Acessibilidade / Reportar erro

Modeling and thermodynamic properties of the drying of tamarind (Tamarindus indica L.) seeds 1 1 Research developed at Instituto Federal Goiano, Campus Rio Verde, Rio Verde, GO, Brasil

Modelagem e propriedades termodinâmicas da secagem de sementes de tamarindo (Tamarindus indica L.)

ABSTRACT

In the present study, the objective was to fit different models to the experimental data of drying of tamarind (Tamarindus indica L.) seeds and to select the best model, to determine the effective diffusion coefficient, activation energy and thermodynamic properties for the process during drying at different temperatures. The experiment was carried out at the Laboratory of Post-Harvest of Vegetable Products of the Instituto Federal Goiano (Federal Institute Goiano) - Campus of Rio Verde, GO, Brazil. Seeds with initial moisture content of 18 ± 0.25% dry basis were oven dried with forced air ventilation, at controlled temperatures of 45, 60, 75 and 90 °C in four repetitions. Nonlinear regression models used to describe the phenomenon were fitted to the experimental data. To represent the drying of tamarind seeds, the Midilli model was selected for the range from 45 to 60 ºC and the Two terms model was selected for the range from 75 to 90 ºC. The effective diffusion coefficient increases with the increase of drying air temperature, being described by the Arrhenius equation, with activation energy of 35.16 kJ mol-1. Enthalpy and entropy decreases, while Gibbs free energy increases with increasing drying temperature.

Key words:
Two terms Model; Midilli Model; Gibbs free energy

RESUMO

No presente estudo, objetivou-se ajustar diferentes modelos aos dados experimentais da secagem das sementes de tamarindo (Tamarindus indica L.) e selecionar o melhor modelo, determinar o coeficiente de difusão efetivo, a energia de ativação e as propriedades termodinâmicas para o processo, durante a secagem em diversas temperaturas. O experimento foi conduzido no Laboratório de Pós-Colheita de Produtos Vegetais do Instituto Federal Goiano - Campus Rio Verde. As sementes com teor de água inicial de 18 ± 0,25% base seca, foram secas em estufa com ventilação de ar forçada, nas temperaturas controladas de 45, 60, 75 e 90 °C, em quatro repetições. Aos dados experimentais foram ajustados a modelos de regressão não linear utilizados para descrição do fenômeno. Para representar a secagem das sementes de tamarindo o modelo de Midilli foi selecionado para a faixa de 45 a 60 ºC, e para 75 a 90 ºC o modelo ajustado foi o de Dois termos. O coeficiente de difusão efetivo aumenta com a elevação da temperatura do ar de secagem, sendo descrito pela equação de Arrhenius, com energia de ativação de 35,16 kJ mol-1. A entalpia e entropia decrescem, enquanto a energia livre de Gibbs aumenta com o incremento da temperatura de secagem.

Palavras-chave:
Modelo de dois termos; Modelo de Midilli; Energia livre de Gibbs

Introduction

Tamarind (Tamarindus indica L.) seed is an agro-industrial residue in the food industry, which has bioactive and nutritional compounds that cause it to be used as a by-product in the food and/or pharmacological industry (Shankaracharya, 1998Shankaracharya, N. B. Tamarind - chemistry, technology and uses - A critical appraisal. Journal Food Technology, v.35, p.193-208, 1998). Tamarind fruits are harvested with high moisture content for better pulp yield and, consequently, the seeds also, representing a risk in the post-harvest viability of this by-product.

Drying of plant products is the most used process to ensure their quality and stability. The decrease in the moisture content of the material reduces water activity and, consequently, reduces biological activity and chemical and physical changes that occur during storage (Resende et al., 2008Resende, O.; Corrêa, P. C.; Goneli, A. L. D.; Botelho, F. M.; Rodrigues, S. Modelagem matemática do processo de secagem de duas variedades de feijão (Phaseolus vulgaris L.). Revista Brasileira de Produtos Agroindustriais, v.10, p.17-26, 2008. https://doi.org/10.15871/1517-8595/rbpa.v10n1p17-26
https://doi.org/10.15871/1517-8595/rbpa....
).

Drying involves the diffusion of water present in the product and can be described by the effective diffusion coefficient, which is a variable of the liquid diffusion equation that describes the rate of water exit from the product (Resende et al., 2011Resende, O.; Ullmann, R.; Siqueira, V. C.; Chaves, T. H.; Ferreira, L. U. Modelagem matemática e difusividade efetiva das sementes de pinhão manso (Jatropha curcas L.) durante a secagem. Engenharia Agrícola, v.31, p.1123-1135, 2011. https://doi.org/10.1590/S0100-69162011000600010
https://doi.org/10.1590/S0100-6916201100...
), describing, through values, the intensity of water transport (Goneli et al., 2007Goneli, A. L. D.; Corrêa, P. C.; Resende, O.; Reis Neto, S. A. dos. Estudo da difusão de umidade em grãos de trigo durante a secagem. Ciência e Tecnologia dos Alimentos, v.27, p.135-140, 2007. https://doi.org/10.1590/S0101-20612007000100024
https://doi.org/10.1590/S0101-2061200700...
).

Knowledge on thermodynamic properties has been important as a source of information for calculating the energy required in the drying process (Corrêa et al., 2010Corrêa, P. C.; Oliveira, G. H. H.; Botelho, F. M.; Goneli, A. L. D.; Carvalho, F. M. Modelagem matemática e determinação das propriedades termodinâmicas do café (Coffea arabica L.) durante o processo de secagem. Revista Ceres, v.57, p.595-601, 2010. https://doi.org/10.1590/S0034-737X2010000500005
https://doi.org/10.1590/S0034-737X201000...
). Enthalpy, entropy and Gibbs free energy illustrate the interaction of water with the constituents, the spatial arrangement of the water-dry matter relation, and the affinity of the product for water with the constituents of the product, respectively (Jideani & Mpotokwana, 2009Jideani, V. A.; Mpotokwana, A. S. M. Modeling of water absorption of Botswana bambara varieties using Peleg’s equation. Journal of Food Engineering , v.92, p.182-188, 2009. https://doi.org/10.1016/j.jfoodeng.2008.10.040
https://doi.org/10.1016/j.jfoodeng.2008....
; Corrêa et al., 2010Corrêa, P. C.; Oliveira, G. H. H.; Botelho, F. M.; Goneli, A. L. D.; Carvalho, F. M. Modelagem matemática e determinação das propriedades termodinâmicas do café (Coffea arabica L.) durante o processo de secagem. Revista Ceres, v.57, p.595-601, 2010. https://doi.org/10.1590/S0034-737X2010000500005
https://doi.org/10.1590/S0034-737X201000...
).

Knowing the importance of drying to maintain the conservation of products, the objective was to fit different nonlinear regression models to the experimental drying data of tamarind seeds (Tamarindus indica L.) and select the best model, determine the effective diffusion coefficient, activation energy and thermodynamic properties for the process, during drying at different temperatures.

Material and Methods

The experiment was conducted at the Laboratory of Post-Harvest of Plant Products of the Instituto Federal Goiano - Campus of Rio Verde, GO, Brazil. Tamarind fruits were collected in the rural area of the municipality of Rio Verde (17º 51’ 57” S; 50º 50’ 05” W, and altitude of 650 m) and the seeds were separated from the pulp and homogenized. The initial moisture content of the seeds was determined according to Brazil (2009), at 105 ± 1 ºC for 24 h, in three replicates containing approximately 15 g of sample.

To obtain the drying kinetics, seeds with initial moisture content of 18 ± 0.25 (% dry basis) were homogeneously arranged on the surface of a circular stainless-steel tray (15 cm diameter) without perforation, in a 2-cm-thick layer. The trays were placed inside the oven with forced air ventilation, at controlled temperatures of 45, 60, 75 and 90 °C, which promoted relative humidity of 17.43, 8.40, 4.34 and 2.39%, respectively, in four replicates containing 150 g of seeds.

The trays were periodically weighed on semi-analytical scales, with resolution of 0.01 g. During weighing, the material was turned over to homogenize the drying process. Drying was carried out until reaching the equilibrium moisture content, that is, until the mass of the product was invariable for three consecutive weighing procedures under the drying conditions. Temperature and relative humidity were monitored by means of a data logger (LogBox-RHT-LCD), and the relative humidity inside the oven was obtained through the basic principles of psychrometry, with using the computer program GRAPSI.

To determine the equilibrium moisture content of tamarind seeds, approximately 15 g of seeds were placed in aluminum capsules in three replicates. The samples were placed in an oven at temperatures of 45, 60, 75 and 90 ºC, and monitored at 24-h intervals until the mass of the product remained invariable for three consecutive weighing procedures. The equilibrium moisture contents of tamarind seeds for temperatures of 45, 60, 75 and 90 ºC were 6.6, 3.3, 1.9 and 0.8% d.b., respectively.

After the drying process, the drying curves were obtained from the collected experimental data relating the moisture content ratio along the drying time. Moisture content ratios of up to 0.04 ± 0.06 were used to obtain the drying kinetics of tamarind seeds. The moisture content ratios during drying were determined using Eq. 1:

R X = X X e X i X e (1)

where:

RX - moisture content ratio, dimensionless;

X - moisture content of the product, decimal d.b.;

Xi - initial moisture content of the product, decimal d.b.; and,

Xe - equilibrium moisture content of the product, decimal d.b.

Five mathematical models (Table 1) frequently used to represent the drying phenomenon of plant products (Corrêa et al., 2010Corrêa, P. C.; Oliveira, G. H. H.; Botelho, F. M.; Goneli, A. L. D.; Carvalho, F. M. Modelagem matemática e determinação das propriedades termodinâmicas do café (Coffea arabica L.) durante o processo de secagem. Revista Ceres, v.57, p.595-601, 2010. https://doi.org/10.1590/S0034-737X2010000500005
https://doi.org/10.1590/S0034-737X201000...
; Resende et al., 2018Resende, O.; Oliveira, D. E. C. de; Costa, L. M.; Ferreira Junior, W. N. Drying kinetics of baru fruits (Dipteryx alataVogel). Engenharia Agrícola, v.38, p.103-109, 2018. https://doi.org/10.1590/1809-4430-eng.agric.v38n1p103-109/2018
https://doi.org/10.1590/1809-4430-eng.ag...
; Botelho et al., 2018Botelho, F. M.; Hoscher, R. H.; Hauth, M. R.; Botelho, S. de C. C. Cinética de secagem de grãos de soja: influência varietal. Revista Engenharia na Agricultura, v.26, p.13-25, 2018. https://doi.org/10.13083/reveng.v26i1.807
https://doi.org/10.13083/reveng.v26i1.80...
) were fitted to the experimental data of moisture content ratio during drying of tamarind seeds.

Table 1
Nonlinear regression models used to predict the drying of tamarind (Tamarindus indica L.) seeds

The models were fitted by nonlinear regression analysis by the Gauss Newton method. The significance of their parameters was evaluated by the t test (p ≤ 0.01). The degree of fit of each model was verified based on the magnitudes of the coefficient of determination (R2), mean relative error (P), mean estimated error (SE), and the Chi-square test (χ2) (p ≤ 0.01). The mean estimated and relative errors, as well as the Chi-square test for each of the models, were calculated according to Eqs. 7, 8 and 9, respectively:

S E = Y Y ^ 2 D F (7)

P = 100 N Y Y ^ Y (8)

χ 2 = Y Y ^ 2 D F (9)

where:

Y - experimental value;

Ŷ - value estimated by the model;

n - number of experimental observations; and,

DF - residual degrees of freedom (number of observations minus the number of parameters of the models).

Akaike information criteria (AIC) and Schwarz’s Bayesian information criteria (BIC) were used as decisive criteria in choosing the model that best fitted to the experimental data among those which were satisfactory regarding the parameters R², P, SE and χ2. AIC and BIC were calculated according to Eqs. 10 and 11, respectively. Lower values for AIC and BIC reflect the best fit (Gomes et al., 2018Gomes, F. P.; Resende, O.; Sousa, E. P. de; Oliveira, D. E. C. de; Araújo Neto, F. R. de. Drying kinetics of crushed mass of ‘jambu’: effective diffusivity and activation energy. Revista Brasileira de Engenharia Agrícola e Ambiental, v.22, p.499-505, 2018. https://doi.org/10.1590/1807-1929/agriambi.v22n7p499-505
https://doi.org/10.1590/1807-1929/agriam...
).

A I C = 2 log l i k e + 2 p (10)

B I C = 2 log l i k e + p ln n (11)

where:

p - number of parameters; and,

loglike - logarithm of the likelihood function considering the estimates of the parameters.

The effective diffusivity was determined using the liquid diffusion model for the cylindrical geometric shape, with eight-term approximation (Eq. 12), fitted to the experimental drying data of tamarind seeds.

R X = α = 1 4 λ α 2 exp λ α 2 D t r (12)

where:

D - effective diffusion coefficient, m2 s -1;

α - number of terms;

λα - roots of the zero-order Bessel equation;

r - equivalent radius, m; and,

t - drying time, h.

The radius of the equivalent sphere was calculated using Eq. 13.

r = 3 V s 4 π 3 (13)

where:

Vs - volume of the seed, m³.

The volume of each seed was obtained by measuring the three orthogonal axes (length, width and thickness), in 15 units, at the beginning and end of the drying process, using a digital caliper with resolution of 0.01 mm, according to Eq. 14.

V s = π A B C 6 (14)

where:

A - length, m;

B - width, m; and,

C - thickness, m.

The relation of the diffusion coefficient with the drying air temperature was analyzed by Arrhenius equation, according to Eq. 15:

D = D 0 exp E a R T a b s (15)

where:

D0 - pre-exponential factor, m2 s -1;

Ea - activation energy, kJ mol-1;

R - universal constant of gases, 8.134 kJ kmol-1 K-1; and,

Tabs - absolute temperature, K.

The coefficients of Arrhenius expression were linearized with application of the logarithm, as described:

L n D = L n D 0 E a R 1 T a b s (16)

The thermodynamic properties of the drying process of tamarind seeds were obtained by the method described by Jideani & Mpotokwana (2009Jideani, V. A.; Mpotokwana, A. S. M. Modeling of water absorption of Botswana bambara varieties using Peleg’s equation. Journal of Food Engineering , v.92, p.182-188, 2009. https://doi.org/10.1016/j.jfoodeng.2008.10.040
https://doi.org/10.1016/j.jfoodeng.2008....
):

H = E a R T a b s (17)

S = R ln D 0 ln k B h p ln T a b s (18)

G = H T a b s S (19)

where:

H - enthalpy, J mol-1;

S - entropy, J mol-1 K-1;

G - Gibbs free energy, J mol-1;

KB - Boltzmann constant, 1.38 x 10-23 J K-1; and,

hp - Planck constant, 6.626 x 10-34 J s-1.

Results and Discussion

The drying models Two Terms (2), Logarithmic (3), Midilli (4) and Page (5) showed coefficients of determination (R²) higher than 0.99 under all drying conditions (Table 2). The Wang and Singh model (6) had lower values for all temperatures under study, compared to the others. However, this criterion should not be the only one used for selecting regression models (Madamba et al., 1996Madamba, P. S.; Driscoll, R. H.; Bruckle, K. A. Thin layer drying characteristics of garlic slices. Journal of Food Engineering , v.29, p.75-97, 1996. https://doi.org/10.1016/0260-8774(95)00062-3
https://doi.org/10.1016/0260-8774(95)000...
), because, alone, it is not a good index to select nonlinear models as it uses mean of negative and positive values, which may make the values of the fits more discrepant.

Table 2
Coefficient of determination (R²), Chi-square (χ², decimal x10-4), mean relative error (P, %), mean estimated error (SE, decimal x10-4), Akaike information criteria (AIC) and Schwarz’s Bayesian information criteria (BIC) of the models fitted for the drying of tamarind (Tamarindus indica L.) seeds at temperatures of 45, 60, 75 and 90 ºC

The chi-square (χ²) values for the obtained experimental data ranged from 0.11 to 129.48 x 10-4 (Table 2), being lower than the tabulated value (53.54), indicating adequate fit to the experimental data. The models Two Terms (2), Midilli (4) and Page (5), for all drying treatments, had the lowest values of chi-square (χ²) compared to the other models fitted.

The mean relative error considers the deviation of the experimental values from the data estimated by the model. Therefore, the increase in P values indicates greater differences between observed and estimated values (Kashaninejad et al., 2007Kashaninejad, M.; Mortazavi, A.; Safekordi, A.; Tabil, L. G. Thin-layer drying characteristics and modeling of pistachio nuts. Journal of Food Engineering , v.78, n.1, p.98-108, 2007. https://doi.org/10.1016/j.jfoodeng.2005.09.007
https://doi.org/10.1016/j.jfoodeng.2005....
). Mohapatra & Rao (2005Mohapatra, D.; Rao, P. S. A thin layer drying model of parboiled wheat. Journal of Food Engineering , v.66, p.513-518, 2005. https://doi.org/10.1016/j.jfoodeng.2004.04.023
https://doi.org/10.1016/j.jfoodeng.2004....
) report that values above 10% for the mean relative error (P) make the model inadequate for the description of the drying process.

Therefore, the Logarithmic (3), Page (5), and Wang and Singh (6) models were disregarded to represent the drying kinetics at all temperatures studied, because they did not show satisfactory values of the fitting indices for at least one temperature (Table 2). The Two Terms (2) and Midilli (4) models obtained for all drying conditions mean relative errors below 10%, indicating satisfactory fit to the experimental conditions.

The Wang and Singh (6) model had the highest values of mean estimated error (SE) (Table 2), while Two Terms (2) and Midilli (4) models had the lowest values. Draper & Smith (1998Draper, N. R.; Smith, H. Applied regression analysis. 3.ed. New York: John Wiley & Sons, 1998. 712p. https://doi.org/10.1002/9781118625590
https://doi.org/10.1002/9781118625590...
) argue that the ability of a model to predict the physical phenomenon, in this case drying, is inversely proportional to the value of the mean estimated error (SE).

As it is necessary to apply fitting indices to help choose the best model, it was decided to use in this study the AIC and BIC indices, as Gomes et al. (2018Gomes, F. P.; Resende, O.; Sousa, E. P. de; Oliveira, D. E. C. de; Araújo Neto, F. R. de. Drying kinetics of crushed mass of ‘jambu’: effective diffusivity and activation energy. Revista Brasileira de Engenharia Agrícola e Ambiental, v.22, p.499-505, 2018. https://doi.org/10.1590/1807-1929/agriambi.v22n7p499-505
https://doi.org/10.1590/1807-1929/agriam...
) used as decisive criterion in their study on the drying of crushed mass of jambu (Acmella oleracea) leaves.

As the results obtained for mean relative error (P) and mean estimated error (SE), the lowest values of AIC and BIC (Table 2) were verified for the Midilli model (4) at drying temperatures of 45 and 60 ºC, and the Two Terms model (2) at temperatures of 75 and 90 ºC. Thus, the AIC and BIC indicate the Midilli model (4) as the most suitable for the drying temperature range from 45 to 60 ºC, while for the range from 75 to 90 ºC the best fit is represented by the Two Terms model (2).

By analyzing the experimental and estimated data (Figure 1), it can be noted that the Midilli model (4) is accurate to estimate the drying of tamarind seeds at the lowest temperatures (45 and 60 ºC), as well as the Two terms model (2) for temperatures of 75 and 90 ºC. Therefore, the two models were used to fit the drying curves of tamarind seeds.

Figure 1
Experimental values estimated by the Midilli model for the drying of tamarind (Tamarindus indica L.) seeds at temperatures of 45 and 60 ºC, and by the Two Terms model for temperatures of 75 and 90 ºC

It is noted that, for the same moisture content ratio, the time required for drying increases (Figure 1) as the drying temperature decreases. The time spent in this process is shorter with the increase in the drying temperature. Similar results are found in the literature for the drying of quinoa (Chenopodium quinoa W.) grains (Moscon et al., 2017Moscon, E. S.; Martin, S.; Spehar, C. R.; Devilla, I. A.; Rodolfo Junior, F. Cinética de secagem de grãos de quinoa (Chenopodium quinoa W.). Revista Engenharia na Agricultura , v.25, p.318-328, 2017. https://doi.org/10.13083/reveng.v25i4.773
https://doi.org/10.13083/reveng.v25i4.77...
).

The Midilli and Two Terms models can be used to represent the drying kinetics of baru (Dipteryx alata Vog.) fruits, according to a study conducted by Resende et al. (2018Resende, O.; Oliveira, D. E. C. de; Costa, L. M.; Ferreira Junior, W. N. Drying kinetics of baru fruits (Dipteryx alataVogel). Engenharia Agrícola, v.38, p.103-109, 2018. https://doi.org/10.1590/1809-4430-eng.agric.v38n1p103-109/2018
https://doi.org/10.1590/1809-4430-eng.ag...
) at temperatures of 40, 60, 80 and 100 ºC. The Midilli model fitted best to the experimental data of drying of different cultivars of soybean (Glycine max) (Botelho et al., 2018Botelho, F. M.; Hoscher, R. H.; Hauth, M. R.; Botelho, S. de C. C. Cinética de secagem de grãos de soja: influência varietal. Revista Engenharia na Agricultura, v.26, p.13-25, 2018. https://doi.org/10.13083/reveng.v26i1.807
https://doi.org/10.13083/reveng.v26i1.80...
). In other studies (Martins et al., 2015Martins, E. A. S.; Lage, E. Z.; Goneli, A. L.; Hartmann Filho, C. P.; Lopes, J. G. Cinética de secagem de folhas de timbó (Serjania marginata Casar). Revista Brasileira de Engenharia Agrícola e Ambiental , v.19, p.238-244, 2015. https://doi.org/10.1590/1807-1929/agriambi.v19n3p238-244
https://doi.org/10.1590/1807-1929/agriam...
; Moscon et al., 2017Moscon, E. S.; Martin, S.; Spehar, C. R.; Devilla, I. A.; Rodolfo Junior, F. Cinética de secagem de grãos de quinoa (Chenopodium quinoa W.). Revista Engenharia na Agricultura , v.25, p.318-328, 2017. https://doi.org/10.13083/reveng.v25i4.773
https://doi.org/10.13083/reveng.v25i4.77...
; Morais et al., 2019Morais, M. F. de; Santos, J. R. O. dos; Santos, M. P. dos; Santos, D. da C.; Costa, T. N. da; Lima, J. B. Modeling and thermodynamic properties of ‘bacaba’ pulp drying. Revista Brasileira de Engenharia Agrícola e Ambiental , v.23, p.702-708, 2019. https://doi.org/10.1590/1807-1929/agriambi.v23n9p702-708
https://doi.org/10.1590/1807-1929/agriam...
), the Two Terms model is recommended to represent the drying curves of various products (Chen et al., 2015Chen, Q.; Bi, J.; Wu, X.; Yi, J.; Zhou, L.; Zhou, Y. Drying kinetics and quality attributes of jujube (Zizyphus jujuba Miller) slices dried by hot-air and short- and medium-wave infrared radiation. LWT - Food Science and Technology, v.64, p.759-766, 2015. https://doi.org/10.1016/j.lwt.2015.06.071
https://doi.org/10.1016/j.lwt.2015.06.07...
; Araujo et al., 2017Araujo, W. D.; Goneli, A. L. D.; Corrêa, P. C.; Hartmann Filho, C. P.; Martins, E. A. S. Modelagem matemática da secagem dos frutos de amendoim em camada delgada. Revista Ciência Agronômica, v.48, p.448-457, 2017. https://doi.org/10.5935/1806-6690.20170052
https://doi.org/10.5935/1806-6690.201700...
). Table 3 shows the values of the parameters of the models.

Table 3
Parameters of the Midilli model (45 and 60 ºC) and Two terms model (75 and 90 ºC) fitted for the drying of tamarind (Tamarindus indica L.) seeds

The values of the parameters of the Midilli model (4) for temperatures of 45 and 60 ºC increased as the drying air temperature increased (Table 3). The constant k is related to the effect of temperature on the effective diffusivity in the drying process, and the liquid diffusion controls the process (Babalis & Belessiotis, 2004Babalis, S. J.; Belessiotis, V. G. Influence of the drying conditions on the drying constants and moisture diffusivity during the thin-layer drying of figs. Journal of Food Engineering, v.65, p.449-458, 2004. https://doi.org/10.1016/j.jfoodeng.2004.02.005
https://doi.org/10.1016/j.jfoodeng.2004....
), that is, as the magnitude of this constant increases due to the increase in drying temperature, there is an increase in the effective diffusivity.

For the Two Terms model (2), the drying constants k0 and k1 obtained increasing values for temperatures of 75 and 90 ºC (Table 3); these constants are theoretically related to the diffusivity of water in the product, and by analyzing the equation of this model, it can be noted that the constants are related to the drying time, as the Logarithmic (3), Midilli (4) and Page (5) models. The coefficients a and b of the Two Terms model are coefficients of the equation that are not related to the drying conditions, so it is not possible to infer about their behavior with the change in drying temperature.

The values of the effective diffusion coefficient increase with the increase in drying air temperature (Figure 2A), a behavior observed by other researchers (Rodovalho et al., 2015Rodovalho, R. S.; Silva, H. W. da; Silva, I. L.; Rossetto, C. A. V. Cinética de secagem dos grãos de pimenta bode. Global Science and Technology, v.8, p.128-142, 2015. https://doi.org/10.14688/1984-3801/gst.v8n2p128-142
https://doi.org/10.14688/1984-3801/gst.v...
; Martins et al., 2015Martins, E. A. S.; Lage, E. Z.; Goneli, A. L.; Hartmann Filho, C. P.; Lopes, J. G. Cinética de secagem de folhas de timbó (Serjania marginata Casar). Revista Brasileira de Engenharia Agrícola e Ambiental , v.19, p.238-244, 2015. https://doi.org/10.1590/1807-1929/agriambi.v19n3p238-244
https://doi.org/10.1590/1807-1929/agriam...
). The increment in drying air temperature increases the level of vibration of water molecules inside the seeds, causing a reduction in water viscosity and consequently reducing the resistance of the fluid to the flow (Goneli et al., 2014Goneli, A. L. D.; Vieira, M. do C.; Vilhasanti, H. C. B.; Gonçalves, A. A. Modelagem matemática e difusividade efetiva de folhas de aroeira durante a secagem. Pesquisa Agropecuária Tropical, v.44, p.56-64, 2014. https://doi.org/10.1590/S1983-40632014000100005
https://doi.org/10.1590/S1983-4063201400...
).

Figure 2
Effective diffusion coefficient as a function of drying temperatures (A); Arrhenius representation for the effective diffusion coefficient as a function of the inverse of the absolute drying air temperature (B) of tamarind (Tamarindus indica L.) seeds

The effective diffusion coefficient for the drying of tamarind seeds follow an increasing linear trend in response to the increase in drying temperature, with values of 2.4044 x 10-11, 5.4903 x 10-11, 8.5277 x 10-11 and 1.3025 x 10-10 m2 s-1 for temperatures of 45, 60, 75 and 90 ºC, respectively. Martins et al. (2015Martins, E. A. S.; Lage, E. Z.; Goneli, A. L.; Hartmann Filho, C. P.; Lopes, J. G. Cinética de secagem de folhas de timbó (Serjania marginata Casar). Revista Brasileira de Engenharia Agrícola e Ambiental , v.19, p.238-244, 2015. https://doi.org/10.1590/1807-1929/agriambi.v19n3p238-244
https://doi.org/10.1590/1807-1929/agriam...
) obtained for timbó (Serjania marginata Casar) leaves at temperatures of 40, 50, 60 and 70 ºC values of 0.6630 x 10-11, 5.1229 x 10-11, 7.0289 x 10-11 and 12.0712 x 10-11, respectively.

The difference between the values of the effective diffusion coefficient can be justified because the chemical composition and physical structure differ from one product to another, making the loss of water specific to each material. Studies on drying involving water diffusion show variations in the values of the effective diffusivity coefficient, due to the complexity of plant products, different prediction methods, type of material, moisture content, drying process, as well as the methodology used to obtain (Goneli et al., 2007Goneli, A. L. D.; Corrêa, P. C.; Resende, O.; Reis Neto, S. A. dos. Estudo da difusão de umidade em grãos de trigo durante a secagem. Ciência e Tecnologia dos Alimentos, v.27, p.135-140, 2007. https://doi.org/10.1590/S0101-20612007000100024
https://doi.org/10.1590/S0101-2061200700...
).

The effective diffusion coefficient range found under the studied conditions for tamarind seeds follows the same trend as other plant products (Siqueira et al., 2012Siqueira, V. C.; Resende, O.; Chaves, T. H. Difusividade efetiva de grãos e frutos de pinhão manso. Semina: Ciências Agrárias, v.33, p.2919-2930, 2012. https://doi.org/10.5433/1679-0359.2012v33Supl1p2919
https://doi.org/10.5433/1679-0359.2012v3...
; Costa et al., 2015Costa, L. M.; Resende, O.; Gonçalves, D. N.; Oliveira, D. E. C. de. Modelagem matemática da secagem de frutos de crambe em camada delgada. Bioscience Journal, v.31, p.392-403, 2015. https://doi.org/10.14393/BJ-v31n2a2015-22340
https://doi.org/10.14393/BJ-v31n2a2015-2...
; Resende et al., 2018Resende, O.; Oliveira, D. E. C. de; Costa, L. M.; Ferreira Junior, W. N. Drying kinetics of baru fruits (Dipteryx alataVogel). Engenharia Agrícola, v.38, p.103-109, 2018. https://doi.org/10.1590/1809-4430-eng.agric.v38n1p103-109/2018
https://doi.org/10.1590/1809-4430-eng.ag...
). According to Madamba et al. (1996Madamba, P. S.; Driscoll, R. H.; Bruckle, K. A. Thin layer drying characteristics of garlic slices. Journal of Food Engineering , v.29, p.75-97, 1996. https://doi.org/10.1016/0260-8774(95)00062-3
https://doi.org/10.1016/0260-8774(95)000...
), the values of the effective diffusion coefficient for the drying of plant products are of the order of 10-9 to 10-11 m2 s-1.

The dependence of the effective diffusion coefficient of tamarind seeds on drying air temperature was represented by the Arrhenius expression (Figure 2B). The activation energy for the liquid diffusion process in the drying of tamarind seeds for the studied temperature conditions (45; 60; 75 and 90 ºC) was equal to 35.46 kJ mol-1.

Corrêa et al. (2007Corrêa, P. C.; Resende, O.; Martinazzo, A. P.; Goneli, A. L. D.; Botelho, F. M. Modelagem matemática para a descrição do processo do feijão (Phaseolus vulgaris L.) em camadas delgadas. Engenharia Agrícola, v.27, p.501-510, 2007. https://doi.org/10.1590/S0100-69162007000300020
https://doi.org/10.1590/S0100-6916200700...
) point out that activation energy is the ease with which water molecules overcome the energy barrier during migration inside the product. Lower values for activation energy indicate higher water diffusivity in the product per unit of time (Kashaninejad et al., 2007Kashaninejad, M.; Mortazavi, A.; Safekordi, A.; Tabil, L. G. Thin-layer drying characteristics and modeling of pistachio nuts. Journal of Food Engineering , v.78, n.1, p.98-108, 2007. https://doi.org/10.1016/j.jfoodeng.2005.09.007
https://doi.org/10.1016/j.jfoodeng.2005....
).

For liquid diffusion to occur during the thin-layer drying of peanuts (Arachis hypogaea L.) at temperatures of 40, 50, 60 and 70 ºC, the activation energy was 35.24 kJ mol-1 (Araujo et al., 2017Araujo, W. D.; Goneli, A. L. D.; Corrêa, P. C.; Hartmann Filho, C. P.; Martins, E. A. S. Modelagem matemática da secagem dos frutos de amendoim em camada delgada. Revista Ciência Agronômica, v.48, p.448-457, 2017. https://doi.org/10.5935/1806-6690.20170052
https://doi.org/10.5935/1806-6690.201700...
). The activation energy for the liquid diffusion of jatropha (Jathopha curcas L.) was 24.17 kJ mol-1 for the grains and 23.88 kJ mol-1 for the fruits, at drying temperatures of 45, 60, 75, 90 and 105 ºC (Siqueira et al., 2012Siqueira, V. C.; Resende, O.; Chaves, T. H. Difusividade efetiva de grãos e frutos de pinhão manso. Semina: Ciências Agrárias, v.33, p.2919-2930, 2012. https://doi.org/10.5433/1679-0359.2012v33Supl1p2919
https://doi.org/10.5433/1679-0359.2012v3...
). The difference between the activation energy values for the different products is due to their different structure and chemical composition, as well as the way through which water is bound to the constituents of the product.

Table 4 shows the values of enthalpy, entropy and Gibbs free energy for the different drying conditions. With increase in drying temperature, enthalpy and entropy decrease, while Gibbs free energy increases.

Table 4
Values of enthalpy (H), entropy (S) and Gibbs free energy (G) for different drying air temperatures of tamarind (Tamarindus indica L.) seeds

Enthalpy is related to the energy needed to remove the water bound to the dry matter during the drying process, so it is reduced with increasing drying temperature (Oliveira et al., 2010Oliveira, G. H. H. de; Corrêa, P. C.; Araújo, E. F.; Valente, D. S. M.; Botelho, F. M. Desorption isotherms and thermodynamic properties of sweet corn cultivars (Zea mays L.). International Journal of Food Science and Technology, v.45, p.546-554, 2010. https://doi.org/10.1111/j.1365-2621.2009.02163.x
https://doi.org/10.1111/j.1365-2621.2009...
). Low enthalpy values at lower temperatures indicate a greater amount of energy required to promote the drying of tamarind seeds; similar behavior was observed in the drying processes of ‘baru’ fruits (Dipteryx alata Vog.) studied by Resende et al. (2018Resende, O.; Oliveira, D. E. C. de; Costa, L. M.; Ferreira Junior, W. N. Drying kinetics of baru fruits (Dipteryx alataVogel). Engenharia Agrícola, v.38, p.103-109, 2018. https://doi.org/10.1590/1809-4430-eng.agric.v38n1p103-109/2018
https://doi.org/10.1590/1809-4430-eng.ag...
) and of ‘Bode’ pepper (Capsicum chinense) grains studied by Rodovalho et al. (2015Rodovalho, R. S.; Silva, H. W. da; Silva, I. L.; Rossetto, C. A. V. Cinética de secagem dos grãos de pimenta bode. Global Science and Technology, v.8, p.128-142, 2015. https://doi.org/10.14688/1984-3801/gst.v8n2p128-142
https://doi.org/10.14688/1984-3801/gst.v...
).

Entropy values (Table 4) decrease with the increase in drying temperature, because high temperatures cause a greater increment in the excitation of the water molecules of the product when compared with low temperatures, decreasing the order of the water-product system (Corrêa et al., 2010Corrêa, P. C.; Oliveira, G. H. H.; Botelho, F. M.; Goneli, A. L. D.; Carvalho, F. M. Modelagem matemática e determinação das propriedades termodinâmicas do café (Coffea arabica L.) durante o processo de secagem. Revista Ceres, v.57, p.595-601, 2010. https://doi.org/10.1590/S0034-737X2010000500005
https://doi.org/10.1590/S0034-737X201000...
). Since entropy is a thermodynamic property that can be associated with the degree of disorder between water and the product (Goneli et al., 2010Goneli, A. L. D.; Corrêa, P.; Oliveira, G. H. H.; Botelho, F. M. Water desorption and thermodynamic properties of okra seeds. Transaction of the ASAE, v.53, p.191-197, 2010. https://doi.org/10.13031/2013.29486
https://doi.org/10.13031/2013.29486...
), its values decrease as the drying temperature increases. Negative values of entropy are attributed to the existence of chemical adsorption and/or structural modifications of the adsorbent (Moreira et al., 2008Moreira, R.; Chenlo, F.; Torres, M. D.; Vallejo, N. Thermodynamic analysis of experimental sorption isotherms of loquat and quince fruits. Journal of Food Engineering , v.88, p.514-521, 2008. https://doi.org/10.1016/j.jfoodeng.2008.03.011
https://doi.org/10.1016/j.jfoodeng.2008....
).

Positive values for Gibbs free energy (Table 4) indicate an endergonic reaction, in which it is necessary to add energy to the air for the drying of the product to occur (Corrêa et al., 2010Corrêa, P. C.; Oliveira, G. H. H.; Botelho, F. M.; Goneli, A. L. D.; Carvalho, F. M. Modelagem matemática e determinação das propriedades termodinâmicas do café (Coffea arabica L.) durante o processo de secagem. Revista Ceres, v.57, p.595-601, 2010. https://doi.org/10.1590/S0034-737X2010000500005
https://doi.org/10.1590/S0034-737X201000...
). Results with the same trend have been observed in the studies conducted by Martins et al. (2015Martins, E. A. S.; Lage, E. Z.; Goneli, A. L.; Hartmann Filho, C. P.; Lopes, J. G. Cinética de secagem de folhas de timbó (Serjania marginata Casar). Revista Brasileira de Engenharia Agrícola e Ambiental , v.19, p.238-244, 2015. https://doi.org/10.1590/1807-1929/agriambi.v19n3p238-244
https://doi.org/10.1590/1807-1929/agriam...
), Araujo et al. (2017Araujo, W. D.; Goneli, A. L. D.; Corrêa, P. C.; Hartmann Filho, C. P.; Martins, E. A. S. Modelagem matemática da secagem dos frutos de amendoim em camada delgada. Revista Ciência Agronômica, v.48, p.448-457, 2017. https://doi.org/10.5935/1806-6690.20170052
https://doi.org/10.5935/1806-6690.201700...
) and Morais et al. (2019Morais, M. F. de; Santos, J. R. O. dos; Santos, M. P. dos; Santos, D. da C.; Costa, T. N. da; Lima, J. B. Modeling and thermodynamic properties of ‘bacaba’ pulp drying. Revista Brasileira de Engenharia Agrícola e Ambiental , v.23, p.702-708, 2019. https://doi.org/10.1590/1807-1929/agriambi.v23n9p702-708
https://doi.org/10.1590/1807-1929/agriam...
).

Conclusions

  1. To represent the drying of tamarind seeds, the Midilli model was selected for the range from 45 to 60 ºC and the Two terms mode was selected for the range from 75 to 90 ºC.

  2. Effective diffusion coefficient increases with the increase in drying air temperature, with activation energy of 35.16 kJ mol-1.

  3. Enthalpy and entropy decrease with increasing temperature, respectively ranging from 32.14 to 32.51 kJ mol-1 and from -0.41626 to -0.4639 kJ mol-1 K-1, for the temperature range from 45 to 90 ºC.

  4. Gibbs free energy increases with increasing drying temperature.

Acknowledgments

The authors thank Instituto Federal de Educação, Ciência e Tecnologia Goiano, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Fundação de Amparo à Pesquisa do Estado de Goiás, Financiadora de Estudos e Projetos and Conselho Nacional de Desenvolvimento Científico e Tecnológico, for the indispensable financial support to conduct this study.

Literature Cited

  • Araujo, W. D.; Goneli, A. L. D.; Corrêa, P. C.; Hartmann Filho, C. P.; Martins, E. A. S. Modelagem matemática da secagem dos frutos de amendoim em camada delgada. Revista Ciência Agronômica, v.48, p.448-457, 2017. https://doi.org/10.5935/1806-6690.20170052
    » https://doi.org/10.5935/1806-6690.20170052
  • Babalis, S. J.; Belessiotis, V. G. Influence of the drying conditions on the drying constants and moisture diffusivity during the thin-layer drying of figs. Journal of Food Engineering, v.65, p.449-458, 2004. https://doi.org/10.1016/j.jfoodeng.2004.02.005
    » https://doi.org/10.1016/j.jfoodeng.2004.02.005
  • Botelho, F. M.; Hoscher, R. H.; Hauth, M. R.; Botelho, S. de C. C. Cinética de secagem de grãos de soja: influência varietal. Revista Engenharia na Agricultura, v.26, p.13-25, 2018. https://doi.org/10.13083/reveng.v26i1.807
    » https://doi.org/10.13083/reveng.v26i1.807
  • Chen, Q.; Bi, J.; Wu, X.; Yi, J.; Zhou, L.; Zhou, Y. Drying kinetics and quality attributes of jujube (Zizyphus jujuba Miller) slices dried by hot-air and short- and medium-wave infrared radiation. LWT - Food Science and Technology, v.64, p.759-766, 2015. https://doi.org/10.1016/j.lwt.2015.06.071
    » https://doi.org/10.1016/j.lwt.2015.06.071
  • Corrêa, P. C.; Oliveira, G. H. H.; Botelho, F. M.; Goneli, A. L. D.; Carvalho, F. M. Modelagem matemática e determinação das propriedades termodinâmicas do café (Coffea arabica L.) durante o processo de secagem. Revista Ceres, v.57, p.595-601, 2010. https://doi.org/10.1590/S0034-737X2010000500005
    » https://doi.org/10.1590/S0034-737X2010000500005
  • Corrêa, P. C.; Resende, O.; Martinazzo, A. P.; Goneli, A. L. D.; Botelho, F. M. Modelagem matemática para a descrição do processo do feijão (Phaseolus vulgaris L.) em camadas delgadas. Engenharia Agrícola, v.27, p.501-510, 2007. https://doi.org/10.1590/S0100-69162007000300020
    » https://doi.org/10.1590/S0100-69162007000300020
  • Costa, L. M.; Resende, O.; Gonçalves, D. N.; Oliveira, D. E. C. de. Modelagem matemática da secagem de frutos de crambe em camada delgada. Bioscience Journal, v.31, p.392-403, 2015. https://doi.org/10.14393/BJ-v31n2a2015-22340
    » https://doi.org/10.14393/BJ-v31n2a2015-22340
  • Draper, N. R.; Smith, H. Applied regression analysis. 3.ed. New York: John Wiley & Sons, 1998. 712p. https://doi.org/10.1002/9781118625590
    » https://doi.org/10.1002/9781118625590
  • Gomes, F. P.; Resende, O.; Sousa, E. P. de; Oliveira, D. E. C. de; Araújo Neto, F. R. de. Drying kinetics of crushed mass of ‘jambu’: effective diffusivity and activation energy. Revista Brasileira de Engenharia Agrícola e Ambiental, v.22, p.499-505, 2018. https://doi.org/10.1590/1807-1929/agriambi.v22n7p499-505
    » https://doi.org/10.1590/1807-1929/agriambi.v22n7p499-505
  • Goneli, A. L. D.; Corrêa, P.; Oliveira, G. H. H.; Botelho, F. M. Water desorption and thermodynamic properties of okra seeds. Transaction of the ASAE, v.53, p.191-197, 2010. https://doi.org/10.13031/2013.29486
    » https://doi.org/10.13031/2013.29486
  • Goneli, A. L. D.; Corrêa, P. C.; Resende, O.; Reis Neto, S. A. dos. Estudo da difusão de umidade em grãos de trigo durante a secagem. Ciência e Tecnologia dos Alimentos, v.27, p.135-140, 2007. https://doi.org/10.1590/S0101-20612007000100024
    » https://doi.org/10.1590/S0101-20612007000100024
  • Goneli, A. L. D.; Vieira, M. do C.; Vilhasanti, H. C. B.; Gonçalves, A. A. Modelagem matemática e difusividade efetiva de folhas de aroeira durante a secagem. Pesquisa Agropecuária Tropical, v.44, p.56-64, 2014. https://doi.org/10.1590/S1983-40632014000100005
    » https://doi.org/10.1590/S1983-40632014000100005
  • Jideani, V. A.; Mpotokwana, A. S. M. Modeling of water absorption of Botswana bambara varieties using Peleg’s equation. Journal of Food Engineering , v.92, p.182-188, 2009. https://doi.org/10.1016/j.jfoodeng.2008.10.040
    » https://doi.org/10.1016/j.jfoodeng.2008.10.040
  • Kashaninejad, M.; Mortazavi, A.; Safekordi, A.; Tabil, L. G. Thin-layer drying characteristics and modeling of pistachio nuts. Journal of Food Engineering , v.78, n.1, p.98-108, 2007. https://doi.org/10.1016/j.jfoodeng.2005.09.007
    » https://doi.org/10.1016/j.jfoodeng.2005.09.007
  • Madamba, P. S.; Driscoll, R. H.; Bruckle, K. A. Thin layer drying characteristics of garlic slices. Journal of Food Engineering , v.29, p.75-97, 1996. https://doi.org/10.1016/0260-8774(95)00062-3
    » https://doi.org/10.1016/0260-8774(95)00062-3
  • Martins, E. A. S.; Lage, E. Z.; Goneli, A. L.; Hartmann Filho, C. P.; Lopes, J. G. Cinética de secagem de folhas de timbó (Serjania marginata Casar). Revista Brasileira de Engenharia Agrícola e Ambiental , v.19, p.238-244, 2015. https://doi.org/10.1590/1807-1929/agriambi.v19n3p238-244
    » https://doi.org/10.1590/1807-1929/agriambi.v19n3p238-244
  • Mohapatra, D.; Rao, P. S. A thin layer drying model of parboiled wheat. Journal of Food Engineering , v.66, p.513-518, 2005. https://doi.org/10.1016/j.jfoodeng.2004.04.023
    » https://doi.org/10.1016/j.jfoodeng.2004.04.023
  • Morais, M. F. de; Santos, J. R. O. dos; Santos, M. P. dos; Santos, D. da C.; Costa, T. N. da; Lima, J. B. Modeling and thermodynamic properties of ‘bacaba’ pulp drying. Revista Brasileira de Engenharia Agrícola e Ambiental , v.23, p.702-708, 2019. https://doi.org/10.1590/1807-1929/agriambi.v23n9p702-708
    » https://doi.org/10.1590/1807-1929/agriambi.v23n9p702-708
  • Moreira, R.; Chenlo, F.; Torres, M. D.; Vallejo, N. Thermodynamic analysis of experimental sorption isotherms of loquat and quince fruits. Journal of Food Engineering , v.88, p.514-521, 2008. https://doi.org/10.1016/j.jfoodeng.2008.03.011
    » https://doi.org/10.1016/j.jfoodeng.2008.03.011
  • Moscon, E. S.; Martin, S.; Spehar, C. R.; Devilla, I. A.; Rodolfo Junior, F. Cinética de secagem de grãos de quinoa (Chenopodium quinoa W.). Revista Engenharia na Agricultura , v.25, p.318-328, 2017. https://doi.org/10.13083/reveng.v25i4.773
    » https://doi.org/10.13083/reveng.v25i4.773
  • Oliveira, G. H. H. de; Corrêa, P. C.; Araújo, E. F.; Valente, D. S. M.; Botelho, F. M. Desorption isotherms and thermodynamic properties of sweet corn cultivars (Zea mays L.). International Journal of Food Science and Technology, v.45, p.546-554, 2010. https://doi.org/10.1111/j.1365-2621.2009.02163.x
    » https://doi.org/10.1111/j.1365-2621.2009.02163.x
  • Resende, O.; Corrêa, P. C.; Goneli, A. L. D.; Botelho, F. M.; Rodrigues, S. Modelagem matemática do processo de secagem de duas variedades de feijão (Phaseolus vulgaris L.). Revista Brasileira de Produtos Agroindustriais, v.10, p.17-26, 2008. https://doi.org/10.15871/1517-8595/rbpa.v10n1p17-26
    » https://doi.org/10.15871/1517-8595/rbpa.v10n1p17-26
  • Resende, O.; Oliveira, D. E. C. de; Costa, L. M.; Ferreira Junior, W. N. Drying kinetics of baru fruits (Dipteryx alataVogel). Engenharia Agrícola, v.38, p.103-109, 2018. https://doi.org/10.1590/1809-4430-eng.agric.v38n1p103-109/2018
    » https://doi.org/10.1590/1809-4430-eng.agric.v38n1p103-109/2018
  • Resende, O.; Ullmann, R.; Siqueira, V. C.; Chaves, T. H.; Ferreira, L. U. Modelagem matemática e difusividade efetiva das sementes de pinhão manso (Jatropha curcas L.) durante a secagem. Engenharia Agrícola, v.31, p.1123-1135, 2011. https://doi.org/10.1590/S0100-69162011000600010
    » https://doi.org/10.1590/S0100-69162011000600010
  • Rodovalho, R. S.; Silva, H. W. da; Silva, I. L.; Rossetto, C. A. V. Cinética de secagem dos grãos de pimenta bode. Global Science and Technology, v.8, p.128-142, 2015. https://doi.org/10.14688/1984-3801/gst.v8n2p128-142
    » https://doi.org/10.14688/1984-3801/gst.v8n2p128-142
  • Shankaracharya, N. B. Tamarind - chemistry, technology and uses - A critical appraisal. Journal Food Technology, v.35, p.193-208, 1998
  • Siqueira, V. C.; Resende, O.; Chaves, T. H. Difusividade efetiva de grãos e frutos de pinhão manso. Semina: Ciências Agrárias, v.33, p.2919-2930, 2012. https://doi.org/10.5433/1679-0359.2012v33Supl1p2919
    » https://doi.org/10.5433/1679-0359.2012v33Supl1p2919
  • 1
    Research developed at Instituto Federal Goiano, Campus Rio Verde, Rio Verde, GO, Brasil

Highlights:

  • 2
    For the same moisture content ratio, the time required for drying increases as the drying temperature decreases.
  • 3
    The Logarithmic, Page, and Wang and Singh models were not satisfactory for representing the drying kinetic.
  • 4
    The activation energy for the liquid diffusion process in the drying of tamarind seeds was equal to 35.46 kJ mol-1.
  • 5
    Edited by: Walter Esfrain Pereira

Publication Dates

  • Publication in this collection
    30 Nov 2020
  • Date of issue
    Jan 2021

History

  • Received
    15 Aug 2019
  • Accepted
    09 Oct 2020
  • Published
    18 Nov 2020
Unidade Acadêmica de Engenharia Agrícola Unidade Acadêmica de Engenharia Agrícola, UFCG, Av. Aprígio Veloso 882, Bodocongó, Bloco CM, 1º andar, CEP 58429-140, Campina Grande, PB, Brasil, Tel. +55 83 2101 1056 - Campina Grande - PB - Brazil
E-mail: revistagriambi@gmail.com