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A B S T R A C T
The objective of this study was to evaluate the influence of different sampling grids density in the lime requirements 
in an Oxisol. The experiment was conducted at a rural property located in Sidrolândia city, Mato Grosso do Sul state, 
in the Brazilian ‘Cerrado’. In the soil attributes mapping, regular sampling grid was used consisting of 99 points, 
spread over an area of 90  ha. Other two grids (51 and 27 points) were derived by deleting lines or lines and points 
from the original one. Based on the results of soil analysis, the lime requirement at each sample point was calculated. 
Using geostatistical techniques the spatial variability of lime requirement was studied and grid configuration for 
each sample was tested. By kriging, maps were made. By reducing the number of sampling points, 11% of the 
experimental area showed an overestimation and 8% underestimation comparing with the lime requirement made 
using the highest sampling grid density.

Densidade amostral de solo e recomendação
de calcário em um Latossolo Vermelho
R E S U M O
Objetivou-se, com este estudo, avaliar a influência de diferentes grades amostrais na recomendação de aplicação 
de calcário em um Latossolo. O trabalho foi desenvolvido em uma propriedade rural localizada em Sidrolândia/
MS, região do cerrado brasileiro. No mapeamento dos atributos do solo utilizou-se uma grade amostral regular 
composta por 99 pontos, distribuídos em uma área de 90 ha. Da grade amostral inicial outras duas foram originadas 
por meio da exclusão de pontos ou linhas, uma com 51 e outra com 27 pontos. Calculou-se, com base nos resultados 
das análises de solo, a recomendação de aplicação de calcário em cada ponto amostral. Utilizando técnicas de 
geoestatística estudou-se a variabilidade espacial da recomendação de aplicação de calcário para cada configuração 
de grade amostral testada. Por meio de krigagem, mapas de aplicação de calcário foram confeccionados. Após 
as análises concluiu-se que com a redução do número de pontos amostrais 11% da área de estudo apresentaram 
superestimativa e 8% subestimativa na dose de calcário recomendada, quando comparada com a recomendação 
feita utilizando grade com maior número de pontos.

Key words:
precision agriculture
geostatistics
spatial variability
soil acidity correction

Palavras-chave:
agricultura de precisão
geoestatística
variabilidade espacial
correção da acidez do solo

Revista Brasileira de Engenharia Agrícola e Ambiental
Campina Grande, PB, UAEA/UFCG – http://www.agriambi.com.br

Protocolo 348.13 – 29/10/2013 • Aprovado em 23/05/2014

ISSN 1807-1929

v.18, n.11, p.1142–1148, 2014

DOI: http://dx.doi.org/10.1590/1807-1929/agriambi.v18n11p1142-1148

Introduction

With the opening of new markets through globalization, the 
application of technology in agriculture within the production 
system became a reality. Among the technologies available to 
agriculture, the use of lime for acidic soils is perhaps the most 
important and can promote the greatest economic return 
(Prado, 2003). Araújo et al. (2009) emphasize that mostly 
Brazilian soils are acidic, especially those under Savanna 
vegetation (Brazilian Cerrado). These soils typically present low 
Ca2+ and Mg2+ contents, high Al3+ contents and low P availability 
(Novais et al., 2007).

Since the popularization of the Global Positioning System 
(GPS) its use in agriculture have been of great importance. 

With GPS it became possible to map any soil attribute and 
make localized interventions. This form of management and 
farm planning is known as precision agriculture or satellite 
farming. Nowadays, this technology has been widely used in 
soil liming, because it enables lime application at the varied rate, 
which can reduce costs and environmental impacts caused by 
agricultural activity.

Furthermore, the use of precision agriculture has resulted in 
gains of efficiency in farming. However, lime recommendation 
has been made from soil analysis obtained by mesh grid sampling 
that sometimes may not be accurate to detect spatial variability 
of soil acidity. The companies that provide precision agriculture 
services for Brazilian ‘Cerrado’ regions have used grid sampling 
with areas of 5-10 ha, however, there is no scientific studies that 
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show which are the grid size that really represent the spatial 
variability of soil characteristics used for liming.

Weindorf & Zhu (2010) demonstrated that the chemical 
properties have a local spatial variability stronger than the 
texture parameters of the soil, which requires larger amount 
of sample to reach the same level of accuracy. Vašát et al. 
(2010) highlight the need for new sampling methodologies 
that optimize this process. The sampling grid must meet two 
main requirements. First, the number and spatial distribution 
of the sampled points should ensure a minimum precision for 
estimates in unsampled locations. Secondly, the optimization 
technique must be numerically practicable. Recent research 
has shown that with the introduction of geostatistics, sampling 
systems have been optimized (Blumfield et al., 2007; Brus & 
Heuvelink, 2007; Wang et al., 2008), however, it is necessary 
to detect the spatial dependence of soil properties under study.

In summary, it appears that the choice of the sampling grid 
density, capable of representing the spatial attribute of a given 
soil, it is essential to ensure the reliability of this characterization. 
The optimal sampling grid density is one that, with a minimal 
amount of points, is able to characterize spatial variability of soil 
attributes, guaranteeing reliability of estimate. The present study 
aimed to evaluate the influence of the sampling grid density on 
lime recommendation using varied rate in an agricultural area 
on Brazilian Cerrado.

Material and Methods

The experiment was performed on a farm in Sidrolândia city, 
Mato Grosso do Sul State, Brazil, with geographic coordinates 
-21º 02’ 30” and -55º 03’ 00”, on datum SIRGAS 2000. The 
average altitude is 490 m. The relief is considered slightly 
wavy. According to Brazilian Soil Classification System the 
soil was identified as predominately distroferric Red Latosol 
(EMBRAPA, 2013). The farm has a total area of 2,491.07 ha, 
where soybean (Glycine max), maize (Zea mays) and cotton 
(Gossypium hirsutum) are cultivated in crop rotation using 
no-tillage system. The study was conducted in a subarea of 
approximately 90 ha.

For mapping of soil attributes regular sampling grid density 
consisting of 99 sampling points was used. The sampling 
points were georeferenced using a Topographical GPS 
receiver, Magellan brand, Promark 3 model with a centimeter 
accuracy, after post-processed differential correction. For 
differential correction the data base of the Brazilian Network 
for Continuous GPS Monitoring (RBMC) of the Brazilian 
Institute of Geography and Statistics (IBGE) were used, located 
in Campo Grande city, Mato Grosso do Sul state. The correction 
was performed using the software GNSS Solutions® supplied by 
the GPS receiver manufacturer.

The chemical characterization was accomplished by 
removing, in each of the 99 sampled points, a soil sample 
consisting of four other subsamples, representative of the soil 
layer of 0 to 0.20 m deep. The subsamples were collected within 
a radius of 3 m from the georeferenced point using a Dutch type 
soil auger. The four subsamples were homogenized for simple 

use of 300 g of soil. The homogenized samples were placed in 
plastic bags, identified and sent to routine chemical analysis. 
The amounts of Ca2+, Mg2+ and Al3+ were obtained through the 
extractor KCl (1 mol L-1).

For lime requirement determination, the acidity 
neutralization and exchangeable calcium and magnesium 
increase method was used, as proposed for Brazilian 
‘Cerrado’ by Sousa & Lobato (2004). There are three basic 
presuppositions to apply this method: a) cation exchange 
capacity at pH 7 (T) greater than 4.0 cmolc dm-3; b) sum of 
calcium and magnesium less than 2.0 cmolc dm-3; and c) clay 
content greater than 15%.

The presuppositions were met for all the samples and the 
lime requirement was calculated for each of the 99 sampling 
sites using Eq. 1. In this calculation, lime requirement values 
were obtained using a limestone with 100% relative power of 
total neutralization (PRNT).

( ) ( )LR 2 A1 2 Ca Mg= × +  − +  

where:
LR 	 - lime requirement, t ha-1

Al 	 - aluminum content, cmolc dm-3

Ca 	 - calcium content, cmolc dm-3

Mg 	 - magnesium content, cmolc dm-3

To study the effects of using different sampling grids density 
in mapping the spatial variability of lime requirement, were 
created from the sampling grid density of 99 points (A), other 
two grids, composed of 51 (B) and 27 sampling points (C). The 
sampling grid (B) was originated from the (A) by the elimination 
of 4 lines interspersed. On the other hand, the sampling grid (C) 
emerged eliminating interspersed points from (B). The sampling 
grids arrangement are shown in Figure 1. 

The lime requirement spatial dependence using different 
sampling grids densities was evaluated by adjusting semivario-
grams, assuming the hypothesis of intrinsic stationarity, defined 
by Eq. 2.

( ) ( ) ( ) ( )
( )N h

2
i i

i 1

1ˆ h Z x Z x h
2N h =

γ =  − +  ∑

(1)

(2)

where:
γ(h) 	- semivariance as a function of separation distance (h) 

between pairs of points
h 	 - separation distance between pairs of points, m
N(h) 	- number of experimental pairs of points separeted by 

a distance h

Gaussian, spherical and exponential models were tested. 
The model that best represented the relationship between 
experimental semivariance and distance h was adjusted, and 
the parameters nugget effect (C0), sill (C0 + C) and range (A) 
were determined. The spatial dependence consideration, as 
Junqueira Júnior et al. (2008), enables a portion of the random 

^
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a radius equal to the range found in variogram adjustments. 
Regardless of the sampling grid density used, the maps were 
generated with 6,848 pixels. Thus, it was guaranteed that all 
maps possess the same number and location of points.

To determine the number of classes and the ranges of each 
class, grouping analysis was performed, with two methods. 
First, to establish a cutoff point that best represented the classes 
division, a hierarchical grouping analysis method was used 
(Ward method). Thus, knowing the number of groups for each 
variable, to define the class centroids, a non-hierarchical method 
analysis was carried out (K - means).

Grouping analysis is used for classification processes, and 
consists in determining the degree of similarity or dissimilarity 
between individuals, applying a grouping function for a 
particular variable (Macedo et al., 2010). The K-means method 
aims to interactively group values, minimizing the sum of 
squares within each group. Gonçalves et al. (2008) explain 
that the K - means method assumes that the number of groups 
or classes, K, is known a priori. In case of having chosen an 
inappropriate K' value the method will impose K' groups to the 
data using optimization techniques.

To study the influence of the sampling grid density on the 
lime amount to be applied in the area, area percent values were 
calculated for each class relative to the total area. As well as 
the representative area of each class and the amount of lime to 
be applied to each class and to the total area. To estimate the 
percentage that each class represents in the total area, it was 
calculated the proportion of each class representative pixels 
in relation to map total pixels. Knowing the representative 
percentage of each class, the equivalent in hectares was calculated.

With the value in hectares occupied by each class in the 
experimental area and knowing the lime requirement of each 
class (t ha-1) was calculated the lime amount for each class and 
total area. The calculations were made from the spatial variability 
analysis of the liming requirement obtained using each of the 
three sampling grid densities.

Grouping analysis was performed using the software 
Statistica®, version 7 (Statsoft, 2004). The adjustment of 
semivariogram models and interpolation were performed 
using the computer software GS+® (Version 9.0, Gamma 
Design Software, USA). Thematic maps and area calculations 
were performed using the software Argis® (Version 9.3, ESRI 
Software, USA).

Results and Discussion

Spatial dependence was observed for the estimation of lime 
requirement for all sampling grids density tested. Table 1 shows 
the minimum distance between sampled points for the different 
grid configurations studied and the minimum pairs of points 
observed in theoretical semivariance model fit to the empirical 
semivariance of data.

As expected reducing the number of sampled points the 
minimum distance was increased and the minimum pairs of points 
number decreased. The decrease of the minimum pairs of points 
number have a direct influence on setting the theoretical model 

Figure 1. Sampling grids studied; (A) 99 points; (B) 51 
points; and (C) 27 points

A.

B.

C.

error control and thus, results better in the estimated values of 
unsampled locations 

The spatial dependence index (SDI) was determined and 
classified according to Zimback (2001), by using the Eq. 3 and 
assuming the following intervals: low spatial dependence for SDI 
< 25%, moderate for 25% < SDI < 75% and strong for SDI > 75%.

0

CSDI 100
C C

 
=  

+ 

The maps interpolation was performed using ordinary 
kriging. Estimations were made using 16 close neighbors and 

(3)
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to represent spatial variability of the attribute under consideration. 
Journel & Huijbregts (1978) emphasize that to ensure the reliability 
of the theoretical model set is important to note if the points that 
make up the semivariogram are representative of the semivariance 
between at least 30 pairs of points.

According to Journel & Huijbregts (1978) although spatial 
dependence of the lime requirement was observed, the modeling 
of spatial dependence using 27 sample points (C) is unreliable, 
and the interpolation process may cause errors in attribute 
estimates on unsampled locations.

This can occur because, when adjusting a theoretical model 
to the empirical semivariance data, the intention is to obtain 
a mathematical model capable of estimating the value of 
semivariance between points whose separation distance is less 
than the shortest distance observed in the field. The semivariance 
is used for calculating the weights in the interpolation process 
for estimation of unsampled locations values. Therefore if the 
semivariance presents low accuracy the estimated values will 
also do so. A better understanding of the mathematical process 
for estimating values at unsampled locations is described by 
Isaaks & Srivastava (1989).

Table 2 presents the semivariance theoretical models and 
parameters adjusted to the empirical semivariance data using 
different sampling grid densities. 

Theorical models of semivariance are shown in Figure 2.
The Gaussian model presented the best fit to the semivariance. 

This model is representative of smooth variations over small 
distances of observation (Isaaks & Srivastava, 1989). Regardless 
of the sampling grid used, it was observed that the range values 
were higher than the smallest distance between points in each 
sampling grid. In the variogram interpretation the range value 
is an indicative of the distance up to where there is correlation 
between sampled points. Points located in an area where the 
radius is equal to the range value show greater similarity when 
compared to those separated by greater distances.

According to Corá et al. (2004) estimates made using greater 
range values for the interpolation by ordinary kriging tend to 
be more reliable, with maps that better represent reality. Range 
values can still be used as standard to choose minimum distance 

Table 1. Minimum distance between sampled 
points and minimum pairs of points number to the 
experiemntal semivariogram for different sampling 
grid densities used
Sampling grids N(1) Minimum distance (m) Nm(2)

A 99 083.49 304

B 51 083.81 046

C 27 177.67 004

(1) Sampled points of each grid density; (2) Minimum pairs of points number for the experimental 
semivariogram

(1) For details see Table 1; (2) Spatial dependence index; (3) Residual sum of squares; (4) Determination coefficient

Sampling grids(1) Model Range (m) Sill (C0 + C) Nugget efect (C0) SDI(2) RSS(3) R²(4)

A Gaussian 1386 0.50 0.15 70 0.007 0.90

B Gaussian 1013 0.41 0.13 68 0.003 0.92

C Gaussian 1183 0.49 0.15 69 0.023 0.66

Table 2. Parameters of the theorical models fitted to empirical semivariance values ​​of lime requirement using different 
sampling grids

A.

B.

C.

Se
m

iv
ar

ia
nc

e

Separation distance (h)
Figure 2. Theorical models of semivariance

between sampled points. Therefore when half of the range value 
is consider as the distance between sampled points, the spatial 
variability detection of an attribute is guaranteed without losing 
estimates accuracy, considering that variable spatial continuity 
is maintained.

It was observed that with the decrease in number of sampled 
points, the residual sum of the squares was increased and the 
determination coefficient decreased. This result indicates loss 
of model accuracy for estimates values in unsampled locations. 
This fact is due to the decrease in the pairs of points number 
that represent the semivariance for a given distance, as discussed 
earlier.

The fitting parameters of cross-validation between observed 
and estimated values is presented in the Table 3. Although the 
determination coefficients (R2) are low, other parameters such 
as the regression coefficient (better fit when closer to one), 
the intercept (better fit when closer to zero) and standard 
error (smallest error when closer to zero) can be considered 
satisfactory, crediting reliability to semivariance theorical 
models adjusted to empirical semivariance data.
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The spatial distribution maps of lime requirement according 
to the soil sampling using the three grids density tested is 
observed in Figure 3. It can be observed that by reducing the 
number of sampled points the proportion of 4.3 and 5.1 t 
representative classes was increased. This fact indicates that if the 
soil liming was performed using the grid with fewer sampling 
points one part of the area would receive less limestone and 
other part more than necessary.

Representative area percentage values of each class in 
relation to the total area, each class area (ha) and the required 
amount of limestone (t) for each class depending on the 
sampling grid is observed in Table 4. It was observed that as 
the number of sampled points decrease class 1 (4.3 t) and class 

3 (5.1 t) were overestimated, the largest gain was observed for 
class 3, from 8.55 to 18.6 ha, meaning an increase of 117.5%. 
The result of the increase in the class 3 area was a gain in the 
lime requirement amount, which raised from 43.6 to 94.9 t, 
representing an increase of 117.7%. As the sampled points 
decreased, it was observed that: a) with the increase of the 
class 3 area 11% of the total area presented overestimation in 
the limestone requirement; b) increasing class 1 area 8% of the 
total area showed sub estimation in the limestone requirement; 
c) the total limestone amount requirement for the total 90 ha 
increased from 418.1 to 419.4 t, meaning a gain of 1.3 t.

Although the increase in the total lime requirement amount 
represents a raise in the cost to the farmer this is not the biggest 
problem caused by the decrease in the sampled points number. 
The biggest issue to be highlighted is the loss of productivity 
that may occur in areas where limestone was applied in smaller 
or greater amounts than required.

Liming in greater or smaller quantities than required, can 
result in significant losses in productivity. In case of sub or 
super estimation of lime requirement amounts the effect of 
soil acidity or concentration of calcium, respectively, can cause 
precipitation of important nutrients as phosphorus, zinc, iron, 
copper and manganese (Novais et al., 2007). Furthermore, 
the effect of a wrong lime dose can be even more damaging 
because the lime requirement has been determined using 
the adequate calcium and magnesium amounts instead of 
basic cation saturation. The basic cation saturation method 
could even in saturations below or above the recommended 
result in maximum production (Kopittke & Menzies, 2007). 
Moreover, the calcium and magnesium contents must be 
present to obtain a greater production. This fact can happen 
because in soils with low cation exchange capacity even if a 

Table 3. Cross-validation parameters of theorical models adjustments to empirical semivariance for lime requirement 
estimated from different sampling grids
Sampling grids(1) Regression coefficient Intercept Standard error (SE) Prediction standard error R²

A 1.08 -0.38 0.20 0.40 0.23

B 0.99 -0.15 0.24 0.40 0.25

C 0.91 -0.43 0.36 0.43 0.21

Figure 3. Spatial distribution maps of lime requirement 
estimated from the different sampling grids

A.

B.

C.

(1) Lime application of 4,3 t ha-1; (2) Lime application of 4,7 t ha-1; (3) Lime application of 5,1 t ha-1; 
*Limestone with PRNT of 100%.

Sampling grids Class 1(1) Class 2(2) Class 3(3) Total
Area porcentage

A 0230. 067.50 09.50 1000.

B 0300. 049.50 20.50 1000.

C 0310. 048.50 20.50 1000.

Area (ha)

A 020.7 060.75 08.55 0900.

B 0270. 044.50 18.50 0900.

C 027.9 43.5 18.60 0900.

Lime amount (t)*

A 89 285.50 43.60 418.1

B 116.1 209.20 94.30 419.6

C 1200. 204.50 94.90 419.4

Table 4. Total area percentage, area (ha) and lime amount 
(t) for each class according to the different sampling grids 
density used

(1) For details see Table 1
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high cation basic saturarion, calcium and magnesium contents 
may not be sufficient. On the other hand, in soils with high 
cation exchange capacity even with low cation basic saturation 
calcium and magnesium contents may be ideal. This highlights 
the importance of the sampling grids density since soils from 
Brazilian ‘Cerrado’ have typically low cation exchange capacity 
(Sousa & Lobato, 2004).

In addition, high calcium and magnesium contents could 
reduce potassium absorption due to antagonistic effect between 
K and Ca (Pinto et al., 2005; Medeiros et al., 2008), since high 
calcium amounts could be added in case of super estimation 
on lime requirement.

Further, in regions where the lime amount is less than 
necessary, soil pH correction can be compromised. Soils 
used for grain crops under acidic conditions may have toxic 
levels of ions such as Al+3 and Mn+2. Moreover soil acidity 
can affect availability of most nutrients, microorganisms 
activity, soil structure, soil mineralogy and soil organic matter 
(Novais et al., 2007). The main conclusion is that the choice of 
sampling grid density is a fundamental step in planning the 
liming of soils and deployment of a crop, which may reflect 
both positively and negatively on productivity of a particular 
culture. 

Further studies on the influence of the density of sampling 
points on the recommendation of lime application should be 
performed, to reduce the amount of points without losing 
accuracy in the mapping.

Conclusion

With the reduction of the sampling points grid density in the 
soil characterization for lime requirement determination using 
variable-rate application, 11% of the experimental area showed 
an overestimation and 8% underestimation comparing with the 
lime requirement made using the highest sampling grid density.
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