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The topic of difficult understanding of adiabatic invariance in classical mechanics is dealt with in a more
understandable way. Using the one-dimensional harmonic oscillator as an example, the goals of this paper are
twofold. First, given a first-order parameter variation, the second-order magnitude of the correction to the adiabatic
invariant is established in simple terms. Second, the identification of the action variable with the invariant quantity
for slow variations of different parameters of the Hamiltonian is confirmed, by invoking the correct equation of
motion in the derivation.
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1. Introduction

Aside from ideal isolated systems, the common conser-
vation laws do not usually hold in the physics of real
systems. In consequence, quasi-invariant quantities start
playing an important role in the approximate assessment
of many physics problems involving oscillations. Talman
quotes adiabatic invariance as perhaps the most essen-
tial, as well as the least understood, concept in acelerator
physics [1]. I would say further, one of the least under-
stood concepts of fundamental physics. It’s never too
much to recall the role played by adiabatic invariants in
quantum mechanics [2], so that efforts to clarify their
meaning should be welcome.

It seems amazing that, in spite of this, the subject of
adiabatic invariance is treated only shortly in classical
mechanics textbooks, quoting Devaud et al. [3], almost
as ”but a curiosity”. In order to introduce the concept,
most authors restrict themselves to present some varia-
tion of Einstein’s proof in 1911 that the action variables
Jk of a multi-periodic mechanical system are the adia-
batic invariants [4–6]. In many years teaching classical
mechanics for undergraduate and graduate courses, I
noted that the fate of Jk of being an adiabatic invariant
is almost useless to help students to understand well
the concept. Furthermore, this approach restricts the
subject to advanced mechanics courses, since it demands
knowledge of Hamilton-Jacobi theory. In fact, most un-
dergraduate textbooks do not even refer to it [7–9]. The
alternative procedure, namely to replace fast oscillating
terms by their average values, in the expressions for time
derivatives of the energy [10], requires subtle and smart
reasoning that frequently yields wrong results.
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”What is really an adiabatic invariant” remains as a
challenging question for students and even for lecturers.

The theme appears more frequently in teaching papers.
A derivation of adiabatic invariance from Rund-Trautman
identity and Noether’s theorem [11] is very interesting
but seems to be as inextricable for beginner students as
the derivation via the action variables. Some elementary
examples are treated in [12–21]. Crawford explores the
elementary and Jk-based approaches in some nice appli-
cations [18], while Devaud et al discussed the n-degree-
of-freedom oscillator case, including the possibility of
varying more than one parameter of the Hamiltonian [3],
without really assessing the understanding difficulties,
however.

In this paper I intend to help students by approaching
two aspects of the problem from elementary reasoning,
using the one-dimensional harmonic oscillator as example.
First I consider the answer to the recurrent question: How
invariant is an adiabatic invariant? Second, in view of
the fate of the single action variable Jk of being ”the”
adiabatic invariant, I discuss what happens when we
consider slow variations of different parameters of the
oscillator, namely its spring constant k and its mass m.

2. How invariant is an adiabatic
invariant?

An adiabatic invariant is defined as a quantity that re-
mains approximately constant under slow variation of
a parameter λ of an oscillating system. With slow vari-
ation we mean, not much rigorously, that being ∆T a
characteristic time interval of the parametric variation
and τ the period of the oscillation, then,
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∆T >> τ . (1)

More rigorously, we can state that

dλ

λ
<<

dt

τ
, (2)

namely the fractional variation of the parameter λ is
much lower than the fraction of the period of the oscilla-
tion, defines an adiabatic process.

The conditions for the Hamiltonian H to be equal
the total energy E are well known [5]: The potential
energy must be independent of the velocities and the
transformation equations between vectorial and general-
ized coordinates must be independent of the time (see,
however, [22, 23]). We assume that these conditions are
obeyed here. Yet the condition for H = E to be conserved,
namely ∂H

∂t
= 0, does not hold, since the parameter λ

of the Hamiltonian is time-dependent. We assume here
that there is no further explicit time dependence of the
Hamiltonian, that is, except for the parametric adiabatic
variation, the system would be conservative.

Being Jk the kth action variable of a multi-periodic
oscillating system,

Jk =
∮

pkdqk, (3)

where qk and pk are the canonical variables and the
integral ranges over an entire cicle, textbooks [4–6] gen-
erally arrive at a formula like

·
Jk = 〈F 〉

·
λ, (4)

where 〈F 〉 represents the time average of a Fourier series
in which the constant term is absent, meaning that,
〈F 〉 ' 0. However, this relation does not say much, but
only that the variation rate of the action variable, the
adiabatic invariant Jk, is perhaps much lesser than

·
λ.

But, how much less, in quantitative terms?
In this section, let us consider a one-dimensional har-

monic oscillator whose spring constant k varies slowly in
time, in order to answer this question. The energy of such
system is no longer constant, but if the variation of the
parameter is slow enough, we can consider that

·
E and

·
λ hold some kind of proportionality, meaning that some
relation between E and λ will remain approximately
constant. Also, at each different value of λ, we assume
that E is constant and so the corresponding equation of
motion holds. This reasoning gives rise to an alternative
and more elementary, but subtle and prone to errors pro-
cedure based on the time derivative of the total energy.
For the oscillator it is,

·
E = m

·
x

··
x + kx

·
x + x2

2
·
k = m

·
x(··

x + k

m
x) + x2

2
·
k. (5)

We can argue that the time average of the two first
terms in the middle of equation (5) will vanish (for very
small

·
k, the adiabatic limit), since they are fast and have

zero value in a period. As we isolate ·
x from these two

terms in the right-hand-side of (5), this assumption seems
to find support in the equation of motion for constant
k, ··

x + k
m x = 0, which must be obeyed for each value of

k (in the next section, however, we will see that what
appears here as an accordance, can lead to wrong results
in other situations). Yet, the term that multiplies

·
k, in

equation (5), x2

2 , a rapid term, can be replaced by its
time average 〈V 〉

k , yielding,

dE

dt
' 〈V 〉

k

dk

dt
= E

2k

dk

dt
or dE

E
' dk

2k
, (6)

where we used the well known result, 〈V 〉 = E
2 for

the linear oscillator. Assuming valid the equality and
solving the resulting differential equation in equation (6)
we obtain,

d

dt

E√
k

= 0 or E

ω
is the adiabatic invariant. (7)

In fact, all linear oscilators produce the same result
[18].

There is nothing new so far. However, we know that
the quantity E

ω is not really constant. ”What is the
actual physical meaning of the adiabatic invariance”, is a
question that usually arises. To answer it let us consider
an instantaneous variation δω in the frequency of the
oscillator, connected to k by k = mω2, which results in
a variation δE of the energy,

δω ⇒ δE = mx2ωδω. (8)

This expression for δE can be obtained either from
equation (5) or by noting that, in the adiabatic approxi-
mation, only the potential energy is varied. Evaluating
the ratio E+δE

ω+δω , we obtain,

E + δE

ω + δω
= E + δE

ω
(1 + δω

ω
)−1 ' E + δE

ω
(1 − δω

ω
),

(9)
where the last passage is due to the condition δω

ω << 1.
Expanding the right-hand side of equation (9) we get,

E + δE

ω + δω
= E

ω
+ δE

ω
− Eδω

ω2 − δEδω

ω2 . (10)

Now, using equation (8) above we obtain,

δE

ω
= mx2ω2δω

ω2 = 2V δω

ω2 . (11)

In a large number of cycles of the oscillator, as we
replace 2V by its time average 〈2V 〉 = E, we see that
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the second and third terms in relation (10) above cancel
each other, leading finally to,

E + δE

ω + δω
= E

ω
+ O (δEδω) . (12)

Now we can understand better the concept of adiabatic
invariance: a first-order variation in the slowly varying
parameter ω and, in consequence, in the energy E, is
followed by a second-order variation (a product of in-
finitesimals) on the ratio E

ω , the adiabatic invariant. In
other words,

The time derivative of an adiabatic invariant deviates
from zero only by a second-order deviation.

3. How many adiabatic invariants are
there?

Most advanced classical mechanics textbooks present
the proof that the action variables Jk are predestined
to be the adiabatic invariants (note, however, that for
more than one degree of freedom and in the presence of
resonances this assumption is not trivially followed [24]).
By predestined I mean that the definition of an action
variable, equation (3), makes no reference to any slow
parametric variation or anything like this. The number
of action variables is equal to the number of degrees
of freedom associated with the oscillatory motion. For
the one-dimensional harmonic oscilator there is only one
action variable J , which is easily evaluated by equation
(3) and coincides with the adiabatic invariant J = E

ω ,
as expected [5]. Then, a further common doubt come
to students: If we consider the oscillator’s mass m also
slowly varying in time [25, 26], how can the adiabatic
invariant be the same under slow variation of different
parameters? The doubts deepen when apparently correct
derivations by the elementary procedure discussed in the
previous section lead to results other than J = E

ω .
I now show that common mistakes can be avoided by a

procedure analogous to that of the previous section but
only when we make proper use of the correct equation
of motion in the derivation. Let us consider the slow
variation of m, instead of k. The equation of motion is
now,

m
··
x + ·

m
·
x + kx = 0 (13)

The variation rate of the energy of the oscillator be-
comes,

·
E = m

·
x

··
x + kx

·
x +

·
x

2

2
·

m. (14)

If one makes the common (though subtle) mistake of
using the same argument of the previous section, namely
that the time average of the first two terms in the right-
hand-side vanish together, we get

·
E = +

·
x

2

2
·

m. which,
after integration, leads to the supposed adiabatic invari-
ant Eω, different from the expected value J = E

ω
. What

seems wrong here is that, despite the argument being
valid for each term separately, we don’t know for sure if
they approach zero at the same rate (recall that we are
dealing with variable m). So, an assumption that showed
to be correct for slowly variable k gives an unexpected
result for slowly variable m. Furthermore, this result
contradicts the prediction that J is the only adiabatic
invariant for this problem. One should note, however,
that even for very small ·

m, it is not correct to take
··
x + k

m x = 0 anymore, which implies that the original
assumption is wrong in fact, that is, the first two terms
of the right-hand side of equation (14) do not vanish
together. On the other hand, the equation of motion (13)
for variable mass holds. Manipulating equation (14),

·
E = ·

x(m··
x + ·

m
·
x + kx) −

·
x

2

2
·

m. (15)

we see that it is the time average of the term inside
parenthesis that should vanish. Accounting for this and
taking the time average of −

·
x

2

2 , we obtain,

dE

dt
= −〈T 〉

m

dm

dt
or dE

E
= −dm

2m
, (16)

where T is the kinetic energy, which produces the
correct solution,

E
√

m ∝
E

ω
is the adiabatic invariant. (17)

Finally, one can ask what happens when both param-
eters, m and k present simultaneously slow variations.
Recalling that the equation of motion is still equation
(13) and repeating the procedures for the separated para-
metric variations, we get,

dE

E
= 1

2(dk

k
− dm

m
). (18)

Now, since ω =
√

k

m
, we easily show that the right-

hand-side of equation (17) is equal to dω

ω
, so that,

dE

E
= dω

ω
, (19)

which is equivalent to say that, again, E

ω
is the adia-

batic invariant.

4. Conclusions

The identification of the action variables with the adia-
batic invariants of an oscillatory systems does not help
students to understand the very concept of adiabatic
invariance. I hope I have clarified in section 2 the actual
meaning of adiabatic invariance in more understandable
terms. The elementary method based on time derivative
of the energy, on the other hand, is subject to subtle
mistakes that can yield different results when different
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parameters are considered to vary slowly. I intended to
show in section 3, based on a simple example, that the
two approaches yield the same correct result when the
proper equation of motion is resorted to. These two points
are surely included in any formal derivation based on
action variables such as that in ref. [11] but it appears
that the present alternative approach can help students
to better understand the concept of adiabatic invariance
in classical mechanics.
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