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Recebido em 23/1/2013; Aceito em 14/3/2013; Publicado em 30/10/2013

The simple harmonic motion of a spring-mass system generally exhibits a behavior strongly influenced by
the geometric parameters of the spring. In this paper, we study the oscillatory behavior of a spring-mass sys-
tem, considering the influence of varying the average spring diameter Φ on the elastic constant k, the angular
frequency ω, the damping factor γ, and the dynamics of the oscillations. It was found that the elastic constant k
is proportional to Φ−3, while the natural frequency ω0 is proportional to Φ−3/2, and γ decreases as Φ increases.
We also show the differences obtained in the value of the angular frequency ω when the springs are considered as
ideal (massless), taking into account the effective mass of the spring, and considering the influence of the damp-
ing of the oscillations. This experiment provides students with the possibility of understanding the differences
between theoretical models that include well-known corrections to determine the frequency of oscillations of a
spring-mass system.
Keywords: spring-mass system, Hooke’s law, elastic constant, simple harmonic motion, damping.

O movimento harmônico simples de um sistema massa-mola geralmente mostra um comportamento que é
fortemente determinado pelos parâmetros geométricos da mola. Neste trabalho estuda-se o comportamento os-
cilatório de um sistema massa-mola considerando o efeito da variação do valor médio do diâmetro Φ da mola
na constante elástica k, a frequência angular ω, o fator de amortecimento γ e a dinâmica das oscilações. Nós
encontramos que a constante elástica k é proporcional a Φ−3, enquanto a frequência ω0 é proporcional a Φ−3/2, e
que γ diminui quando Φ aumenta. Também se mostram as diferenças encontradas no valor da frequência angular
ω quando as molas são consideradas ideais (sem massa), levando em conta a massa efetiva da mola, e levando em
conta o amortecimento das oscilações. Esta experiência oferece aos estudantes a possibilidade de compreender
as diferenças nos modelos teóricos que levam em conta correções que são bem conhecidas para determinar a
frequência das oscilações de um sistema massa-mola.
Palavras-chave: sistema massa-mola, lei de Hooke, constante elástica, movimento harmônico simples, amortec-
imento.

1. Introduction

The study of the movement experienced by a mass sus-
pended from the free end of a spring is a topic discussed
in most introductory physics courses, from both theo-
retical and experimental outlooks. The physics of the
spring-mass system oscillations have been widely stud-
ied in a great variety of texts, in which the relation-
ship between the period and the oscillation frequency
is shown in detail [1]. Similarly experiments allow ob-
serving the dependence of the oscillatory systems on
the mechanical forces as established by Hooke’s law [2].
Some studies included corrections in order to take into
account the influence of the spring mass on the oscilla-
tions of the spring-mass system [3, 4]. Likewise, stud-

ies of the behavior of the oscillations of systems con-
structed of plastic and non-helical springs have been
carried out [5, 6]. Previous studies have dealt with the
influence of changing the natural length l0 of the spring
(for a fixed diameter) on the behavior of the elastic
constant k, the angular frequency ω and the damping
factor γ of the oscillations [7].

In this work we study the influence of varying the
average spring diameter Φ, for a fixed length, on the be-
havior of the elastic constant k, the angular frequency
ω, and the damping γ of the oscillatory motion, which
are the principal variables that determine the simple
harmonic motion of the spring-mass system. A point
that should be emphasized is that this kind of experi-
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ment allows showing students that some variables that
characterize a real physical system depend on the size
of the system under consideration. It is important that
students ask, for example, how the behavior of the oscil-
latory dynamics depends on the size of the spring used
in the experimental arrangement. In other words, it is
very important that students take into account that the
change of size or geometry of one part of the physical
system could have a large influence on the behavior of
other physical variables that characterize its dynamic
behavior. For the foregoing reasons, this experimental
study is an excellent one for general physics courses.
The paper is organized as follows: in section 2, a fast
review of the theoretical concepts on which the work is
based is performed; section 3 describes the device and
the experimental procedure; in section 4, the discus-
sion of results is addressed; and finally the conclusions
of this work are presented.

2. Theoretical framework

Previous studies have shown that the longitudinal elas-
tic constant k of a helical spring is determined by the
diameter d of the wire, the average spring diameter Φ
(which hereafter will be referred simply as the diameter
Φ), the number of windings N , and the shear modulus
G, which involves specific characteristics of the material
of which the spring is manufactured [8]. In agreement
with that result, it is possible to calculate the spring’s
elastic constant k through the ratio

k =
Gd4

8Φ3N
, (1)

Eq. (1) allows one to determine the behavior of the
elastic constant k as a function of the spring diameter
Φ, and will be used to compare with our experimen-
tal results. Taking into account that we are studying
the case of small oscillations, we have that the natural
frequency ω0 of oscillation of the spring-mass system is
given by

ω0 =

√
k

m
, (2)

where m is the mass suspended from its free end. Equa-
tion (2) describes the behavior of an isolated system in
which there are no dissipative forces and the spring has
no mass (massless spring). In the case of a real physical
system, one must take into account the equivalent mass
M/3 of the spring [9, 10], then the angular frequency
ωe of the system oscillations taking into account this
correction can be calculated by

ωe =

√
k

((M/3) +m)
. (3)

The principle of conservation of mechanical energy
allows us to relate the angular frequency ω to the oscil-

lation period T of the system, which in its fundamental
mode [11] is given by ω = 2π/T . The amplitude of
the oscillations decreases as energy is dissipated due
to the presence of non-conservative forces of friction in
the medium in which the system is immersed. There-
fore, the oscillatory behavior of a real physical system
disappears after a certain time interval. Thus, a more
realistic description of the behavior of the spring-mass
oscillating system is determined by a damped oscilla-
tion, defined by an equation of motion of the form [12]

x = A0e
− γ·t

2 cos(ωt+ φ), (4)

where A0 is the initial amplitude of the oscillations and
φ is the initial phase. The damping factor γ responsible
for the decrease in the amplitude of the oscillation as
a function of time is defined by γ = b/m, b being the
damping coefficient and m the mass suspended from
the free end of the spring. Taking into consideration
the damping, which makes the oscillation frequency of
the system slightly smaller than the value defined by
Eq. (2), the angular frequency is determined by

ω =

√
ω2
0 −

γ2

4
=

√
k

m
− b2

4m2
, (5)

where ω2
0 = k/m corresponds to the frequency in the

absence of dissipative forces. Equation (5) suggests that
the higher the damping factor γ, the greater will be the
attenuation of the amplitude A of the oscillations of
the spring-mass system. In this paper we will show
the difference obtained in determining the frequency of
oscillations according to theoretical models defined by
Eqs. (2), (3) and (5) as a function of the spring diame-
ter Φ.

3. Experimental procedure

Figure 1 shows a photograph of the experimental setup
used to measure the k, ω and γ variables as a function
of the spring diameter Φ. The experimental measure-
ments were carried out using a series of eight springs
of different diameters, made of a steel wire with a di-
ameter of d = 8.1× 10−4 m. All springs had a natural
length of l0 = 10.1 × 10−2 m and had no separation h
between their coils (step h = 0). The number of coils
for the springs was chosen to be N = 124. Table 1 sum-
marizes the main characteristics of the springs used in
this experiment. The cost of the springs was less than
10 dollars, so this is an experiment that requires low-
cost materials. Using a tape measure, the measure-
ment of the elongation ∆x experienced by the spring
was carried out when masses m were suspended at its
free end (see Fig. 1a). Performing a graphical analy-
sis of the applied force F = mg as a function of the
elongation ∆x experienced by the spring, the elastic
constant k was determined. The oscillation period T
was recorded using a Vernier VPG-BTD photogate. To
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measure T , a mass m = 0.182 kg was suspended at the
free end of the spring, and it was elongated by a length
∆x = 1.5× 10−2 m from the equilibrium position, and
then it was allowed to oscillate freely. In order to ob-
tain a more accurate value, the period T was obtained
by means of averaging ten measurements. By replac-
ing this value in the expression ω = 2π/T , the value
of the angular frequency ω was found. Using a digital
force sensor Vernier Dual Force DFS-BTA, the force F
of the spring-mass system was measured (see Fig. 1b).
Adjusting the envelope of the oscillation by means of a
decreasing exponential, the damping factor γ was de-
termined.

Figure 1 - (a) Photograph of the experimental setup used to mea-
sure the k and ω variables as a function of the diameter Φ of the
spring. Note that the spring’s upper coil is set between two plates
in order to minimize external vibrations. (b) Experimental setup
used to measure the force F in the spring-mass system with a
Vernier sensor.

Table 1 - Diameters Φ and mass M of the springsa,b used to study
the influence of Φ on the oscillations of a spring-mass system.

Spring Diameter Φ
(±0.01× 10−2m)

Mass M
(±0.01× 10−3kg)

1 0.82 12.87
2 0.96 15.31
3 1.03 16.17
4 1.20 19.31
5 1.28 20.83
6 1.36 21.87
7 1.44 23.36
8 1.54 25.09
aAll springs have a natural length l0 = 10.1× 10−2 m
(N = 124 coils).
bThe spring coils are in contact, without separation h
between their coils (step h = 0).

4. Results and data analysis

Figure 2 shows the elongation ∆x experienced by the
springs when the masses that exerted the external
forces F are suspended at their free end. We highlights
that in all figures presented in this paper the error ob-
tained in the calculation or in the measurement process
are smaller that the point size. A close look shows that
the initial value of the applied force is not the same
for all springs, but increases as a function of the di-
ameter Φ. This is because to the mass m suspended
from the free end of the springs the fraction M/3 of
the spring’s mass M was added; springs having higher
diameter Φ have greater mass M (see Table 1). This
issue was done to graphically highlight the correction
to the spring mass M/3, defined in Eq. (3), which be-
comes more noticeable as the spring diameter increases.
The above procedure does not alter the slopes of the
lines shown in Fig. 2, and allows seeing the effect of
the correction in order to take into account the spring’s
mass. It can clearly be observed in Fig. 2 that the
slopes of the straight lines that determine the elonga-
tion ∆x produced by the applied force F increase as the
spring diameter Φ decreases. This result implies that
the spring’s elastic constant, defined as k = F/∆x, is
greatest for springs with smaller diameters Φ.

Figure 2 - Applied force F as a function of the spring elongation
∆x taking as a parameter the spring diameter Φ.

Figure 3a shows the variation of the elastic constant
k (full circles) as a function of the spring diameter Φ.
In this figure, it can be seen that the value of elastic
constant k decreases as Φ increases. The variation of
the effective spring mass M/3 (empty circles) as a func-
tion of the spring diameter Φ is also shown in Fig. 3a.
Note that the effective massM/3 of the spring increases
linearly with Φ, as expected because the increases in Φ
rise linearly with the length of the wires that make up
the spring, and then these linear increases in the length
of the wires produce a linear increase in the effective
mass M/3 of the springs. The linear fit between the
spring’s elastic constant k and Φ−3, shown in Fig. 3b
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(which corresponds to a linear correlation coefficient of
adjustment of 0.99), indicates that the results obtained
fit perfectly with that established by Eq. (1).

Figure 3 - Variation of the spring’s elastic constant k (filled cir-
cles) and the effective spring mass M/3 (empty circles) as a func-
tion of the spring diameter Φ (a), and linear fit between the
spring’s elastic constant k and Φ−3 (b).

The functional relationship between the spring’s
elastic constant k and the spring diameter Φ is given
by

k =
3.16× 10−5

Φ3
, (6)

where the quantity 3.16× 10−5 corresponds to the con-
stant value Gd4

/
8N defined in Eq. (1), which in-

volves the diameter d of the wire with which the spring
was manufactured, the number of coils N , and the
shear modulus G. Taking into account that 3.16 ×
10−5= Gd4

/
8N and substituting the values of d and

N , a value of G = 72 × 109 N/m2 is found for the
shear modulus. This result is slightly lower than the
shear modulus reported in the literature for steel [13],
where G = 79 × 109 N/m2. We believe that this dif-
ference is due to the fact that the value of G found
in our paper was obtained from a series of springs in

which the diameter Φ varied, whereas the value of G
reported in the literature is for a straight wire. In the
springs’ design, a relationship known as spring index C
is defined, which is given by C = Φ/d. Depending on
this value, a series of second-order approximations in
the calculation of the elastic constant is generated, as
shown in previous theoretical studies with regard to the
shear modulus G [14]. In our case, the spring indexes
are C = 10.1 and C = 18.9 for the spring of lowest and
highest diameter Φ respectively. These values of the
spring index C suggest that as the diameter becomes
smaller, the higher-order terms in the calculation of the
elastic constant may have more influence on the oscil-
latory behavior of the system.

Figure 4a shows a comparison in the behavior of the
angular frequencies ω, ω0 and ωe as a function of the
spring diameter Φ. The ω value was calculated by re-
placing the period T in the expression ω = 2π/T , while
ω0 was calculated by means of Eq. (2). The ωe value
was determined through Eq. (3), in which the correc-
tion to the spring massM/3 was performed. In all cases
the oscillations were induced by suspending a constant
mass m = 0.182 kg and applying an initial amplitude
of A0 = 1.5×10−2 m. The results clearly show that the
frequencies ω, ω0 and ωe are greatest for small values
of the spring diameter Φ and decrease as Φ increases.
This behavior is in complete agreement with the anal-
ysis performed in Fig. 3, since if the spring diameter Φ
decreases, then the value of its elastic constant k will
be greater. As established by Eqs. (2), (3) and (5) the
frequencies ω, ω0 and ωe are highest for the greatest k,
i.e. for springs with small diameter Φ.

Another important issue that can be seen in Fig. 4a
is that the values of the frequencies are not equal, since
ω0 > ωe > ω. This behavior is due to the fact that
the ω0 value corresponds to the frequency determined
in the absence of retarding forces, while the frequency
ωe includes the spring mass correction M/3. On the
other hand, ω corresponds to a real physical system
that experiences damped oscillations and compressive
forces that tend to keep the spring coils together, an
effect that is greater as the spring’s diameter becomes
smaller [15]. The fit shown in Fig. 4b shows the lin-
ear relationship between the angular frequency ω0 and
Φ−3/2, with a linear correlation coefficient of adjust-
ment of 0.99. The functional relationship between the
variables in Fig. 4b is given by

ω0 =
0.013

Φ3/2
=

B

Φ3/2
, (7)

where by the substitution of Eq. (1) into Eq. (2) it is
found that B =

√
Gd4/8Nm. Taking the value of the

shear modulusG = 72×109 N/m2 previously calculated
and replacing the values d, N and m in Eq. (7), it is
obtained that B =

√
Gd4/8Nm = 0.0132, giving us a

difference of 1.5% as compared with the result obtained
in Eq. (7).
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Figure 4 - Comparison of the behavior of the angular frequencies
ω, ω0 and ωe as function of the spring diameter Φ (a). Note
the linear fit between the natural frequency ω0 and Φ−3/2 and
an apparent linear relationship between the angular frequency ω
and Φ−3/2 (empty triangles), which is not correct according to
Eq. (5) (b).

In Fig. 4b, the angular frequency ω as function
of the spring diameter Φ−3/2 is also shown, and it is
possible to think that an apparent linear relationship
between the variables ω and Φ−3/2 exists. However,
we recall that ω is a value determined experimentally
from measurements of period T of the oscillations, and
therefore ω implicitly has the effect of damping. Conse-
quently, in agreement with that established by Eq. (5),
ω cannot be in a linear dependence with Φ−3/2.

The oscillatory dynamic of the spring-mass system
addressed in this paper corresponds to a real physi-
cal system, where the amplitude of the oscillations de-
creases gradually and disappears after a certain inter-
val of time. Consequently, there is a damped harmonic
motion around an equilibrium position with decreas-
ing amplitude, in which the action of non-conservative
forces leads to the dissipation of energy into the medium
in which the system is immersed. Figure 5a shows the
damping experienced by the spring-mass system with

the highest value of γ, i.e. for the spring with the small-
est diameter Φ. Also, the envelope of the oscillatory
curve is shown, which corresponds to the exponential
factor defined in Eq. (4), from which the value γ1 is
obtained. For the springs with other diameters, only
the envelope of the oscillatory curve is shown. In all
cases, the experimental points, obtained by measuring
the force F as a function of the time t, were fit ac-
cording to the theoretical prediction given by Eq. (4),
relating the values γi (i = 1, ..., 8) to the Φ values or-
ganized from smallest to largest diameter, according to
the data summarized in Table 1. The results show that
for the system built with the spring of the smallest di-
ameter, which has the highest damping factor γ1, the
amplitude of the oscillations decreases rapidly in a time
of t ≈ 300 s, while the systems built with springs with
lower damping factors γi require a much longer time for
the oscillatory motion to vanish.

Figure 5 - Amplitude A of the oscillations as a function of time
t for the spring with smallest diameter Φ and the highest damp-
ing factor γ1. For the other springs, only the envelope of the
oscillations is shown and the damping factor γi (i = 1, ..., 8) is
indicated, which corresponds to the springs arranged from the
smallest to largest diameter (a). Amplification of the amplitude
A as a function of time t for the spring-mass system with damping
factor γ1 (smaller diameter Φ). The black dots in the oscillation
correspond to the experimental values and the continuous curve
to the theoretical fit (b).
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Figure 5b shows an amplification of the oscillations
shown in Fig. 5a for the spring with the smallest diam-
eter Φ (i.e. the system with the largest γ). The black
points in the oscillation correspond to the experimental
values and the solid curve to the theoretical fit obtained
by means of Eq. (4). An analysis of the results shows
a correspondence of 99.9% between the experimental
data fit with respect to the values obtained theoreti-
cally by using Eq. (4). It is found that the amplitude
A of the oscillations (in meters) decreases in time ac-
cording to the relationship

A = (1.5× 10−2)e−
γit

2 , (8)

where the quantity A0 = 1.5 × 10−2 m corresponds to
the initial amplitude provided to the spring-mass sys-
tem to induce the oscillations.

Figure 6 shows the variation of the damping factor
γ as a function of the spring diameter Φ. Note that the
damping factor γ given by Eq. (8) is greater for small
values of the springs’ diameter and decreases as Φ in-
creases. This can be explained by taking into account
that the springs with smaller diameter Φ have a larger
elastic constant k, and therefore have higher damping
factors γ. It is important to clarify that the spring
constant is independent of the damping factor, because
if, for example, we take the same spring-mass system
and make the mass oscillate in two different media, two
different values for the damping constant γ would be
obtained, but the spring constant would be the same.
The results obtained show that the spring’s diameter
considerably influences the behavior of the k, ω,and γ
variables of the simple harmonic motion. Note that
these variables decrease as the spring’s diameter Φ in-
creases, as shown in Figs. 3, 4 and 5, in accordance
with predictions that can be made from Eqs. (1), (2),
(3), (4) and (5). An issue to note in Fig. 6 is that at
first glance there is an apparent linear relationship be-
tween the damping factor γ and the spring diameter Φ.
However we believe that not is appropriate to make this
generalization, because the obtained correlation coeffi-
cient of the linear adjustment is 0.86 which is far form
the ideal value.

Figure 7a shows the behavior of the angular frequen-
cies ω, ω0, and ωe as a function of the spring’s elastic
constant k. Observe that the frequencies increase as
the k value increases (or likewise as Φ decreases), as is
established by Eqs. (2), (3) and (5). Again we empha-
size that the differences in the values of the frequencies
(ω0 > ωe > ω) are because ω0 corresponds to the nat-
ural frequency, while ωe includes the correction to the
spring mass M/3 and ω corresponds to a damped os-
cillation under the effect of dissipative forces.

Figure 6 - Variation of the damping factor γ of the oscillations
as a function of the spring’s diameter Φ.

Figure 7 - Behavior of the angular frequencies ω, ω0 and ωe as
a function of the spring’s elastic constant k (a). The linear fit
between the natural frequency ω0 and k1/2 (full squares) and
an apparent linear relationship between the angular frequency
ω and

√
k (empty triangles), which is not correct, according to

Eq. (5) (b).
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The linear fit shown in Fig. 7b shows that the nat-
ural frequency ω0 is directly proportional to

√
k (full

squares), as is established by Eq. (2). The linear corre-
lation coefficient of adjustment is 0.99, and allows one
to determine that the functional relationship between
the variables is given by

ω0 = 2.34
√
k, (9)

where the value 2.34 = 1/
√
m. Replacing the mass

m = 0.182 kg, suspended from the free end of the
spring, we obtain a value of 1/

√
m = 2.344, giving us

a difference of 0.2% as compared with the result ob-
tained in Eq (9). It is important to note, in Fig. 7b,
that it gives the impression that there exists a linear
relationship between the angular frequency ω and

√
k

(empty triangles); nevertheless this interpretation is not
correct, since in agreement with Eq. (5) the angular
frequency ω must involve the term γ2

/
4, which is asso-

ciated with the damping of the system.
Figure 8a shows the graphical representation of

Eq. (5), i.e. the behavior of ω2 as a function of
(k/m) − (γ2

/
4), which is plotted taking into consid-

eration the experimental values of ω, k and γ. Note
that the functional relationship between the variables
is linear, with slope 0.99 and intercept 0.9. These re-
sults are very close to those established by Eq. (5),
where the slope and intercept are equal to 1 and 0, re-
spectively. The small differences between experimental
and theoretical values may be due to measurement un-
certainties or to the influence of small effects that have
not been taken into account in Eq. (5), such as the
compression effects on the spring’s coils [16]. It is im-
portant to note that the ω, k, and γ variables shown in
Fig. 8a have all been determined experimentally, and
show a linear correlation coefficient of adjustment be-
tween them of 0.99. Figure 8b shows that the value of
the angular frequency ω increases as the damping fac-
tor γ increases. This behavior is due to the fact that
the springs that have a higher damping factor have a
higher elastic constant k, and therefore oscillate with
higher angular frequency. This result can be corrobo-
rated taking into account that the values of the springs’
elastic constant k correspond to powers of 101, while the
values of the damping factor γ correspond to powers of
10−2. This proves that in our experiment the quantity;
(k/m) >> (γ2

/
4), and therefore Eq. (5) is always ful-

filled taking positive values of the angular frequency ω.

5. Conclusions

The experimental study of simple harmonic motion of
a spring-mass system shows that the principal physical
variables that characterize the oscillations, such as k, ω,
ω0, ωe, and γ, are strongly influenced by the spring’s di-
ameter Φ. The results obtained indicate that decreases
in the spring’s diameter Φ lead to increases in the elas-

tic constant k, the angular frequency ω and the damp-
ing factor γ. The experiment is also very instructive
for comparing the results of different models for finding
the angular frequencies of the spring-mass oscillator,
which involve the massless spring ideal approximation,
a spring mass correction M/3, and the damping of the
oscillations. This experiment, which uses low-cost ma-
terials, can be utilized so that through graphical anal-
ysis students can find a great variety of functional re-
lationships between the variables that characterize the
simple harmonic motion of a spring-mass system, mak-
ing it an excellent practice or project for physics labo-
ratory courses at the undergraduate level. One sugges-
tion for carrying out this experiment is to use plastic
springs such as are used in book binding, since they are
available in a wide variety of diameters. Also, similar
studies for other oscillating systems can be carried out.

Figure 8 - Graphical representation of Eq. (5), behavior of ω2

as a function of (k/m) − (γ2/4) (a). Angular frequency ω as a
function of the damping factor γ (b).
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