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São José dos Campos, SP, Brazil

Recebido em 31/3/2009; Revisado em 23/6/2009; Aceito em 7/7/2009; Publicado em 18/2/2010

The dependence between the speed of an object that travels a given distance through the rain and the volume
of water dumped on it by the raindrops is examined in this work. Considering a model based on the average
distance between the raindrops, it is possible to obtain an analytical equation that expresses this dependence
in terms of physical rain parameters. In order to verify our results a more realistic and sophisticated model
considering the random nature of the raindrops distribution in the space was built.
Keywords: running in the rain, raindrops distribution.

A dependência entre a velocidade com a qual um objeto percorre uma determinada distância na chuva e o
volume de água despejado nele pelas gotas é examinada neste trabalho. Considerando um modelo baseado na
distância média entre as gotas é posśıvel obter uma equação anaĺıtica que expressa esta dependência em termos
dos parâmetros f́ısicos da chuva. A fim de verificar nossos resultados constrúımos um modelo mais realista e
sofisticado que considera a natureza randômica da distribuição de gotas de chuva no espaço.
Palavras-chave: correndo na chuva, distribuição de gotas de chuva.

1. Introduction

The theoretical physics methodology is based on the
construction of models that represent the real system
which is intended to be studied. The models preserve
the essential features and discard the less important
details to the systems description through the suitable
choices of assumptions and simplifications. Analyzing
a model is possible to obtain comparable results with
experimental measures of the real system and so the
model can be considered plausible or refuted. In the
present work this methodology is didactically exempli-
fied through a curious question: What is the best speed
to cross a certain distance under rain (without an um-
brella) in order to arrive as dry as possible?

This problem was investigated in previous works. In
[1] was obtained an analytical expression, derived from
a flux argument, which gives the number of raindrops
hitting one inclined plane crossing the rain in terms of
its horizontal velocity. Another equivalent expression
is developed in [2] for a rectangular parallelepiped run-
ning in the rain considering the apparent inclined di-
rection of the raindrops trajectory due to the speed of
the object. The last work mentioned applied the idea of

average distances of the raindrops. This concept is also
used in our approach but in a different way. Both works
do not consider the lateral velocity of drops. In [3] the
author investigates the problem with a model consider-
ing a “volume of rain per unit volume of air”including
the lateral incidence of drops. The conclusions of these
works are the same: if the object travels faster it will
arrive drier, excepting when the horizontal velocity of
the rain is in the same direction as the motion of the
object. They also agreed that there is a limit of rain-
drops collected by the object when its velocity goes to
infinity, indicating that there are no great advantages
on running at very fast speeds instead of at a standard
speed. However, they are unclear on how the parame-
ters of the models are related to the real rain ones (like
precipitation rate and volume of the drops), so that the
comparison of the results with any experiment becomes
very difficult to be done (or maybe impossible).

A new model was built in this work, describing
the rain as a three-dimensional lattice, moving towards
each direction at velocity components of the raindrops.
An analytical expression in terms of physical rain para-
meters is obtained through the model. The expression
gives water volume dumped on one object as function
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of velocity at which it travels a certain distance un-
der the rain. This expression is completely comparable
with experimental results because all the terms pre-
sented in the final theoretical relation are measurable.
In addition to it, a more complex model that makes use
of a computational algorithm was created in order to
confront the results extracted from the analytical ex-
pression. As the work only requires basic principles of
physics and math and includes a detailed mathematic
development of the final relation, the paper becomes
interesting to the physics education. It provides an elu-
cidative example of the theoretical physics methodol-
ogy to the undergraduate students in the first years of
physics graduation course.

2. The Lattice Rain Model (LRM)

In order to obtain an expression that gives the wa-
ter volume dumped on one object at the end of its
travel under the rain, we constructed a model prob-
lem called “Lattice Rain Model” (LRM). In this model,
the rain consists of a three-dimensional lattice with
tetragonal unit cell where each lattice element corre-
sponds to one raindrop. There are two characteristic
cell edges: one horizontal a and one vertical b. Each
lattice element moves in (x, y, z) coordinates at the ve-
locity components of the rain (vrx, vry, vrz) respectively.
This construction was based in the assumption that,
for a homogenous rain, the distance between one rain-
drop and its neighbor along one coordinate axis is very
similar to the average distance between each drop and
its respective neighbors in this same axis. Consider-
ing an isotropic rain along x and y directions, the cell
edges must be equal in these directions. The velocities
(vrx, vry, vrz) are constant. The vertical direction ve-
locity vrz can be considered constant because drops fall
only a few meters before reaching the terminal veloc-
ity [4].

In order to represent a person running in the rain, a
box with horizontal, frontal and lateral areas: Axy, Ayz

and Axz respectively is taken into consideration. The
object moves along the x-direction with velocity vp for
a distance D. A representation of the model problem
is shown in Fig. 1. Only a piece of the lattice is rep-
resented in the scheme, but is considered that it would
fill all the space.

Defining t′ = b/|vrz| as the time between two
consecutive horizontal planes of the lattice reach the
ground, we express b as

b = t′|vrz|, (1)

where t′ has an unknown value for while. In order to
relate a and b with the real rain parameters, a measure
of rain intensity commonly called “precipitation rate”P
is introduced. This parameter is defined in terms of the
volume of water V dumped on an arbitrary horizontal
area Ah during the time t as

Figure 1 - Representation of the LRM. The distance between
two consecutive vertical (horizontal) rain planes is a (b).

P =
V

Aht
, (2)

and, in general, it is given in units of mm/h. In our
calculations, the MKS system is used, i.e., P will be
given in units of m/s. If we use Axy as the horizontal
area and t′ as the time in Eq. (2), it is possible to ob-
tain the water volume contained in just one horizontal
plane (see the definition of t′ above) of the lattice with
the same area of the top of the body.

Vxy = PAxyt′. (3)

On the other hand, the number of drops in one hor-
izontal plane of rain lattice with sides Lx and Ly is
given, as we can see in Fig. 2 (a), by

Nxy =
Lx

a

Ly

a
=

Axy

a2
, (4)

Therefore, if Vd is the volume of each drop, the volume
Vxy can also be represented by

Vxy = Vd
Axy

a2
. (5)

The Eqs. (3) and (5) were obtained independently.
While the definition of P was used to get the first, the
lattice parameter a associated with the rain parameter
Vd were used to get the second one. Equaling the right
sides of these equations, the length a can be expressed
by

a =

√
Vd

t′P
. (6)

The number of drops in one frontal plane of rain
lattice with sides Ly and h is given, as we can see in
Fig. 2 (b), by

Nyz =
Ly

a

h

b
=

Ayz

ab
. (7)

Similarly, the number of drops in one lateral plane of
the rain lattice with sides Lx and h is given by

Nxz =
Lx

a

h

b
=

Axz

ab
. (8)
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Using Eqs. (1) and (6) in Eqs. (7) and (8) is possible
to obtain the expressions

Nyz =
Ayz

|vrz|

√
P

t′Vd
, (9)

and

Nxz =
Axz

|vrz|

√
P

t′Vd
. (10)

Multiplying Nyz and Nxz respectively by the num-
ber of frontal and lateral rain planes crossed by the
body in its movement, it is possible to obtain the num-
ber of raindrops hitting it on each side at the end of
the travel. The water volume dumped on the body on
Ayz (Axz) is called VF (VL) and it is given by the drop
volume Vd multiplied by Nyz (Nxz) and the number of
frontal (lateral) planes crossed by the body during the
travel

VF = Vd
|vp − vrx|t

a
Nyz, (11)

VL = Vd
|vry|t

a
Nxz, (12)

where the number of planes crossed in one direction is
written as the travel time t multiplied by relative veloc-
ity between the body and the rain along the considered
direction and divided by the distance between to con-
secutive planes. The absolute value of relative velocities
were used because the number of raindrops hitting the
body can not be negative.

Replacing a, Nyz and Nxz in the Eqs. (11) and (12)
by the expressions (6), (9) and (10) respectively, the
frontal and lateral volume will be given by

VF = P
|vp − vrx|t
|vrz| Ayz, (13)

Figure 2 - Drops contained in (a) one horizontal plane of lat-
tice of sides Lx and Ly and (b) one frontal plane of lattice
of sides Ly and h.

VL = P
|vry|t
|vrz| Axz. (14)

It is interesting to observe that the arbitrary parameter
t′ was vanished when the number of drops in one plane
was multiplied by the number of planes crossed by the
body, although we define the lattice characteristic cell
edge b in terms of it. The parameter t′ was important
on the mathematical development, but the final result
does not depend on any specific choice of t′ value. The
volume of water dumped on the top of the body VT will
be given by the expression (2) replacing Ah by Axy

VT = PtAxy. (15)

The total water volume on the body when it finishes
its travel will be the sum of expressions (13), (14) and
(15).

Vtotal = Pt

[
Axy +

|vp − vrx|
|vrz| Ayz +

|vry|
|vrz|Axz

]
, (16)

where t is the travel time. The travel time will be given
by the expression D/vp when the distance D is prede-
termined. So the Eq. (16) assumes the form

Vtotal = PD

[
Axy

vp
+
|1− vrx

vp
|

|vrz| Ayz +
|vry|
|vrz|vp

Axz

]
.

(17)
The limits of Eq. (17) are

lim
vp→0

Vtotal = ∞, (18)

lim
vp→∞

Vtotal = PD
Ayz

|vrz| . (19)

The above limits indicate that Vtotal decreases from the
infinity (for vp = 0) to a non-zero value when vp →∞.
For a negative value of vrx (the x-velocity of the rain
against the motion of the body), the numerator of the
middle term in the brackets of Eq. (17) is always greater
than unity (since vp is positive by definition) and tends
to one as vp → ∞. It indicates that there is no mini-
mum in the function Vtotal(vp) and it decreases asymp-
totically to the limit value of Eq. (19). Therefore, the
best speed to run for a distance D through the rain
which presents horizontal velocity against the runner’s
motion would be the fastest one that might be possible
to reach, in order to Vtotal becomes as close as possible
to PD

Ayz

|vrz| .
However, if vrx is positive (the x-velocity of the rain

in the same direction as the motion of the object), then
there is an optimal velocity vp = vrx that cancels the
middle term in the brackets of Eq. (17). It means that
if the velocity of the body and the x-velocity of the
rain present the same values, then the water volume
dumped on frontal (or back) area will be zero. For this
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value of vp the total water volume dumped on the body
at the end of the travel is given by

Vtotal(vp = vrx) = PD

[
Axy

vrx
+

|vry|
|vrz|vrx

Axz

]
. (20)

It is possible to wonder if it would be better to run as
rapidly as possible or at the speed vp = vrx in order to
arrive drier, in case of a positive value for vrx. In other
words: is it better to cancel the middle term or the first
and third terms in Eq. (17)? The first option will be
better when the right side of Eq. (20) has a lower value
than the right side of Eq. (19). This will occur when

vrx > v∗rx =
|vrz|
Ayz

[
Axy +

|vry|
|vrz|Axz

]
, (21)

where v∗rx is the value of x-velocity of the rain which
obeys the relation Vtotal(vp = v∗rx) = limvp→∞ Vtotal.
If vrx < v∗rx and vp = vrx, then the water volume on
the area Ayz remains zero, but the body spends too
much time crossing the distance D and the water vol-
ume dumped on its top and lateral areas makes the
option of running at a velocity vp = vrx not the best
one.

3. The Random Rain Model (RRM)

Could the results obtained with the LRM remain valid
for a real rain? A conclusive answer to this question
can only be given through a comparison between ex-
perimental results and the theoretical ones, extracted
from the Eq. (17), but this is not the scope of this work.
However, a more sophisticated and totally independent
model could be elaborated in order to confront results.
It considers the main differences between the lattice
model and the real rain: the random position of drops
formation and the individual movement of each drop.
This model is called “Random Rain Model”(RRM).
The only way to extract results from it is making use
of a computational algorithm2.

The algorithm considers a rain confined in a rectan-
gular parallelepiped of sides D (distance to be crossed
by the body), Ly (width of the object) and h (height
of the object). Each drop is formed on the top of the
parallelepiped, after the time interval dt since the pre-
vious drop was created. The initial horizontal posi-
tion of the drops is chosen randomly, i.e., (x0, y0, z0) =
(rand × D, rand × Ly, h), where rand is a random
number into the interval (0, 1). The i-th drop moves
according the cinematic equations: (x(i), y(i), z(i)) =
(x(i)

0 + vrxt(i), y0 + vryt(i), z
(i)
0 + vrzt

(i)), where t(i) is
the time passed since when the i-th drop was formed.
The velocities (vrx, vry, vrz) are the same for all drops.

The boundary conditions of the space is cyclic on
laterals. This means that when a drop crosses one side
of the parallelepiped, leaving the space, it reappears on

the opposite side preserving the other two coordinates.
Every time a drop reaches the floor it is eliminated by
the algorithm and another drop is created on the top
of space at a new random initial position (x0, y0). So,
the number of drops into the parallelepiped is always
the same. The parallelepiped space represents a piece
of a rain as a whole. The justification of the RRM
cyclic lateral boundary condition is due to the assump-
tion that the piece of rain considered repeats almost
identically along x-direction and y-direction for a ho-
mogeneous real rain. In other words, the RRM only
permits only new drop information entering into the
space from the top area.

While the drops are moving in the space as de-
scribed above, a rectangular object of dimension Lx,
Ly and h moves in x-direction through the distance D
at velocity vp. The algorithm counts every drop hitting
the lateral, frontal and back area of the body during
its travel. Because the space has the same height of
the object, a drop hitting the top area of the body is
counted when the initial horizontal position of the drop
is contained on the top area of the object at the time
of drop creation. At the end of the travel along D, the
water volume dumped on the body is obtained multi-
plying the total number of hitting drops counted by the
volume of the drop Vd chosen. A representation of the
RRM is shown in Fig. 3.

Figure 3 - Representation of the RRM. The red drops are
crossing the boundaries of the space. When one drop reaches
the floor, another one is created on the top. When one
passes a distance x′ over one side of the space, it reappears
at a distance x′ of the opposite side. The same occurs for
the y-direction (not shown in figure). The sizes of drops,
body and the space are not in scale.

The drop formation time interval dt and the volume
of the drop Vd are directly related to the precipitation
rate P . For the RRM, it is known that if the time of
rain exposure is dt, then the water volume dumped is

2The algorithm is written in Fortran language and the author could provide it by e-mail.
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the volume of just one drop Vd. So, for the RRM, the
precipitation rate will be given by

P =
Vd

DLydt
, (22)

where DLy is the area of the floor which receives the
rain incidence. In order to relate the numerical para-
meter dt with the real rain parameters P and Vd, dt
was placed on the left side of Eq. (22)

dt =
Vd

PDLy
. (23)

4. Results

The water volume dumped on the object for several val-
ues of vp were obtained from LRM and RRM and the
two functions were plotted in the same graph. The same
value of parameters in both models were used in order
to compare the results. The precipitation rate will be
taken as P = 4 mm/h = 1.11× 10−6 m/s (a moderate
rain). The body dimensions assume values close to hu-
man body dimensions: Lx = 0.2m, Ly = 0.4 m and h
= 1.8 m. Consequently, the areas in Eq. (17) will be
Axy = Lx×Ly = 0.08 m2, Ayz = Ly×h = 0.72 m2 and
Axz = Lx × h = 0.36 m2. The travel distance and the
lateral rain velocity will be chosen as D = 100 m and
vry = 3 m/s. The terminal velocity vrz depends on the
size of the drops. For a drop with radius r = 1.375 mm
(Vd = 1.089 × 10−8 m3) the terminal velocity is about
vrz = -7.75 m/s [4]. The time interval of drop forma-
tion in the RRM must be dt = 2.45 × 10−4 when the
above values for Vd, P , D and Ly are inserted in the
Eq. (23).

When the vrx is negative (positive), the drops hits
the frontal (back) area of the body. Moreover, positive
and negative values of vrx must be analyzed separately
in order to explore this two different situations.

4.1. The x-velocity of the rain against the mo-
tion of the body

If we choose the value vrx = -3 m/s for x-direction ve-
locity, the dependence between Vtotal and vp, for each
model, is shown on Fig. 4. The absence of minimum
in the graph allows to conclude that the object should
travel the distance D as fast as possible in order to ar-
rive drier. However, as the relation between Vtotal and
vp is not linear, the gain running at very fast speed
could not be very significant in comparison to running
at moderate speed. For example: travelling at 5 m/s (a
normal run) the object arrives 68% less wet than if it
travels at 1 m/s (a slow walk). But if it runs at 10 m/s
(close to world record speed) it will arrive just 74% less
wet than at 1 m/s. The gain difference is only 6% while
the run is 100% faster than 5 m/s.

Figure 4 - Variation of the water volume dumped on the
body as a function of its velocity vp, for vrx = -3 m/s. The
red line corresponds the LRM results, and the black one
the RRM results. The square indicates a region which was
zoomed and it is shown in the same figure.

It is possible to observe that the results obtained
from LRM and RRM show great similarities. As the
RRM is a model based on random variables, conse-
quently its results will be different each time we run
the algorithm. However, the difference will just be a
statistical fluctuation, and the general behavior will be
always the same. The LRM is a model based on the
average distances of the raindrops horizontally and ver-
tically. Since LRM ignores the statistical fluctuation on
the distances, the red curve in Fig. 4 is smooth and just
represents the general behavior of the RRM results.

4.2. The x-velocity of the rain on the same di-
rection of motion of the body

In section 2., it was predicted that there is an optimal
velocity that cancels the drops incidence on the frontal
(or back) area Axz for a positive vrx. But, when the
value of vrx is small, it could not worth to run at this
velocity because the body would be exposed to the rain
for an extremely long time. The Eq. (21) gives the
lower limit of vrx which makes Vtotal a minimum for
vp = vrx. Substituting the values of vry, vrz, Ayz, Axy

and Axz used in simulations in Eq. (21), we find that
this limit must be v∗rx = 2.361 m/s.

In order to test the expression (21), we plot two de-
pendencies between V and vp with positive vrx. The
plot shown on Fig. 5 is for vrx = 2 m/s (a lower
value than v∗rx). The plot shown in Fig. 6 is for
vrx = 3 m/s (a higher value than v∗rx). The similarity
between LRM and RRM is verified again. In adition to
it, we can check that when vrx > v∗rx, the object arrives
drier when running at the speed vp = vrx. In case of
vrx < v∗rx, the ideal vp is the fastest as possible (as seen
in the case of negative vrx).
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Figure 5 - Variation of the water volume dumped on the
body as a function of its velocity vp with vrx = 2 m/s, for
LRM (red) and RRM (black). The square indicates a zoom
region close to vp = vrx. The velocity vp = 2 m/s is a
discontinuity of the function but not a minimum.

Figure 6 - Variation of the water volume dumped on the
body as a function of its velocity vp with vrx = 3 m/s, for
LRM (red) and RRM (black). The square indicates a zoom
region close to vp = vrx. The velocity vp = 3 m/s is a
discontinuity and a minimum of the function.

5. Conclusions

Two models have been proposed that enable the study
the “running in the rain”problem. The LRM considers
a rain with drops in sites of a three-dimensional lat-
tice. An analytical expression which gives the relation
between the speed of a running body under the rain
and the water volume on it at the end of its travel was
obtained through this model. The second model is the
RRM, a numerical model which considers each drop in-
dividually (and not on equidistant planes, as considered
by LRM) and being formed on random initial positions.
Although the RRM reproduces more authentically the
main features of the real rain, the results obtained by
RRM and LRM are almost identical. The difference
resides in small statistical fluctuations on RRM results
which will be distinct each time we run the algorithm

(since it uses random variables). The details included in
the RRM do not contribute significantly to a refined re-
sult. It also can not provide an analytic relation as the
LRM. So, the main role of RRM was to give credibility
to Eq. (17). The main goal of this work is to obtain the-
oretical results that can be comparable to experimental
results, since all parameters present in Eq. (17) can be
known experimentally. It is also a simple and didactic
example on how the theoretical physics methodology
works.

The results from this work indicate that when the
rain falls perpendicularly to the top area of the body,
or hitting it on its frontal area, the best speed to cross
the rain is as fast as possible. Although running being
better than walking, the advantages of running faster
than a conventional speed run could not worth the ad-
ditional effort, as it was already observed in [2]. In case
of the rain hitting the body on its back area, it could
be better to run at the velocity component of the rain
parallel to the motion of the body. Considering the
Eq. (21) it is possible to decide if running at this spe-
cific speed is the best option or not. This calculation is
a bit unpractical on the daily life as a requisite to take
a decision. There are alternative solutions which are
more convenient to be applied. For exemple: the per-
son who needs to run in the rain could just observe the
inclination of drops trajectory in relation of his back
area and intuitively assess if the lower limit of Eq. (21)
is respected or not. Even when vrz < v∗rz, the water
volume decreases drastically for vp = vrz and passes to
decrease slowly for vp > vrz, as we can see in Fig. 5.
Consequently, there is no great advantages on running
at a speed much faster than vp = vrz.

The theoretical results obtained from the models are
no longer applicable in everyday life when the distance
D is extremely extensive. There is a limit on how wet
a person could get, because after that the body is con-
sidered soaked and even if more drops hit it, the body
can not get wetter. When the distance D is very long,
this limit can be achieved. So, a person who needs to
cross a long distance in the rain would walk quietly for
not getting tired (unless he/she feels cold).

6. Acknowledgments

The author would like to thank Alexandre M. Zabot for
the encouragement, revision and helpful discussions.

Referências

[1] S.A. Stern, American Journal of Physics 51, 815
(1983).

[2] A. De Angelis, European Journal of Physics 8, 201
(1987).

[3] H. Bailey, The College Mathematics Journal 33, 88
(2002).

[4] P.K. Wang and H.R. Pruppacher, Journal of Applied
Meteorology 16, 275 (1977).


