ABSTRACT
Laboratory tests for technical evaluation or irrigation material testing involve the measurement of many variables, as well as monitoring and control of test conditions. This study, carried out in 2016, aimed at using statistical quality control techniques to evaluate results of dripper tests. Exponentially weighted moving average control charts were elaborated, besides capability indices for the measurement of the test pressure and water temperature; and study on repeatability and reproducibility (Gage RR) of flow measurement system using 10 replicates, in three work shifts (morning, afternoon and evening), with 25 emitters. Both the test pressure and water temperature remained stable, with “excellent” performance for the pressure adjustment process by integrative-derivative proportional controller. The variability between emitters was the component with highest contribution to the total variance of the flow measurements, with 96.77% of the total variance due to the variability between parts. The measurement system was classified as “acceptable” or “approved” by the Gage RR study; and non-random causes of significant variability were not identified in the routine of tests.
Key words:
dripper flow; statistical process control; repeatability and repro; control charts; stability and capability; for measurement process