standard deviation, standard error, and coefficient of variation (CV) for length (L), width (W), length by width (L.W) and digital leaf area (LA) of Congea tomentosa leaves
Table 3
Equations, Pearson’s correlation coefficient (r), coefficient of determination (R²), Akaike information (AIC), root mean square error (RMSE), mean absolute error (MAE), and Willmott’ agreement index (d), obtained as a function of measurements of dimensions of Congea tomentosa leaves
imageFigure 1
Maximum length (L) and width (W) of leaf of Congea tomentosa used to estimate leaf area
open_in_new
imageFigure 2
Histograms and model adjustments between leaf length (L), leaf width (W), product of length and width (LW) and digital leaf area (LA) of Congea tomentosa leaves
open_in_new
imageFigure 3
Percentage distribution of actual leaf area (LA) size classes of 200 leaves of Congea tomentosaopen_in_new
imageFigure 4
Relationship between digital leaf area (LA) and length × width (LW) (A) and relationship between estimated digital leaf area and observed digital leaf area (B)
open_in_new
** - Significant at p ≤ 0.01 by F test
table_chartTable 1
Statistical models used to estimate the leaf area of Congea tomentosa
Model
Model description
Linear
ˆy=β0+β1*x+ei
Linear (0.0)
ˆy=β1*x+ei
Quadratic
ˆy=β0+β1*x+β2*x2+ei
Cubic
ˆy=β0+β1*x+β2*x2+β3*x3+ei
Power
ˆy=β0*xβ1+ei
Exponential
ˆy=β0*βx1+ei
table_chartTable 2
Minimum, maximum, mean, total amplitude, median, variance, standard deviation, standard error, and coefficient of variation (CV) for length (L), width (W), length by width (L.W) and digital leaf area (LA) of Congea tomentosa leaves
Descriptive statistic
L
W
LW
LA
(cm)
(cm2)
Minimum
6.56
2.28
14.94
9.79
Maximum
17.77
8.38
143.09
93.91
Mean
12.28
5.48
69.80
43.97
Total amplitude
11.20
6.11
128.15
84.13
Median
12.16
5.39
65.93
41.55
Variance
5.49
1.40
721.56
275.80
Standard deviation
2.34
1.18
26.86
16.61
Standard error
0.17
0.08
1.90
1.17
CV (%)
19.08
21.61
38.48
37.77
table_chartTable 3
Equations, Pearson’s correlation coefficient (r), coefficient of determination (R²), Akaike information (AIC), root mean square error (RMSE), mean absolute error (MAE), and Willmott’ agreement index (d), obtained as a function of measurements of dimensions of Congea tomentosa leaves
Model
x
r
R²
AIC
RMSE
MAE
d
Equation
CV (%)
Linear
L
0.9485
0.8991
1236.86
5.2500
3.9781
0.9729
ˆy=-38.59+6.72**×L
36.76
Linear
W
0.9733
0.9471
1107.62
3.8004
2.8562
0.9863
ˆy=-30.84+13.65**×W
37.22
Linear
LW
0.9917
0.9832
880.02
2.1300
1.6525
0.9958
ˆy=1.18+0.61**×LW
37.56
Linear (0.0)
LW
0.9915
0.9978
885.59
2.1925
1.7095
0.9957
ˆy=0.63**×LW
37.25
Quadratic
L
0.9552
0.9115
1211.49
4.9027
3.6013
0.9766
ˆy=-1.78+0.43ns×L+0.26**×L2
36.88
Quadratic
W
0.9765
0.9530
1084.91
3.5728
2.6538
0.9880
ˆy=-9.93+5.75**×W+0.71**×W2
37.28
Quadratic
LW
0.9915
0.9830
881.91
2.1508
1.6754
0.9957
ˆy=0.89+0.62**×LW-0.00005ns×LW2
37.56
Cubic
L
0.9562
0.9130
1209.07
4.8488
3.5910
0.9771
ˆy=48.44-13.06*×L+1.42*×L2-0.03*×L3
36.90
Cubic
W
0.9767
0.9532
1085.09
3.5565
2.6443
0.9881
ˆy=5.60-3.61ns×W+2.51*×W2-0.11ns×W3
37.28
Cubic
LW
0.9915
0.9830
880.01
2.1514
1.6815
0.9957
ˆy=-2.3+0.78**×LW-0.002*×LW2+0.00001ns×LW3
37.56
Power
L
0.9552
0.9124
1209.43
4.9020
3.6008
0.9766
ˆy=0.31**×L1.96**
36.85
Power
W
0.9763
0.9531
1084.58
3.5877
2.6734
0.9878
ˆy=2.26**×W1.73**
37.16
Power
LW
0.9915
0.9832
879.64
2.1494
1.6662
0.9957
ˆy=0.71**×LW0.97**
37.56
Exponential
L
0.9482
0.8991
1239.13
5.2798
3.8593
0.9719
ˆy=6.74**×1.16**L
36.25
Exponential
W
0.9668
0.9348
1153.10
4.2581
3.2546
0.9822
ˆy=8.59**×1.33**W
36.53
Exponential
LW
0.9668
0.9348
1116.72
4.2581
3.2546
0.9822
ˆy=17.89**×1.01**LW
36.56
Como citar
Dias, Marlon G. et al. Estimativa de área foliar de|Congea tomentosaatravés de método não destrutivo. Revista Brasileira de Engenharia Agrícola e Ambiental [online]. 2022, v. 26, n. 10 [Acessado 4 Abril 2025], pp. 729-734. Disponível em: <https://doi.org/10.1590/1807-1929/agriambi.v26n10p729-734>. Epub 01 Ago 2022. ISSN 1807-1929. https://doi.org/10.1590/1807-1929/agriambi.v26n10p729-734.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.