Acessibilidade / Reportar erro

Campo eletromagnético de uma carga em queda livre num campo gravitacional uniforme

Electromagnetic field of a free falling charge in an uniform gravitational field

Resumos

As transformações de Rindler são usadas para obter o campo eletromagnético de uma carga em queda livre num campo gravitacional uniforme.

transformações de Rindler; campo gravitacional uniforme; carga em queda livre; efeito gravitacional sobre o campo eletromagnético


Electromagnetic field of free falling charge in an uniform gravitational field is obtained using Rindler transformations.

Rindler transformations; uniform gravitational field; electromagnetic field of free falling charge; gravitational effect on electromagnetic field


ARTIGOS GERAIS

Campo eletromagnético de uma carga em queda livre num campo gravitacional uniforme

Electromagnetic field of a free falling charge in an uniform gravitational field

Mario Goto1 1 E-mail: mgoto@uel.br

Departamento de Física, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brasil

RESUMO

As transformações de Rindler são usadas para obter o campo eletromagnético de uma carga em queda livre num campo gravitacional uniforme.

Palavras-chave: transformações de Rindler, campo gravitacional uniforme, carga em queda livre, efeito gravitacional sobre o campo eletromagnético.

ABSTRACT

Electromagnetic field of free falling charge in an uniform gravitational field is obtained using Rindler transformations.

Keywords: Rindler transformations, uniform gravitational field, electromagnetic field of free falling charge, gravitational effect on electromagnetic field.

1. Introdução

O referencial próprio R' de um corpo em queda livre num campo gravitacional uniforme é um referencial inercial para o qual um corpo em repouso junto a este campo no referencial R executa um movimento hiperbólico. O campo de uma carga em movimento hiperbólico já é conhecido [1-14], assim como o campo eletrostático de uma carga em repouso num campo gravitacional uniforme [12, 14].

O interesse aqui é o campo eletromagnético de uma carga em queda livre num campo gravitacional uniforme. No referencial próprio R' da carga o campo é o coulombiano, e pode ser transformado para o campo em R usando as transformações de Rindler [15, 17].

O referencial principal, do observador, é o R, com coordenadas ( xµ) = (x0 = ct, x1 = x, x2 = y, x3 = z) . O R' é o referencial inercial, em queda livre, com coordenadas ( x' α) = ( x'0 = ct', x'1 = x', x'2 = y', x'3 = z') . O campo gravitacional, uniforme, será definido ao longo do eixo zz', g = - a = – e o tensor métrico gµν definido de forma compatível com o tensor métrico minkowskiano [17-22] ηαβ com os sinais relativos das componentes diagonais (-,+,+,+). Por simplicidade usa-se c = 1 porém, quando necessário por motivos de clareza, a velocidade da luz c será colocada explicitamente.

2. Transformações de Rindler

As transformações de Rindler conectam referenciais inerciais com os referenciais uniformemente acelerados equivalentes aos referenciais em repouso na presença de um campo gravitacional uniforme.

Nos referenciais inerciais as propriedades do espaço-tempo e as leis da Física são descritas pela relatividade restrita. Nos referenciais não inerciais, as propriedades do espaço-tempo são definidas pela métrica [15-17]

através do tensor métrico

No caso de um campo gravitacional uniforme,

com as componentes não triviais

Como as componentes não diagonais do tensor métrico são nulas, a identidade

define as componentes contravariantes

Conhecida a métrica, as transformações entre os referenciais R e R' podem ser obtidas resolvendo o sistema de equações diferenciais

onde

é a conexão afim, cujas componentes não nulas são

e resultam nas transformações de Rindler

aqui definidas para satisfazer a condição na origem

(ct = 0, z = 0) ⇔ (ct' = 0, z' = 0)

As transformações (2) e a métrica (3) mostram que um corpo em repouso na origem do referencial R executa um movimento hiperbólico em R' dadas pelas coordenadas do espaço-tempo

Por outro lado, um corpo em repouso na origem do referencial inercial R' por definição está em queda livre em relação ao referencial R. Considerando z' = 0 nas transformações (2), resulta

ou seja,

que descreve a trajetória de um objeto vindo de z = - ∞ (com velocidade c) desacelerando até parar em z = 0 e então retornando para - ∞ de forma acelerada até atingir a velocidade - c. Nesta trajetória a velocidade é

e a aceleração,

A Fig. 1 ilustra a trajetória (preto), a velocidade (azul) e a aceleração (vermelho) de um corpo em queda livre num campo gravitacional uniforme.


3. Campo eletromagnético

As transformações diferenciais

definem as transformações dos campos vetoriais,

Das transformações de Rindler (2) resultam

e a inversa

Para as componentes covariantes

A0(x, y, z, t ) = g00A0 (x, y, z, y) = - e2az A0 (x, y, z, t,)

e

A3(x, y, z, t ) = g33A3 (x, y, z, y) = - e2az A0 (x, y, z, t,)

as transformações (3) ficam

O potencial eletrostático de uma carga puntual localizada na origem de R' é

onde x' = x, y' = y e

as componentes espaciais sendo nulas, A' = 0. No referencial R as componentes não nulas resultam

A partir do tensor eletromagnético [12-14]

são obtidos os campos elétrico

e magnético

3.1. Campo elétrico

Das Eqs. (3) e (19) se obtém as componentes do campo elétrico

resultando

com módulo quadrático

Em coordenadas cilíndricas, as componentes não nulas são

Pode-se mostrar que no limite α → 0 resulta o campo coulombiano de uma carga em repouso na origem de um referencial inercial.

3.2. Campo magnético

As componentes do campo magnético, Eq. (20), são

com as componentes não nulas

ou, em forma vetorial,

3.3. Evolução do campo elétrico

As ilustrações apresentadas nesta sub-secção são simulações computacionais baseadas em técnicas de Monte Carlo [23-25]. Para a amostragem das linhas de campo, além das coordenadas (x,z) distribuídas com peso probabilístico proporcional à intensidade |E| do campo, as orientações espaciais são indicadas por segmentos de reta de igual comprimento Δs com as extremidades ancoradas nos pontos (x,z) e ( xx,zz) para Δx = Δs sin θ e Δz = Δs cos θ, o ângulo θ obtido da relação Ex/Ez = tan θ. O segmento Δs é tomado o menor possível com resolução que permita visualizar as orientações das linhas de campo. As amostragens finais contém três mil pontos, as cores atribuídas arbitrariamente para encobrir os efeitos de saturação que ocorre no entorno do ponto de divergência do campo elétrico.

As simulações são configuradas para quadros de amostragem de dimensões 40L×40L representando o plano x × z delimitado por -20L < x < 20L na horizontal e -20L < z < 20L na vertical, onde L é uma unidade arbitrária de distância. As acelerações e os campos gravitacionais são dados em a/c2 e g/c2, respectivamente, cuja unidade é L-1. A partir destas considerações, a unidade L será omitida (L = 1) [14-15].

As componentes do campo elétrico de uma carga em queda livre, Eq. (28), no instante t = 0 e a carga fonte na posição z = 0 , fica

Usando as expressões da Eq. (3.3) acima, a Fig. 2 mostra quadros comparativos das configurações dos campos de cargas em queda livre em campos gravitacionais uniformes de diferentes intensidades, a carga na posição z = 0 no instante t = 0 da trajetória descrita na Fig. 1. As intensidades dos campos gravitacionais são tomadas exageradamente altas para realçar os efeitos sobre a configuração do campo elétrico.


Pode-se mostrar que o sistema carga fonte mais o campo elétrico tem simetria translacional ao longo da trajetória da carga. De fato, considere a Eq. (11) que define a trajetória da carga. Escrita na forma

leva à igualdade

eaz (eat + a–at) =

de modo que as componentes do campo elétrico, Eq. (), podem ser escritas na forma

explicitando esta simetria.

É necessário ressaltar que o campo magnético não tem essa simetria translacional, como facilmente pode ser verificada nas Eqs. (22), inclusive porque o campo magnético depende da velocidade que, obviamente, varia ao longo da trajetória.

4. Equações de Maxwell

As equações de Maxwell na presença do campo gravitacional assumem as formas [21]

para o par das equações homogêneas e

para as não homogêneas, onde g = -det(gµν). Na ausência de campo gravitacional, g = 1, resultando nas equações de Maxwell no espaço-tempo de Minkowski.

As equações homogêneas contém a lei de Gauss do campo magnético,

e a lei de Faraday

Considerando Bz= 0 e as derivadas das outras componentes, é imediato verificar que a condição

é satisfeita. Com derivações mais extensas e trabalhosas, chega-se às igualdades

que, considerando Bz = 0, são as equações da lei de Faraday.

As equações não homogêneas englobam a lei de Gauss do campo elétrico,

e a lei de Ampère

a corrente obtida pelas transformações de Rindler para campos vetoriais. A carga puntiforme está em repouso no referencial R' em queda livre, de modo que J'0 = ρ'c = 4πqδ(r) e J'1 = J'2 = J'3 = 0. No referencial não inercial R resultam as componentes

e

as demais sendo nulas, Jx = Jy = 0.

As derivações das componentes do campo elétrico em relação às coordenadas resultam

que é nula,

em todo o espaço exceto sobre a carga, cujas coordenadas são x = y = 0 mais a equação da trajetória

mostrando que a lei da Gauss

é satisfeita para

Em relação à lei de Ampère, considerando Bz = 0, J1 = J2 = 0, as três componentes da Eqs. (39) ficam

As duas primeiras equações podem ser verificadas de imedianto comparando as derivadas envolvidas.

Combinando as derivadas espaciais

e a derivada temporal

resulta

em todo o espaço exceto sobre a carga, levando à terceira das equações da lei de Ampère,

para

5. Conclusões

As transformações de Rindler oferecem um meio simples para obter o campo eletromagnético de cargas em queda livre num campo gravitacional uniforme. Observa-se que o sistema carga fonte e o campo elétrico tem invariança translacional ao longo da trajetória da carga em queda livre. Esta invariança suscita uma questão em relação à radiação de cargas em queda livre, um assunto que deve ser examinado com mais detalhes mesmo porque esta simetria translacional não é compartilhada pelo campo magnético devido à sua dependência com a velocidade. Por fim, verifica-se que os campos elétrico e magnético assim obtidos satisfazem às equações de Maxwell na presença do campo gravitacional uniforme.

Recebido em 4/11/2008; Revisado em 25/11/2009; Aceito em 30/11/2009; Publicado em 14/5/2010

  • [1] T. Fulton and F. Rohrlich, Annals of Phys. 9, 499 (1960).
  • [2] José M.F. Bassalo, Eletrodinâmica Clássica (Livraria da Física, São Paulo, 2007).
  • [3] John David Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1999).
  • [4] A.O. Barut, Electrodynamics and Classical Theory of Fields and Particles (Dover, New York, 1980).
  • [5] L. Landau and E.L. Lifshitz, The Classical Theory of Fields (Pergamon Press, Oxford, 1976).
  • [6] C. Teitelboim, D. Villarroel and Ch. G. Van Weert, Nuovo Cimento 3, 1 (1980).
  • [7] D.G. Boulware, Annals of Phys. 124, 169 (1980).
  • [8] Roger Y. Tsien, American Journal of Physics 40, 46 (1972).
  • [9] E. Eriksen and O. Gron, Ann. of Phys. 286, 320 (2000).
  • [10] E. Eriksen and O. Gron, Ann. of Phys. 286, 343 (2000).
  • [11] E. Eriksen and O. Gron, Ann. of Phys. 286, 373 (2000).
  • [12] E. Eriksen and O. Gron, Ann. of Phys. 297, 243 (2002).
  • [13] E. Eriksen and O. Gron, Ann. of Phys. 313, 147 (2004).
  • [14] M. Goto, Representação Pictórica da Evolução Espaço-Temporal do Campo Elétrico de uma Carga em Movimento Hiperbólico (Departamento de Física da UEL, Londrina, 2008).
  • [15] M. Goto, Revista Brasileira de Ensino de Física 31, 4307 (2009).
  • [16] N.D. Birrel and P.C.W. Davies, Quantum Fields in Curved Space (Cambridge Univ. Press, New York, 1982).
  • [17] M. Goto, P.L. Natti and E.R.T. Natti, Class. Quantum Grav. 27, 025005 (2010).
  • [18] J.H. Smith, Introd. a la Relatividad Especial (Reverté, Barcelona, 1969).
  • [19] R.A. Mould, Basic Relativity (Springer, New York, 1994).
  • [20] C. Møller, The Theory of Relativity (Clarendon Press, Oxford, 1972).
  • [21] S. Weinberg, Gravitation and Cosmology (John Wiley & Sons, New York, 1972).
  • [22] Eric A. Lord, Tensors Relativity and Cosmology (Tata McGraw-Hill, New Delhi, 1979).
  • [23] M. Goto, H. Iwamoto, V.M. de Aquino and V.C. Aguilera-Navarro, American Journal of Physics 69, 1 (2001).
  • [24] I.M. Sobol, The Monte Carlo Method (Univ. Chicago Press, Chicago, 1974).
  • [25] M.H. Kalos and P.M. Whitlock, Monte Carlo Method (John Wiley, New York, 1986).
  • 1
    E-mail:
  • Datas de Publicação

    • Publicação nesta coleção
      02 Jul 2010
    • Data do Fascículo
      Mar 2010

    Histórico

    • Recebido
      04 Nov 2008
    • Revisado
      25 Nov 2009
    • Aceito
      30 Nov 2009
    Sociedade Brasileira de Física Caixa Postal 66328, 05389-970 São Paulo SP - Brazil - São Paulo - SP - Brazil
    E-mail: marcio@sbfisica.org.br