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In this work, the divergence and curl operators are obtained using the coordinate free non rigid basis formulation
of differential geometry. Although the authors have attempted to keep the presentation self-contained as much as
possible, some previous exposure to the language of differential geometry may be helpful. In this sense the work is
aimed to late undergraduate or beginners graduate students interested in mathematical physics. To illustrate the
development, we graphically present the eleven coordinate systems in which the Laplace operator is separable. We
detail the development of the basis and the connection for the cylindrical and paraboloidal coordinate systems.
We also present in |1] codes both in Maxima and Maple for the spherical orthonormal basis, which serves as
a working model for calculations in other situations of interest. Also in [1] the codes to obtain the coordinate

surfaces are given.
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1. Introduction

At the undergraduate level, it can be noticed that in the
majority of the books on classical mechanics [2], and also
in electromagnetism [3], use is made of the famous unit
vectors 7, é, qAb, or p, é, Z, respectively in the spherical
and cylindrical cases. Both these bases are called non
coordinate. In contrast, the cartesian basis 2, ¢ and 2
is called a coordinate basis. We will get to this point in
section 2

The intention of this work is to provide a coordinate
independent expression for the vector operators, imposing
the orthonormality condition. The subject is not new as
we will discuss just in the following. It is a formalism,
such that it will result in the same equations, written
in a different form. We also present the 11 coordinate
systems for which Laplace operator is separable [4].

On the other hand, vector calculus, as we know it, was
developed by Josiah W. Gibbs in Yale in the second half
of the XIX century which ended up with the famous book,
Vector Analysis written together with Edwin B. Wilson

in 1901, [5]. Gibbs’s book only addresses coordinate basis.

Sommerfeld’s book [6] is the older reference that we
know of, in which the vector operators in curvilinear
systems are presented. In this book, the operators are
obtained through their integral definition. Circulation of
a vector V in a closed loop 7, ﬁy V.dr”, is used to obtain

the curl V x V. And flux over a closed surface pIN fz: V.dé

to obtain the divergence V.V. All other textbooks on
mathematical physics in which we were able find the
vector operators in curvilinear systems [7HL3], follow the
same technique as in Sommerfeld’s book.
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In this present work, there is no intention to develop
a systematic review in differential geometry. Anyway,
in order to have a mostly self contained text, we shall
briefly introduce the concepts of tensors and the covariant
derivative. Many modern textbooks on mathematical
physics do present differential geometry as a standard
subject in which the interested reader can look into, for
example [7,/8L[11].

Looking into many General Relativity (GR) textbooks,
it is possible to find the use non coordinate orthonormal
basis, which in the GR context are known as tetrads,
see for example [14}|15]. In [16], the vector operators are
obtained using differential forms. For example, in [17]
page 213 in exercise 8.6, it is presented the divergence
of a vector field in spherical coordinates using the same
technique which we are presenting here in our work. In
some sense, the examples carried out by us complement
the ones in the book of Misner, et al. [17], since both the
divergence and curl of a vector field are developed here.

The subject is not new, as it is well known that at-
tached to each curve there’s a locally orthogonal frame
which was independently discovered by Jean F. Frenet
and Joseph A. Serret, respectively in 1847 and 1851. Dur-
ing the XIX century, Jean G. Darboux generalized the
Frenet-Serret frame to surfaces, developing the triedre
mobile which culminated with the four volumes published
during the years 1887-1896, [18]. Moving frames were lat-
ter addressed by Elie Cartan in connection to Lie Groups
in 1937, [19]. The equations governing Darboux frame, in
modern language, are called Cartan structure equations,
see for example [20].

We must mention that there is a very interesting pre-
vious work on divergence and curl for electromagnetism
for some particular cases |21]. As an application of the
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formalism, we show analytically how to obtain the di-
vergence and curl of a vector for the cylindrical and a
non trivial example, the paraboloidal orthonormal basis.
We also present in [1], codes both in Maxima [22], [23]
and Maple [24] to obtain the operators for the spherical
orthonormal basis, and also the codes to obtain the coor-
dinate surfaces. It is very easy to adapt the code to the
other coordinate systems, or to any other situation of in-
terest. The work is aimed at the second half of the physics
course or beginning graduate students. The subject could
be easily mastered to anyone interested to include this
formalism in a ordinary course of mathematical physics
to be given in the classroom to the students.

The article is organized as follows: in section [2] the
coordinate free formulation is developed; also in this
section, the appropriate connection for an arbitrary basis
is given. In section [3| we list a set of coordinates for
which Laplace operator is separable, and we show how
to find the appropriate orthonormal basis adapted for
each frame. The divergence and curl of a vector for the
cylindrical, and paraboloidal orthonormal bases are also
presented in this section. Our final remarks are presented
in the conclusions.

2. Coordinate free formulation

2.1. Bases

We begin the discussion by first clarifying some facts
about bases through an example, after which getting
more formal. Despite the attempt to keep the text self-
consistent, prior knowledge in differential geometry may
be useful.

The Figure 1 shows the very example of the orthonor-
mal unit basis vectors important to physics. It can be

Figure 1: Spherical coordinates, it is shown the orthonormal
physical basis, 7, 6 and ¢.
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seen there, that all the basis vectors get modified E| under
translations in ¢. While 7 and 6 depend on 6 and all
the basis vectors do not depend in modifications in 7.
Therefore, only the vector 7 can be integrated in the same
sense of a velocity vector to give the coordinate line 7.
It is not possible to integrate the other two basis vector.
This is an example of an orthonormal non coordinate
basis. It is not possible to integrate all the coordinate
basis vectors to give rise to the coordinate lines.

The intention of this work is to develop the vector oper-
ators for arbitrary orthonormal non coordinate bases. We
choose a very traditional path, introducing first coordi-
nate bases and then arbitrary orthonormal bases. There
is a strong reason for this, since restricting to Euclidean
space, it is always possible to choose the cartesian basis,
which is the sole example in which a coordinate basis is
also orthonormal.Both bases can be used for spherical
coordinates, being the orthonormal the more important
to physics.

Now we turn to the general case, such that latin indeces
i, j, k, etc. run from 1 to 3 and concern coordinate basis,
while latin indeces a, b, ¢, etc label each orthonormal
vector.

For us, an arbitrary vector V is always connected to
the directional derivative, in the sense that

V'oif(xz) = fiv (1)

where 0; = % are the partial derivative operators
in the coordinate directions, which, when interpreted as
vectors, form the coordinate basis. Here x € E? is point
in Euclidean space, f(x) is any scalar function and it is
used the usual convention of summation over repeated
indices. Therefore, a vector V can be written as

V =V, (2)

Now we define a change of basis. Starting with any of
the coordinate bases, we change to an arbitrary basis e,

(91' = Miaea
ea = (M) 0, (3)

a
where necessarily the basis transformation matrix M;®
must be invertible and cover all the space, except for sets
of measure zero.
Therefore in an arbitrary basis, the components of a
vector transform as

V =V, =V'M%, = Ve,, (4)

where } 4
Ve=VIM*;. (5)

I Except for 6 at the equator and 7 at the poles, which do not
depend on the coordinate ¢
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Coordinate transformations are particular cases of ba-
sis transformations. Suppose we have a coordinate trans-
formation

X
Il
X
S
—~
S
< =
—
D
=

Due to the chain rule

o o) 9
Ort Ozt 9
. O
g2
i =5 (7

so that the transformation matrix is the Jacobi matrix.
Now we define the commutator between to vectors, say
A and B

[A, B] = A'0; (BY0;) — B'0; (A79;)
= A (9:8) 0; - B' (9:4) 0y, (8)

this last line follows from the fact that when [A, B] is
applied to differentiable functions, 0;0; f(z) = 0,0; f(x).
Therefore the commutator between two vectors must be
itself also a vector,

[A,B) = A" (0;B7) — B' (0;47) . (9)

The commutator between two vectors measure their
independency and a basis is called coordinate if all the
commutators between them vanish, for instance

[9,,9;] = 0. (10)
For example, in the cartesian orthonormal case, we have
£ =10, +00,+00, = 0., § = 00, + 10, + 00, = 9, and
2 =00, + 00y + 10,,= 0, and we can easily convince
ourselves that all the commutators between & ,¢y and 2
are zero.

2.2. Metric and connection

In this section the concepts of metric and the covari-
ant derivative are briefly introduced, so that we have
the appropriate geometrical operators necessary to ob-
tain the divergence and curl. For a much more complete
and detailed approach on differential geometry, see for
example [7].

The orthonormal basis can be expanded with respect
to the coordinate basis 9;, e, = €',0;, such that the i
enumerates the components of the vector and a labels
each of the basis element. There is no intention to empha-
size differential forms in this text, so we just present the
dual basis w®; such that w¥e’, = 6% and the correspond-
ing coordinate basis dz7, such that the scalar product is

We will define the connection through the metric ten-
sor, although we know this is not a necessary condition.
Only Euclidean geometry is going to be addressed in this
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present work, which in cartesian coordinates reproduces
Pythagora’s theorem

ds® = da® + dy® + dz* = g;;dx’da’. (11)

Therefore, the Euclidean metric is [

1 0 0
gi={ 0 10 (12)
0 0 1
The line element ds? turns into
or Ox Ox 2
2 _ ~1 ~2 -3
ds® = (&ﬁld +3i2d +8:E3d )
dy 1, Oy o 9y 5\
+ (ajld + (’)3}2d + a~3d
0z .4 0z ,_o 0z , 4 ?
+ (65:1dx &EQd +8~3dx
= giyda'dd’, (13)

in an arbitrary coordinate basis dz’, such that the com-
ponents of the metric transform as

_ ox™ Oz™

gij = ﬁ%gmn (14)
As we said before the matrix %“; is called Jacobian since
it involves the change between two coordinate bases. First
by a coordinate change the components of the metric
transform to g;; as . After the coordinate change, the
orthonormal basis is the one that brings the g;; given in
to the Euclidean metric

Gab = = gijeiaejlr (15)

o O =
o = O
= o O

This is the orthonormal basis chosen, such that the tensor
and vector components in both bases are related as V* =
Veaet,.

The ordinary partial derivative

2i(V70;), (16)

is not invariant through a change of basis, because there
will be necessarily the derivative of the basis transfor-
mation matrix (M‘l)]a
Vi=(M-1) Ve

The derivative 0; in must be modified to achieve
the desired invariance, which is called the covariant
derivative V,;. Necessarily the covariant derivative of
the basis vector 9; must be a linear combination of the
basis vectors,

associated to the components

Vi0; =T"%,0. (17)

2Remind that only in Euclid’s geometry, the cartesian coordinate
basis coincides with the orthonormal basis, such that g;; = ga, =
dqp which is the identity.
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Keeping in mind the above equation , must be
modified to

Vi(V79;) = (9;V7 + I, V), (18)
which satisfies the linearity condition
Vi (V7 + A) = V,(VI) + V; (A7), (19)

Now it is possible to define the the covariant derivative
V., as an operator acting on vectors. This covariant
derivative is the appropriate one that must be used in
order to obtain the divergence and curl, which is the
purpose of this work. First the covariant derivative V,
is the projection of the derivative V; into the arbitrary
basis e,

Vao=elVs, (20)
where in order to shorten notation we write V,, instead of
Ve, - Then, the covariant derivative of a scalar function
coincides with the directional derivative

vaf = f\a = 6iaaif7

where again in order to shorten notation and in accor-
dance with the directional derivative , we write |a
instead of |e,. While the covariant derivative of the prod-
uct of a scalar and a vector fV? satisfies the product
rule

(21)

Vi(fV7) = 8i(/)V? + fVi(VY), (22)
where V;(V7) is given by . Recall that VI = e/, V9,
such that V7 is a linear combination of vectors labeled
by a, e’ multiplied by scalars V' so that according to
(22) _ _ .

Vi(Vel,) =€, 0,V +VIV;e,. (23)
Now remind that e’,V; = V} so that the projection of
[23) gives

Vb(ejaV“) = [ejaeibai(V“) + V“Vb(eja)] . (24)

Again, necessarily the covariant derivative of an ele-
ment of the basis, must be a linear combination of the
elements of the basis

Vbeja = Fcabejca (25)

which results in the definition of the operator V; acting
on a vector V¢ as the a—component of

TV = (Vg + T V). (26)

By applying the covariant derivative to the scalar prod-
uct A®B, results in the covariant derivative acting on a
covariant vector

vaBb = Bb|a - FcbCLBc~ (27)

The covariant derivative generalizes the parallel trans-
port of a vector A% along a direction B®

D
A% = B°V, A,
Do v

where 0 is a parameter along the vector B%, [7].
We have the following two properties:

(28)

Revista Brasileira de Ensino de Fisica, vol. 41, n® 2, e20180082, 2019

The divergence and curl in arbitrary basis

e metricity V. g, = 0 which states that the metric
is invariant under parallel transport

T%cgap — T%cgaa  (29)
(30)

vcgab = Yablc —
Lope +Thac= Yable = 0,

since our basis is orthonormal , gap = diag[1,1,1],
all its directional derivatives vanish gq. = 0.

e and zero torsion, which means that the commuta-
tor of two vectors coincide with their deficit upon
interchange in parallel transport

(Fcba - Fcab) €c = [ea; eb] = Dcubec~ (31)

If the basis e, is coordinate, all the commutators

must vanish, and we recover that the connection

in the coordinate basis I''j;, = I'"); is symmetric in
the lower indices.

The above two items completely define the Levi-Civita
connection [

1

Fabc: i(Dacb_Dbca_cha)- (32)

The indices are raised and lowered using Euclide’s
metric gqp = ¢%° = 6% which is the identity, for example,
raising the d index in results in

1
| 3 (Dach — Dpea — Depa) 6
1
- LD oDy B

Therefore, the commutators between the elements of
the basis define the coefficients D%,. which give raise
to the connection. The covariant derivative, V,, finally
define the divergence and curl of a vector

VoV =V +T% V" (34)
c 1 cab
[V x V]¢ = 3¢ (VoW — Vi Va)
VaVb = VVa = Vijo = Vapp — D%V, (35)

cab

where €?? is Levi-Civita’s skew symmetric tensor.

3. Different orthonormal basis

The intention now is to apply the preceding formalism
to obtain the divergence and curl in orthonormal basis
for other coordinate systems.

There are 11 coordinate systems in which is possible to
separate variables for the Laplace operator in Euclidean
space [4].

3Connection is strictly valid only when the basis is orthonormal
(15). Anyway, it’s not difficult to generalize (32) when (30]) is

different from zero.
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Laplace operator appears in hyperbolic elliptic and
parabolic differential equations, which comprise most of
the cases of interest in mathematical physics.

As an example we work out analytically in details
the cylindrical coordinates, and also the paraboloidal
system as a non trivial case. The same proceeding for the
spherical coordinates is presented as codes both in Maple
and Maxima in [1]. The other coordinates systems are
presented and also shown graphically, with the intention
that the reader himself can adapt the codes in Maple or
Maxima and carry out the divergence and curl for each
one of them.

3.1. Cylindrical coordinates

As an example we choose the cylindrical coordinates

T = pcost
y = psinf
z =z (36)

The line element is the following
ds® = (dz)? + (dy)? + (d2)® = dp® + p*d0° + d=*. (37)

In this section the indices p, # and z are to be understood
as the labeling of each one of the basis elements. With
this in mind, the orthonormal basis is

e, =(1,0,0) =10, + 00y + 00. = 0,
eo = (0,1/p,0) = 00, + %ag +00. = %ae
e. =(0,0,1) =00, + 00y + 10, = 0. (38)
The only non null commutator is the following
lep, €q] = (10, + 009 4+ 00.)(0,1/p,0)

= (07 *1/P2, 0) (39)
1
lep, ea] = —;60 =D’ peq (40)
DYy = ! (41)
g p
Resulting in the only non null component
1
oo = 3 (Dpoo — Doop — Doop) (42)
1
I'yee = —Dgop = ——, (43)
p
1
Lo po = Dgop = o (44)

The divergence and curl are
1
V.,V = |Z + Pabavb = ‘/\Z + ;Vp

VaVo = VoV = Voo = Vapp — (F%a — T0) Ve
VoV = ViVal, = Vajo — Vo (45)
VaVo = ViValy = V,1. = V2,

VoV = ViVl = Voo = Voo — (T%, — T 00) Ve

1
= V:g|p - Vp‘a + ;Vg. (46)
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Here, for instance, Vg = ey, V., = e? g0y V., = %(%Vz.

3.2. Paraboloidal Coordinates

These coordinates can be defined either through Jacobi
elliptic functions or through more simple functions, see
for example [25]

:E:i\/(a—/\)(a—u)(a—V) )

b—a
_ =N = —v)
_i\/ a—b (48)
z:%(a—i—b—)\—u—u), (49)

where A < b < p < a < v. The entire space is covered
using the + signs. The advantage of using Jacobi elliptic
functions is that their arguments corresponds to gener-
alized angles. We used the maple code in [1] with the
coordinates defined in . The metric in the coordinate
basis reads

gty 0 0
oo [0
I =
g 0 O
= 0 g2 0 (5 0)
0 0 g3

The orthonormal basis vectors are

e\ = 1/\/978)\ (51)
en = 1//920, (52)
e, =1/1/930, (53)

Their commutators are

_ 2 _ Cu
v = v 20wy Y
lex, €] = — 2 - > (55)
200 —v)/g3  2(A—v)/91
lepren] = ———2 " (56)

2n—v)ygs  2p—v)\/92

The divergence is

WA 9, AR 9, AY
Vor o Vo9 Vos
@A\ —p—v) A
20 =v)(A = p)yvar
(A +v—2u)
2(p = v)(A = )92
(A+p—2v) v

e

V,A®

_|_

"
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where the g; are defined in . The curl in components
is given by

VAP = - T
+2(M_A—:Ng_2 (58)

Al O
—m (59)

[V x A = a\}; - 8\*};: + 2(A_A:)\/g_1
o (60)

20— ave

The divergence and curl in arbitrary basis

3.3. Other coordinate systems

The Cartesian coordinate system is the trivial one in
which the orthonormal basis is identical to the coordinate
basis and all commutators are zero.

The spherical coordinate system is one of the more
important cases. To illustrate the use of programming
codes in obtaining these operators in a very simple pro-
cedural way, in [1|] we make available a code to obtain
the divergence and curl for the free software Maxima
and also for Maple. Moreover, we also include a code to
draw general coordinate systems both for Maxima and
Maple .

All other coordinate systems are plotted and given in
the following Table[I} In this Table some of the coordinate
systems are described by Jacobi’s elliptic functions. These
same coordinate systems could be described by square
roots instead, the disadvantage is that it will be necessary
a greater amount of charts to cover the Euclidean E3
space.

Table 1: These are the eight coordinate systems other than rectangular, cylindrical and spherical coordinates in which the Laplace
operator is separable. It is not difficult to adapt the code given in to each one of these coordinate systems or to any other

situation of interest, and we leave this exercise to the reader.

A€ Rand p € R p>0and v € [0,27)

Parabolic Elliptic Parabolic Paraboloidal
cylindrical cylindrical
sn(\,x)sn (v,&"

m:%()\z—,uz) x = acosh pcosv x = Apcos(o) ¢ = d-mr e

. . . Sn(u,n)cn(u,n’)
Y= y = asinh ysinv y = Apsin(¢) y:dm

_ _ 1 (2 2 4 [sn2(k)  sn2(u,k) |, dn?(v,r")

2=z 2=z 2=3 ()‘ H ) =3 |:cn2(>\,n) T onZam) T R

X220, 120 6€[02n)

b=ka, VaZ — b2 = r'a =d

XA >0, p € [—ro, rol, v € [—vo, vol

i

N

‘ Ellipsoidal

‘ Prolate

‘ Conical ‘
Sn(A,x)sn (,u,n/)dl’l(u,n)
z =rdn (A, a)sn(u,B) =d Tews) z = dsinh(p) sin(0) cos(¢) | = = dcosh(u) sin(0) cos(¢p)
Cn(u,n/)cn(u,m)
y=rsn(A\,a)dn(u,B) | y= dw y = dsinh(u) sin(0) sin(¢) y = d cosh(u) sin(0) sin(¢)
dn(x,x)dn (u,n’)sn(u,n)
z=rcn(\ a)cn(u, ) Z=a eWD) z = d cosh(u) cos(0) z = dsinh(u) cos(0)

o2+ p2=1 b=ra, /a2 —b2 = r'a=d
>0, pn € [—pg,rols

A € [=X0s Aol

A >0, p € [—pos 1ol
v € [-vg,vol

p>0,0¢€[0,n], ¢ €[0,27) pn>0,0¢€[0,7], ¢ €[0,2n]

Revista Brasileira de Ensino de Fisica, vol. 41, n® 2, e20180082, 2019
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4. Final remarks

In the present work we approach the vectorial calculus
through the use of the concept of non coordinate basis,
especially the tetrad basis. We present here a practical
development to obtain the divergence and curl, that have
direct applications in physical problems, for example,
in Electromagnetism, Fluid Mechanics, Gravitational
Theories and other areas of Physics. The approach is
restricted to Euclidean geometry, however, it can be
easily extended to curved spaces, which also include
situations with gravitational field.

In this sense, the purpose of this work complements the
literature and at the same time introduces sophisticated
mathematical concepts with direct applications. It is
worth noting that the connection given by and
(33)), could also be obtained through the Fock Ivanenko
operator as a particular case when the spin is 1 [26].
Therefore, it is presented to the students, either late
undergraduate or beginners graduate, a formalism more
adapted to differential geometry and theoretical physics.

We thus consider the application of this method for
the eleven coordinate systems mentioned in [4], for which
the separation of variables can be applied to Laplace’s
operator. For each of the eleven coordinates there is a cor-
responding metric tensor, and tetrad basis and through
the commutator of this basis the connection is obtained.
With the appropriate connection, the divergence and curl
for each of these eleven cases can be obtained. We work
out in detail the case for the well known polar coordi-
nates in section In [1] we show an example code
both for the algebraic manipulator Maple [24] an the free
software Maxima [22], [23] to obtain the divergence and
curl also for the well known spherical coordinates. Calcu-
lations can be made by the reader, either manually, or by
adapting the example code to the situation of interest.
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