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Classical charge oscillations in nanoscopic systems
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A single charge confined on the axis of a nanocylinder, carrying a charge of opposite sign, and two equal free
classical charges on a conducting thin nanoring are two systems which can oscillate with frequencies in the THz
domain. The potential energy obtained for the latter case can be generalized to n equal charges (n > 2). It can
be shown that the n charges occupy positions on the ring corresponding to the n roots of unity at equilibrium.
Keywords: charge oscillations, THz domain, nanoscopic system.

Uma tnica carga confinada ao longo do eixo de um nanocilindro, que possui uma carga de sinal contrario,
e duas cargas iguais livres em um fino nano-anel condutor sdao exemplos de sistemas que podem oscilar com
frequéncias na regiao de THz. A energia potencial obtida para o tltimo caso pode ser generalizado para n cargas
iguais (n > 2). Mostra-se que as n cargas ocupam posigdes sobre o anel que correspondem no equilibrio as n

raizes da unidade.

Palavras-chave: oscilagoes de carga, regidao de THz, sistemas nanoscépicos.

1. Introduction

The problem of oscillating charges in the THz domain
is a rather interesting topic, since the study of these
systems may be used to develop security detectors [1],
which are now of importance to allow safe mobility
by public transportation. Indeed, terahertz radiation
can be easily transmitted through commonly used non-
metallic covers, which might hide potentially danger-
ous materials as, for example explosives. Furthermore,
most of these mediums have characteristic responses in
the terahertz domain. The resulting spectra in this do-
main can thus be used to identify hidden potentially
dangerous materials, otherwise not detectable, such
as explosives carried by terrorists under their clothes.
Therefore, the terahertz radiation emitted by an os-
cillator (or a collection of those) could be used to de-
vice new types of detectors to allow safe public trans-
portation. These characteristic frequencies appear, typ-
ically, in nanoscopic systems. Being these systems ana-
lyzed by means of elementary classical electrodynamics
concepts, their study can link the actual research on
nanoscale systems [2] to physics teaching. When deal-
ing with nanocylinders (or nanorings), however, the de-
tailed structure of these materials needs to be consid-
ered. Indeed, the interatomic distances of the molecules
constituting the cylinder (or ring) are of the order of
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1071 m (1 A), so that the charge distribution in space
is far from uniform over the characteristic length of the
system, which may be only ten times larger than the
interatomic distance. A complete quantum mechani-
cal description of the system, however, goes beyond the
scope of the present work.

In the present work we shall first give a classical ex-
ample of a single charge oscillating on a conducting wire
placed on the axis of a charged nanocylinder, noticing
that these oscillations are indeed in the terahertz do-
main. Subsequently, after having introduced the prob-
lem of two point charges in a conducting nanoring, we
study the oscillation mode of this system by Lagrangian
methods. We generalize, in the static case, the result
found for two point charges to n of such entities. An
analytic solution of the equilibrium equations for n=3
is given in the Appendix as a mathematical endeavour.

2. A single charge inside a uniformly
charged nanocylinder

The system we consider in the present section consists
of a single charge ¢ on a finite conducting wire placed
along the axis of a uniformly charged cylinder of radius
R and height a. The charge must be confined within the
wire, since we would like it to oscillate on the cylinder
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axis, in the proximity of its equilibrium point. The con-
finement of the charge is necessary since, by Earnshaw
theorem [3], no stable equilibrium point may be found
for a free charge in space in the presence an electric
field generated by any charge distribution. The total
charge on the cylinder is ), whose sign is opposite to
the sign of ¢, and, as shown in Fig. 1, the displacement
of the charge ¢ from its equilibrium point O, placed at
the midpoint of the cylinder axis, corresponding, on its
turn, to the midpoint of the conducting wire, is denoted
by z. The centre of a thin portion of the cylinder, of
height d¢, is at distance £ from point O. Therefore, the
electrostatic potential dV at x, generated by the charge
distributed on the thin ring is given by

Dy — (1)
R 4 (z—¢)°
where k = 4ﬂ€0 and dQ = 2nRodf, 0 = 27rRa being

the charge density on the cylinder.
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Figura 1 - Geometry in the nanocylinder problem. A charge gq,
displaced from its equilibrium point O (the center of the cylinder),
and the cylinder’s elementary ring of charge, giving by integra-
tion, the potential in Eq. (2), are shown. The surface charge
density o is assumed to be constant over the whole cylindrical
surface.

ds

Therefore, the electrostatic potential V' at x is given
by

3 d¢
V (z) =2rko R —_— (2)
/5:—3' VR A+ (2 - 8)°

By setting n = x — &, we have dn = —d¢, so that

-5 dn
V(z)= —277kaR/nm+a T o (3)
- 2V

and finally

z+ 45
V (z) = 27ko RIn [77—|—\/R2+772 F =
.
z 41 +\/E & l)2
2rko Rln | & (@) G2 , (4)
A RO,

where we have expressed the arguments of the log-
arithm function in terms of normalized quantities.
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Therefore, the potential energy U (x) can be written
as follows
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whose graph is shown in Fig. 2, along with the series

expansion to second order in
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Figura 2 - Potential energy, normalized to k|qQ| /a, of a charge
q in a nanocylinder with radius R and length a = 2R.

The series expansion of U (x) suggests that the
charge q, if slightly displaced from its equilibrium posi-
tion at x = 0, is subject to small oscillations about this
point, the frequency of oscillation v being

_ 1 8k |qQ|
YT or 2 (©)

a’m [(%)2 + 1} Y

where m is the mass of the charged particle. We notice

that, for % >> 1, i.e., in the case of a thin ring, the
expression for v becomes the following
kqQ|
7
T oV mEs (™

By setting a = 2R in Eq. (6), we may estimate the
dimensions of the cylinder, if the desired frequency is
taken to be of the order of 1 THz. In order to do this, we
further assume that () = —100¢q, and that the particle
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be an electron, so that ¢ =2 122 nm and R = 61 nm. For
thin rings, on the other hand, by again taking a proton
as the oscillating charge and @Q =-100e, the radius R of
the ring needs to be of about 86 nm, in order to obtain
frequency oscillations of 1 THz. We thus see that, in
these types of problems, oscillation frequencies in the
THz domain can be obtained in nanoscopic systems.

Notice that nothing has been said about the elec-
tromagnetic friction force due to the interaction of the
accelerated charge with the ions within the conductor
or on its radiation emission [4], since we have only con-
sidered the natural frequency of the system. While elec-
tromagnetic friction force effects will be taken into ac-
count in the following section, here we would like to
briefly mention how to calculate the radiation power
emitted by the oscillating charge. We thus consider a
charge ¢ oscillating with angular frequency w = 27y
and a maximum excursion zy = 10 nm about its equi-
librium position. The mean square acceleration of the
charge will be a2, = $z3w* = 8r'z3r*. If we apply the
classical Larmor formula [4], we may find the power
emitted by the charge to be

2 2

o qray,

P = —,
6mege

(8)
where ¢ is the dielectric constant of vacuum and c is
the speed of light. If we take ¢ = e and set v = 1.0 THz,
we obtain P = 4.45 x 107 19Watt = 2.78 eV / s.

3. Two charges on a nanoring

In the present section we consider a similar problem
leading to oscillations of point particles in the THz do-
main. The second system we would like to study con-
sists of two point particles carrying charges g; andgs,
respectively, confined to move on a thin conducting ring
of radius R, as shown in Fig. 3.

In this case we shall adopt a Lagragian approach
to determine the oscillating frequency of the two point
particles, both of mass m and charge ¢q. By taking the
angles the charges make with the horizontal as gener-
alized coordinates, we may write the Lagrangian L of
the system as follows

kq?

_ 1 2 N2 N2 _
L=gmk (91 +92) 2Rsin (252 ©)

We may assume that the effect of the friction force,
due to the motion within the conductor, on the i—th
particle can be schematized by means of the viscous
force Q; = —'yéi [4]. Therefore, Langrage’s equations
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can be written as follows
d OL oL
dios, 00, 4T
cos (92 — 91)
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mR2, + —L (10a)

iR (92—91) =0
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Figura 3 - The position of two charges, ¢1 and g2, on a conduct-
ing ring are characterized by the angles 61 and 62 their position
vectors respectively make with the horizontal axis.

At equilibrium 6y — 6y = 7. Therefore, by defining
0 =0y — 0, =7+ &, we can recast the above equations
in terms of the sole variable £ in the following way

i (€
£+&£+2’;q;3);:2(é)>07 (11)

where 7 = X5, For small oscillations of the
charges about their equilibrium position, we can set

sin (%) ~ % and cos (g) ~ 1, so that Eq. (11) be-
comes

TR (12)
ST RS T

which is the dynamical equation of a damped oscilla-
tor, whose natural frequency is v = i 4:1‘7;3. If the
frequency is assumed to be of the order of 1 THz, by
setting ¢ = —e, taking the particles to be electrons, we
have R = 3 nm.
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4. Static solution for n charges on a thin
ring

In the present section we study the static conditions for
a system of n > 2 equal point charges g on a conducting
thin ring. By extending the analysis of the previous sec-
tion to an arbitrary number of charges at equilibrium,
the equilibrium conditions are analytically solved for
n = 3 in the Appendix.

In general, we may state that, given n (n > 2) equal
free point charges ¢, confined on a circumference of ra-
dius R, the equilibrium positions of these charges cor-
respond to the vertices of a regular polygon, having
exactly n sides, inscribed in the circumference itself.

In order to prove what stated above, let us consider
a coordinate system Ozxy, with origin O in the centre
of the ring. Let us also consider a charge at point A
(R, 0). Being the charge at equilibrium, there could
not exist a component of the electric field tangential to
the circumference of radius R at A. In order to satisfy
this condition, we distinguish two cases: odd and even
number of charges n.
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Figura 4 - The electric field at point (R,0), where the charge g1
is located, generated by two charges, g2 and g3, placed symmet-
rically with respect to the x axis, on a ring of radius R has only
a horizontal component.

If n is odd, we find that the remaining "7*1 couples
of charges, different from the charge in A, are formed
each by two charges which are positioned symmetrically
with respect to the diameter AA’, A’ (-R, 0) being the
opposite point to A on the circumference. This is so be-
cause the y-component (y being the direction tangent
to the circumference at A) of the electric field gener-
ated by the two charge in the couple considered must
be zero (see Fig. 4). From this follows that, for each
couple, the distance of each of the two point charges in
the couple from A is the same. Since the same reason-
ing can be carried out by isolating a charge placed in
the nearest neighbour point B to A, and by considering
"T’l couples of charges which are symmetrically placed
with respect to BB’, whereB’ is a point opposite to B
on the circumference, we can argue that the distance
between any two adjacent charges must be constant, if
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we extend the same argument to a nearest neighbour
charge to B, and so on. In this way, we can conclude
that the n charges need to be necessarily placed at the
vertices of a regular polygon with n sides inscribed in
the circumference.

On the other hand, if n is even, and if we start by
considering a first charge is place in A (R, 0), there
must exist, necessarily, a second charge in A" (-R, 0).
The remaining ”7’2 couples of charges are placed, as be-
fore, in such a way that the positions of the two charges
in each couple are symmetric with respect to the diam-
eter AA’. It follows that, for each couple, the distance
of each of the two point charges from A is the same.
However, we could start by considering a first charge
being placed in a nearest neighbour point B to A, so
that a second charge needs to placed in B’, opposite
to B on the circumference. The remaining "52 couples
of charges are placed in such a way that the positions
of the two charges in each couple are symmetric with
respect to the diameter BB’. From this point on, we
adopt the same reasoning as before to conclude that,
even in this case, the n charges need to be necessarily
placed at the vertices of a regular polygon with n sides
inscribed in the circumference.

5. Conclusions

Two different systems, showing charge oscillation, have
been analyzed by means of classical mechanics and ba-
sic electrodynamics concepts. It is noted that, when
the characteristic dimensions of these systems are of
the order of 1 nm, the natural oscillation frequencies of
the moving charges are in the THz regime.

In particular, the system consisting of a uniformly
charged nanocylinder of radius R and length a and a
conducting nanorod, placed along the cylinder axis and
carrying a charge ¢, is first considered. It is noted that
the nanocylinder can generate an electric field on its
axis such that the charge g can oscillate about the axis
midpoint along the nanorod. Frequencies of the order of
1 THz are obtained for an oscillating electron (¢ = —e),
and for @ =-100q, a = 122 nm and R = 61 nm. The os-
cillations of a point charge about the centre of a nanor-
ing on a conducting nanorod placed along its axis are
studied by taking the limiting condition a = 0.

As a second example, the case of a nanoring of ra-
dius R with two equal free charges confined to move
along its circumference is studied. By adopting a La-
grangian approach, the classical equations of the mo-
tion of the system are solved for small oscillations of the
charges about their equilibrium positions. It is found
that, by taking the oscillating particles to be electrons,
we need to have R = 3 nm, in order to have frequencies
in the THz domain. The static solutions for these sys-
tems are studied for n > 2, finding that the n charges
attain equilibrium positions corresponding to the ver-
tices of a regular polygon with n sides inscribed in the
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ring.

We may consider this classical analysis useful for
didactical purposes, since it proposes some aspects of
actual research topics. In particular, we notice that
the wonderful world of nanostructures can be looked
at from a classical viewpoint, even within the limits
that classical dynamics imposes to the validity of the
present treatment. In fact, in order to obtain more
realistic results, noting that the characteristic scale of
these systems calls for a quantum mechanical extension
of the present concepts, we may still consider this clas-
sical analysis as a starting point for further studies. In
the quantum case one however needs to consider much
less simple expressions for the overall potential energy.
Furthermore, the dynamics of the system is governed
by the Schrédinger equation, rather than Newton’ sec-
ond law for a classical particle. Obviously, quantum
mechanical extensions of the present analysis goes be-
yond the purpose of the present work. Finally, we may
also consider that, by studying the characteristic fea-
tures of these systems, physics teachers could connect
the fascinating topic of nanoscale devices to elementary
physics concepts.

Appendix

The equilibrium conditions giving the n charges placed
at the vertices of a regular polygon inscribed within the
ring circumference are analytically solved for n = 3.

We assume that the angular position of the i-th
charge is given by the angle 6;, so that the electrostatic
potential U may be written as follows

kq? & 1
U= % — (A-1)
i=2 j<i S (712 J)
The minimum of U is obtained by setting
ou
— =0 j=1,...,n. A-2
80] 9 J ) , ( )

Therefore, by recalling Eq.
Hji = 91 — Gj we have

077;
COS (72 )
— O7

Oji———4% =
It 2 (0
i#j S 2

where each equation contains N = (

(A1), and defining

j=1,..,n. (A-3)

g ) addends and
where

)+l <
Uﬂ_{—l N (A-4)
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The set of equations (A3) can be solved rather easily

COS h
for n = 3. In particular, by setting [0;;] = 2792,
sin 5
noticing that [0};] = [0;;], for n = 3, we have
i=1, +[012] +[013] =0
j=2, - [921} + [923] =0 . (A—5)
J=3, =[] —1[052] =0
which immediately gives [612] = [f23] = [0] and
[012]) = —[f13] = —[26]. From this last expression,
we can define the angle 6, by writing
6
cos (5 cos (0
oly) | cont) (A6)
sin® (§)  sin® (0)

The above trigonometric equation can be recast in
the following algebraic form

T n 222 — 1
1—22  422(1—2?)

— 0, (A-7)

[%

where x = cos (5) Therefore, we need to solve the

following third degree equation

4a® +22% —1 =0, (A-8)

which allows only one real solution, namely, z = %, giv-
ing g = 5. In this way, once again, the positions of the
point charges on the thin ring coincide with the angular
positions of the third roots of unity, if we place the first
charge in the point (R,0) of the = — y plane.
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