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In this article we present a detailed description, using ladder operators, of an electron in a uniform magnetic field
evolving under the Schrödinger equation. We go on to describe the same physical system in terms of relativistic
quantum mechanics using the Dirac equation and to compare the two models in detail. The main differences
between these two quantum mechanical approaches are discussed and we observe specifically how the relativistic
phenomena modify the description of this particular quantum system by isolating effects which only exist in the
relativistic model.
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1. Introduction

In this article we present the detailed calculations re-
quired for a didactic comparison between the dynamics
of the Schrödinger and Dirac equations for an electron
in a uniform magnetic field. This is done in order to
juxtapose these two quantum mechanical descriptions of
the same system as a pedagogic tool. This comparison is
not found in any quantum mechanics textbook known
to the authors. For this reason, our analysis provides an
invaluable resource to instructors, who could make use
of this example, either for an advanced undergraduate
quantum mechanics course or for a beginning graduate
course.

It is well known that one of the simplest phenomena
at the quantum scale is the interaction between an elec-
tron (a spin one half fermion) and an external uniform
axial magnetic field [1–6]. Although this physical system
comprises only a single particle, whether it is at rest or
in motion, its description is valuable as it furnishes the
many of basic concepts required to understand other more
complex phenomena. For specific examples see both elec-
tron vortex beams [7–9] and the interaction of solid state
materials with magnetism [10–14] (known as the integer
Quantum Hall effect). Additionally, this specific physical
system shows a certain isomorphism to quantum optics,
demonstrating a narrow relation to describe the Gaus-
sian beam profile of electromagnetic radiation, leading to
orthogonal states known as Orbital Angular Momentum
of light [15]. The relevant optical phenomenon have been
studied experimentally due to the high accuracy now
achievable and the wide applicability [16] of simulations
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in innumerable quantum systems of interest. For example,
the orbital angular momentum Hall effect [17], which is
an analogue to the integer quantum Hall effect.

A brief outline of this paper follows. In section 2 we
describe the interaction between spin 1/2 and a uniform
magnetic field. In section 3 we describe in detail the
Schrödinger equation of the electron in motion under
the interaction of the external magnetic field, performing
the analysis by using the ladder operator method. Con-
sequently, we can notice that the wave function of the
electron exhibits a cylindrical symmetry, this feature is
related to the uniform nature of the external magnetic
field. We explain briefly the equivalence between the
electron eigenstates and the Laguerre-Gaussian modes,
which are characteristic of the orbital angular momen-
tum of light in cylindrical coordinates. We then further
present a short discussion about the electron energy lev-
els and the Landau levels. Finally, in section 4 we present
a relativistic analysis using the Dirac equation for the
electron wave function and discuss the main differences
to the Schrödinger equation description.

2. Spin-magnetic field interaction

Here we consider the quantum description of an electron
initially at rest in a uniform external magnetic field.
We consider the electron magnetic dipole moment ~µ=
−
(
e

m0

) ~̂
S, where (e= 1, 6021×10−19C) is the modulus of

the fundamental electric charge and the vectorial spin
operator ~̂S= ~

2
~̂σ and ~̂σ=(σ̂x, σ̂y, σ̂z) is the vector of Pauli

matrices. Neglecting any external forces, the Hamiltonian
of the electron is an interaction potential of the magnetic
dipole moment with the magnetic field is Ĥ=−~µ· ~B. To
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simplify the calculations we assume the orientation of
the magnetic field is along the ẑ axis, accordingly the
electrons Hamiltonian is given by,

Ĥ = e~B
2m0

(
1 0
0 −1

)
. (1)

The energy levels are E± = ±~ω/2, where ω = eB
m0

is
the precession frequency of the magnetic dipole moment
around the external field, known as Larmor Frequency.
In addition, the eigenstate of positive energy is |0〉=

(
1
0

)
and the negative energy is |1〉=

(
0
1

)
. These eigenstate

are related to the spin orientation when aligned or anti-
aligned to the magnetic field, respectively.

3. Schrödinger equation of an electron in
magnetic field

In contrast to the previous section, here we present a
quantum description of an electron in motion in a region
with a uniform external magnetic field ~B. In the classical
description, the electron follows a helical path along the
magnetic field showing an axial symmetry. Accordingly,
we apply a gauge transformation to the magnetic vector
potential to take into account this symmetry. In particu-
lar, the specific symmetric gauge transformation is well
known as the Landau gauge,

~A(~r) = 1
2
(
~B × ~r

)
. (2)

The linear momentum operator is p̂→ p̂− q ~A, where the
electron charge is given by q = −e. Then, in terms of
momentum, the Hamiltonian is,

Ĥ = 1
2m0

(
p̂+ e ~A

)2 + e

m0
~B ·~S,

= −~2

2m0
∇2+ e2A2

2m0
− ie~

2m0

(
∇· ~A+ ~A·∇

)
+ e

m0
~B ·~S.

(3)

The second term of the Hamiltonian can be expanded,

e2A2

2m0
= e2

8m0

(
~B × ~r

)2
,

= e2

8m0
B2r2 sin2(θBr),

= e2

8m0

(
B2r2 − ( ~B ·~r)2),

(4)

where θBr is the angle between the magnetic field and
the electron vector position. The third term in Eq. (3)
can be calculated using,

∇·
(
~Aφ
)

=
(
∇· ~A

)
φ+ ~A·∇φ. (5)

The first term in the last expression is equal to:(
∇· ~A

)
φ = 1

2∇·
(
~B × ~r

)
φ,

= 1
2
(
∇ × ~B

)
·~rφ− 1

2
(
∇ × ~r

)
· ~Bφ,

= 0.

(6)

This shows that the Landau gauge satisfies the Coulomb
gauge. Continuing the calculation of the second term in
Eq. (5) in a similar way,

~A· ∇φ = 1
2
(
~B × ~r

)
·∇φ,

= 1
2
~B ·
(
~r × ∇

)
φ.

(7)

Representing the differential operator in terms of the
quantum linear momentum operator it follows that,

~A· ∇φ = i

2~
~B ·
(
~r × P̂

)
φ,

= i

2~
~B ·L̂φ.

(8)

Eliminating φ from the above results allows us to write
the Hamiltonian (3) as,

Ĥ= −~2

2m0
∇2+ e2

8m0

(
B2r2−( ~B·~r)2)+ e

2m0
~B·
(
L̂+2Ŝ

)
. (9)

For simplicity and without loss of generality, we are going
to assume a uniform magnetic field aligned along ẑ axis.
Consequently, the Hamiltonian can now be written,

Ĥ = −~2

2m0
∇2 + e2B2

8m0

(
x2 + y2)+ eB

2m0

(
L̂z + 2Ŝz

)
,

= −~2

2m0

∂2

∂z2 + −~2

2m0

(
∂2

∂x2 + ∂2

∂y2

)
+ e2B2

8m0

(
x2 + y2)+ eB

2m0

(
L̂z + 2Ŝz

)
.

(10)

According to this result, one notices the contributions of
various terms of different respective natures. These are,
a free particle along ẑ axis, a two-dimensional harmonic
oscillator in x−y plane with its projection of angular
momentum along ẑ axis and, finally, the electron spin in-
teraction with the magnetic field. We can express ψ(~r, σ),
the associated electron wave function, as the product of
functions in according with these features,

ψ(~r, σ) = F (x, y)eipzz/~Γ, (11)

where the spinorial function is,

Γ =
{ (

1
0

)
, ms = +1/2(

0
1

)
, ms = −1/2 , (12)

and ms is the quantum number equal to the spin projec-
tion along the magnetic field direction.

We can analyze the two-dimensional harmonic move-
ment of the electron to obtain the Schrödinger equation
for a quantum harmonic oscillator,[

−~2

2m0

(
∂2

∂x2 + ∂2

∂y2

)
+ 1

2m0ω
2(x2+y2)]︸ ︷︷ ︸

H ′
xy

F =E′F, (13)
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where ω= eB
2m0

is the harmonic frequency. The quantum
harmonic oscillator is,

E′ = ~ω(nx + ny + 1),
= ~ω(n+ 1), n≥0.

(14)

We note that each energy level E′
n, is related to (n+ 1)

degenerate eigenstates Fnx,ny
,

Fn,0 , Fn−1,1 , · · · , F0,n. (15)

In relation to this degeneracy, we look for a physical
quantity which enables a better characterization of states
belonging to a certain energy level. Given the spatial
symmetry of the harmonic potential under a rotation
around the ẑ axis and the axial component of the orbital
angular momentum of the electron L̂z = x̂p̂y−ŷp̂x, we can
analyze the two-dimensional motion of the electron by
applying the ladder operator method to each Cartesian
coordinate,

âx = 1√
2

(
x̂β + i

P̂x

β~

)
, â†

x = 1√
2

(
x̂β − i

P̂x

β~

)
,

ây = 1√
2

(
ŷβ + i

P̂y

β~

)
, â†

y = 1√
2

(
ŷβ − i

P̂y

β~

)
,

(16)

where the constant β=
√

m0ω
~ is reciprocal to the natural

length of the harmonic oscillator [2]. Moreover, these
operators satisfy the following commutation relations
[âx, â

†
x]=[ây, â

†
y]=1. Furthermore, we can express x̂, ŷ,

p̂x, p̂y, as a function of the ladder operators. Accordingly,
we have,

x̂ = 1
β

√
2
(
âx + â†

x

)
, P̂x = −i ~β√

2
(
âx − â†

x

)
,

ŷ = 1
β

√
2
(
ây + â†

y

)
, P̂y = −i ~β√

2
(
ây − â†

y

)
.

(17)

The angular momentum operator is given by,

L̂z = i~
(
âxâ

†
y − â†

xây

)
. (18)

Similarly, we can express the harmonic Hamiltonian as,

Ĥ ′
xy = ~ω

(
â†

xâx + â†
yây + 1

)
. (19)

Calculating the commutation relation between the angu-
lar momentum and the Hamiltonian yields:

[
Ĥ ′

xy, L̂z

]
=
[
~ω
(̂
a†

xâx+â†
yây +1

)
, i~
(̂
axâ

†
y −â†

xây

)]
,

= i~2ω
(
−âxâ

†
y +â†

xây +â†
yâx−âyâ

†
x),

=0.
(20)

Thus, we can show that L̂z is a constant of motion. Con-
sequently, the angular momentum operator has the same

set of eigenstates as Ĥ ′
xy; in this way, we can expose

an axial symmetry in the system. As such, we are go-
ing to implement the cylindrical coordinate system to
describe the quantum operators corresponding to the
electron position and momentum. Additionally, we will
borrow from geometrical optics the notion of the Jones’
vectors for the circular polarization of light [18]. One
can introduce new ladder operators related to the axial
symmetry âR and âL, which are right and left circular
operators respectively. These are denoted as a function
of the Cartesian ladder operators as,

âR = 1√
2
(
âx−iây

)
, âL = 1√

2
(
âx+iây

)
. (21)

Particularly, when these operators âR and âL act on the
eigenstate Fnx,ny

, they generate a quantum state which
is a linear combination of Fnx−1,ny

and Fnx,ny−1. This
results in a state with energy smaller by ~ω. Contrast-
ingly, â†

R and â†
L generate a quantum state with energy

larger by ~ω.
Moreover, these operators satisfy the following com-

mutation relations,[
âR, â

†
R

]
=
[
âL, â

†
L

]
= 1. (22)

Hence, we can express,

â†
RâR = 1

2
(
â†

xâx + â†
yây + i(âxâ

†
y − â†

xây)
)
,

â†
LâL = 1

2
(
â†

xâx + â†
yây − i(âxâ

†
y − â†

xây)
)
.

(23)

This leads us to express Ĥ ′
xy and L̂z as,

Ĥ ′
xy = ~ω

(
N̂R + N̂L + 1

)
, L̂z = ~

(
N̂R − N̂L

)
, (24)

where N̂R = â†
RâR and N̂L = â†

LâL are known as the Her-
mitian number operators. When acting on the eigenstate
Fnx,ny , these operators simply evaluate to a positive in-
teger nR and nL, respectively. The physical meaning of
these numbers is related to the current energy level, as
we will show later.

We denote the ground state (the state of lowest energy)
by F0,0. In relation to this state, we can express any other
eigenstate as a consecutive action of the operators â†

R

and â†
L,

FnR,nL
= 1√

(nR)!(nL)!
(â†

R)nR(â†
L)nLF0,0. (25)

Since FnR,nL
is a set of eigenstates in common to Ĥ ′

xy

and L̂z, we can obtain the energy levels ~ω(n+1) and the
corresponding eigenvalues ml~. In this way, we can define
the main quantum number n and the orbital quantum
number ml as a function of nR and nL,

n = nR+nL, ml = nR−nL. (26)
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Since nR and nL are positive integers, there are (n+1)
degenerate eigenstates for every energy level, as shown
in Eq. (15). This proves the next relation,

nR = n ; nL = 0
nR = n− 1 ; nL = 1,

...
nR = 0 ; nL = n.

(27)

Considering the particular case n=0, 1 and its possible
values of ml, we have,

n = 0 ⇒
{
nR = 0 , nL = 0 → ml = 0

n = 1 ⇒
{
nR = 1 , nL = 0 → ml = +1
nR = 0 , nL = 1 → ml = −1 .

(28)

In general, for every fixed value of n, there is a set of
values of ml,

ml = n , n− 2 , n− 4 , · · · , −n+ 2 , −n. (29)

By virtue of this change of notation, we can express the
eigenstate FnR,nL

by using the pair of quantum numbers
n,ml, which are a more appropriate characterization
of this quantum system arising from the observable L̂z.
Thus, we have,

F
nR = n+ml

2 , nL = n−ml

2
. (30)

Then, we use the cylindrical coordinates,

x = % cosϕ
y = % sinϕ
z = z

, % ≥ 0, 0 ≤ ϕ < 2π, (31)

We can rewrite the Hamiltonian of the two-dimensional
harmonic oscillator in this coordinate system. The set of
operators âR and âL transform as,

âR = 1√
2
(
âx − iây

)
,

= 1
2

[(
x̂β + i

Px

β~

)
− i

(
ŷβ + i

Py

β~

)]
,

= 1
2

[
β
(
x̂− iŷ

)
+ i

~β
(
P̂x − iP̂y

)]
,

= 1
2

[
β
(
x− iy

)
+ 1
β

(
∂

∂x
− i

∂

∂y

)]
.

(32)

The radial distance and the azimuthal angle are defined
as %=

√
x2+y2 and ϕ=arctan (y/x). We can verify that,(
x− iy

)
= %
(

cosϕ− i sinϕ
)

= %e−iϕ, (33)

and the Cartesian differentiation will be written as,

∂

∂x
= ∂%

∂x

∂

∂%
+ ∂ϕ

∂x

∂

∂ϕ
= cosϕ ∂

∂%
− 1
%

sinϕ ∂

∂ϕ
,

∂

∂y
= ∂%

∂y

∂

∂%
+ ∂ϕ

∂y

∂

∂ϕ
= sinϕ ∂

∂%
+ 1
%

cosϕ ∂

∂ϕ
,

(34)

Then,(
∂

∂x
−i ∂
∂y

)
=
(
cosϕ−i sinϕ

) ∂
∂%

− 1
%

(
sinϕ+ i cosϕ

) ∂
∂ϕ

,

= e−iϕ

(
∂

∂%
− i

%

∂

∂ϕ

)
.

(35)

Thus, the operators âR and â†
R can be expressed in cylin-

drical coordinate as,

âR = e−iϕ

2

[
β%+ 1

β

∂

∂%
− i

β%

∂

∂ϕ

]
,

â†
R = eiϕ

2

[
β%− 1

β

∂

∂%
− i

β%

∂

∂ϕ

]
.

(36)

Analogously, we can obtain,

âL = eiϕ

2

[
β%+ 1

β

∂

∂%
+ i

β%

∂

∂ϕ

]
,

â†
L = e−iϕ

2

[
β%− 1

β

∂

∂%
+ i

β%

∂

∂ϕ

]
.

(37)

In particular, the action of âR or âL on the ground state
FnR=0,nL=0 is,

âRF0,0 = e−iϕ

2

[
β%+ 1

β

∂

∂%
− i

β%

∂

∂ϕ

]
F0,0,

= 0.
(38)

This result means physically the impossibility of annihi-
lating a quantum of energy ~ω from the ground state. In
virtue of this fact, we can solve the differential equation
Eq. (38) and obtain the normalized eigenfunction,

F0,0(%, ϕ) = β√
π
e−β2%2/2. (39)

In contrast, when â†
R acts nR-times on F0,0(%, ϕ) this

yields a state with nR quanta of energy ~ω,

FnR,0(%, ϕ) = β√
π(nR)!

(
β%
)nR

e−β2%2/2einRϕ. (40)

Similarly, the action of â†
L nL-times on F0,0(%, ϕ) yields,

F0,nL
(%, ϕ) = β√

π(nL)!
(
β%
)nL

e−β2%2/2e−inRϕ. (41)

After obtaining these results, it’s worth mentioning that
every energy level En = ~ω(n+1) corresponds to the
maximum projection of the angular momentum ml =n
in Eq. (40), or the minimum value ml =−n in Eq. (41).
Nonetheless, by the consecutive action of the operator
â†

L nL-times on the eigenfunction FnR,0 or â†
R nR-times

on the eigenfunction F0,nL
, we obtain the eigenfunction

FnR,nL
(%, ϕ) (for any pair of quantum numbers nR, nL).
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Naturally, after calculating a lot of eigenfunctions by the
action of the two creation operators, we start to obtain
eigenfunctions which are proportional to the generalized
Laguerre polynomials, denoted by L(α)

n (x), multiplied by
a Gaussian function which limits spatially the probability
density of the electron in transversal direction [2,4]. In
general, any wave function associated with the eigenstate
(n= nR +nL) with angular momentum (ml = nR −nL)
can be written as follows,

Fn,ml
(%, ϕ)=Cnβ

(
β%
)|ml|

L
|ml|(

n−|ml|
2

)(β2%2)e−β2%2/2eimlϕ,

(42)
where β2%2 is the argument of the polynomial function.
The normalization constant is,

Cn =
(−1)

(
n−|ml|

2

) (
n− |ml|

2

)
!√

π

(
n+ |ml|

2

)
!
(
n− |ml|

2

)
!

. (43)

The generalized Laguerre polynomials can be explicitly
written using the formula,

L
|ml|(

n−|ml|
2

)(β2%2)=

(
n−|ml|

2

)∑
i=0

(−1)i

(n−|ml|
2

)
+|ml|(

n−|ml|
2

)
−i

(β%)2i

i! .

(44)
Exemplifying a particular case in Figure 1, we show the
probability density of the eigenstate with null angular
momentum |F4,0(%, ϕ)|2. Additionally, in Table 1 we show
the electron radial eigenfunction up to the first six values
of n. In relation to these eigenfunctions, we obtain more
information about every electron eigenstate when we
calculate its radial probability density as,

Dn,ml
(%) = 2π%

∣∣Fn,ml
(%, ϕ)

∣∣2. (45)

Figure 1: Electron spatial probability density for the eigenstate
F4,0. The two concentric darkest rings are associated with for-
bidden radial positions of the electron. The radial distance units
are expressed as β−1, or reciprocal to magnetic field strength as√

2~/eB.

Table 1: Radial eigenfunction common to the two-dimensional
harmonic oscillator and the observable L̂z, for the first six values
of n. Negative angular momentum projection ml entails negative
azimuthal phase.

n ml Fn,ml (ρ, ϕ)

0 0 F0,0 =
β

√
π

e−β2ρ2/2

1 1 F1,1 =
β

√
π

(βρ)e−β2ρ2/2eiϕ

2 2 F2,2 =
β

√
2π

(βρ)2e−β2ρ2/2ei2ϕ

0 F2,0 =
β

√
π

[
(βρ)2 − 1

]
e−β2ρ2/2

3 3 F3,3 =
β

√
6π

(βρ)3e−β2ρ2/2ei3ϕ

1 F3,1 =
β

√
2π

[
(βρ)3 − 2(βρ)

]
e−β2ρ2/2eiϕ

4 4 F4,4 =
β

2
√

6π
(βρ)4e−β2ρ2/2ei4ϕ

2 F4,2 =
β

√
6π

[
(βρ)4 − 3(βρ)2

]
e−β2ρ2/2ei2ϕ

0 F4,0 =
β

√
4π

[
(βρ)4 − 4(βρ)2 + 2

]
e−β2ρ2/2

5 5 F5,5 =
β

2
√

30π
(βρ)5e−β2ρ2/2ei5ϕ

3 F5,3 =
β

2
√

6π

[
(βρ)5 − 4(βρ)3

]
e−β2ρ2/2ei3ϕ

1 F5,1 =
β

√
12π

[
(βρ)5 − 6(βρ)3 + 6(βρ)

]
e−β2ρ2/2eiϕ

Thus, in Figure 2 we show the radial probability densities
of every eigenstates belonging to the first six values of n.

We want to briefly mention a close relationship between
the radial eigenfunction of the electron and Quantum Op-
tics. These eigenfunctions are the same as those we can
obtain as a natural solutions of the wave equation under
the paraxial approximation [19,20], for a Gaussian beam
of light in cylindrical coordinates. Commonly, in quan-
tum optics these functions are called Laguerre-Gaussian
modes, which are expressed through the generalized La-
guerre polynomials L|l|

p , where p≥0 is the radial index
which is related to the number of rings in the probability
density of every eigenfunction; we can notice this number
in Figure 2 along every diagonal from lower left to upper
right. The integer l which is the azimuthal index, has
the same physical meaning as the axial electron angular
momentum.

This physical feature lets us establish an isomorphism
of the behavior of the quantum mechanics description of
an electron in a uniform magnetic field and the Laguerre-
Gaussian modes of light [15]. Where the amplitude of
the paraxial beam of light corresponds to the spatial
probability density of the electron and the Gouy phase of
optics [21] assumes the meaning of time for the quantum
harmonic oscillator using an unitary dynamical evolution.
Recently, these Laguerre-Gaussian beams have been of
considerable practical interest, particularly in the field
of optical trapping, where they are applied to study the
driving of micro-machined elements with light as optical
tweezers [22].
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Figure 2: Electron radial probability density of eigenstates be-
longing of the first six values of n and its individual set of ml,
in which the radial distance units are expressed as β−1. All of
these densities showing a null probability of finding the electron
in the center position and some well defined rings, where the
amount of these rings is (n−|ml|)/2, which is equivalent to the
number of roots of the generalized Laguerre polynomials.

We can obtain the Schrödinger equation in cylindrical
coordinates by using the full definition of the electron
wave function,[

Ĥ ′
ρϕ+ p̂2

z

2m0
+ ~ω

(
Lz +2Sz

)]
Fn,ml

eipzz/~Γ

= E Fn,ml
eipzz/~Γ.

(46)

We can further obtain the total energy of the electron in
relation to its eigenstates,

E = p2
z

2m0
+~ω

(
n+ml + 2ms + 1

)
, ω = eB

2m0
. (47)

In general, the electron energy levels are E≥0, where
the zero of energy is associated to eigenstates with a
null linear momentum pz, the lowest possible projection
of angular momentum ml = −n, and a spin orientation
opposite to the magnetic field ms =−1/2. Additionally,
under some of the last conditions, we can obtain the
energy levels associated to the spin interaction with the
external magnetic field as we shown in section 2. However,
in this case we see the contribution of the zero-point
energy which is related to the harmonic potential; this is
the reason for this energy shift.

E = e~B
2m0

(2ms + 1) . (48)

Furthermore, we notice that the addition of n and ml

is always an even number. We can then rewrite the
expression for the energy using a new integer number,

E = p2
z

2m + ~ω
(
2r
)
, r = 0, 1, 2, 3, . . .

n+ml + 2ms + 1 = 2r,
(49)

where r is associated to every energy level and is known as
the Landau level. We can see easily that eigenstates with

the same spatial probability density belong to different
energy levels. For instance, F1,1 and F1,−1 are associ-
ated to different energies, but their spatial probability
densities are equal. In general we have,∣∣Fn,ml

∣∣2 =
∣∣Fn,−ml

∣∣2, En,ml
6=En,−ml

. (50)

In relation to Eq. (49), we can see that every Landau
Level is highly degenerate, because the electron eigen-
states with different quantum numbers n and ml are
related to the same energy level, as we see in Figure
3. This feature can be observed in the quantization of
the cyclotron orbits of charged particles in magnetic
field [23]. Such charged particles can only occupy orbits
with discrete energy values, but these levels are degener-
ate, where the degeneracy is associated to the number
of electrons per level. The number of electrons per level
is directly proportional to the strength of the applied
magnetic field.

Moreover, this physical aspect can be experimentally
appreciated within solid materials, where there are elec-
tronic oscillations under the action of an external mag-
netic field. When we apply a differential of electric poten-
tial through the material, this leads to the observation
of discrete values of electric current directly related to
the Landau levels of the electrons. This phenomenon is
commonly called Integer Quantum Hall Effect [24], and
its useful applications have been evidenced in quantum
metrology in order to acquire more information about
microscopic details of semiconductors. Also, evidence
of Landau levels has been obtained in the propagation
of electron vortex beams along an external longitudinal
magnetic field [25].

4. Dirac equation for an electron in
magnetic field

In this section we present the relativistic description, via
Dirac equation, for an electron in a region with a uniform
magnetic field ~B. According to this relativistic quantum
description, the electron eigenstate is expressed by the
spinorial formalism. In general, a Dirac spinor for the
electron is a column vector with four-elements, each one

Figure 3: According to the first five values of n (gray scale), its
individual set of ml and ms =1/2. We can see the degeneracy
of the Landau levels.
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of which are related to the eigenfunction (42) obtained
from the relevant Schrödinger equation. Also, the order
of the spinor’s elements are associated with the spin
orientation and the energy sign of the electron [26–28],
where the energy negative elements are associated to the
electron’s antiparticle, commonly called a positron.

After this short description, the electron Dirac equation
is,

i~
∂

∂t
U(~r, t)=

(
cα̃ · ~̂p+ β̃m0c

2)U(~r, t), (51)

where U is a general electron spinor. We can write the
linear momentum operator according to the canonical
transformation ~̂p→ ~̂p+e ~A, where ~A is the magnetic vector
potential. Additionally, we have α̃ and β̃ which are four
Hermitian matrices with dimension 4×4, satisfying the
condition α̃2 = β̃2 = 1̂,

α̃=
(

0 σ̂
σ̂ 0

)
, β̃=

(
1̂2×2 0

0 −1̂2×2

)
. (52)

Therefore, we obtain the time-independent Dirac Hamil-
tonian Ĥ=cα̃ · ~̂p+ β̃m0c

2. We can express the electron’s
spinor evolution through an unitary transformation,

U(~r, t) =
(
φ
χ

)
e

−iEt
~ , (53)

where φ and χ are two scalar functions that represent
the first two elements of positive energy and the last
two elements of negative energy of the electron’s spinor
respectively. When we substitute the spinor (53) in Eq.
(51), and using the matrix notation, we obtain,(

m0c
21̂2×2 cσ̂ ·(−i~∇+e ~A)

cσ̂ ·(−i~∇+e ~A) −m0c
21̂2×2

)(
φ
χ

)
=E

(
φ
χ

)
.

(54)
From the first and second row of the matrix we can obtain
two linear equations equal to the electron total energy
respectively multiplied by the scalar functions defined
before,

m0c
2φ+ cσ̂ ·(−i~∇ + e ~A)χ = Eφ (55a)

cσ̂ ·(−i~∇ + e ~A)φ−m0c
2χ = Eχ. (55b)

Isolating φ from (55a) and χ from (55b) yields,

φ = cσ̂ ·(−i~∇ + e ~A)
E −m0c2 χ, χ = cσ̂ ·(−i~∇ + e ~A)

E +m0c2 φ.

(56)
Replacing χ by φ and vice versa, results in,(
E2−m2

0c
4)

c2 φ=
[
σ̂ ·(−i~∇+e ~A)

][
σ̂ ·(−i~∇+e ~A)

]
φ,

=
[
(−i~∇+e ~A)·(−i~∇+e ~A)

]
φ

+iσ̂ ·
[
(−i~∇+e ~A)×(−i~∇+e ~A)

]
φ.

(57)

The first term on the right is equal to[
(−i~∇+e ~A)·(−i~∇ + e ~A)

]
φ=−~2∇2φ+ e2A2φ

− ie~
(
∇· ~A+ ~A·∇

)
φ.

(58)

Similarly, the second term on the right side of Eq. (57)
is equal to

iσ̂ ·
[
(−i~∇ + e ~A)×(−i~∇ + e ~A)

]
φ=e~σ̂ ·

[
(∇× ~A)

+( ~A×∇)
]
φ.

(59)

We can then obtain,(
∇· ~A+ ~A·∇

)
φ=���(∇· ~A)φ+ ~A·∇φ+ ~A·∇φ,

=
[
2 ~A·∇

]
φ,[

(∇× ~A)+(~A×∇)
]
φ=(∇× ~A)φ− ~A×(∇φ)+ ~A×(∇φ),

= (∇× ~A)φ.

(60)

According to the last results, we rewrite Eq. (57), getting,(
E2−m2

0c
4)

c2 φ=
[
−~2∇2 + e2A2 − 2i~e( ~A·∇)

+ e~σ̂ · ~B
]
φ.

(61)

It’s worth mentioning that e~σ̂ · ~B is the term associated
with the interaction potential between the spin of the
electron and the external magnetic field. Usually, this
term is put in by hand as we, see Eq. (3). This is done in
order to ensure a good quantum description when using
the Schrödinger equation of an electron with spin 1/2 in a
region with an external magnetic field. On the other hand,
this interaction potential appears naturally by using the
Dirac equation to describe the same physical system
which represents a significant theoretical advantage.

Continuing the analysis, we make a simplification
(without loss of physical generality), assuming an ex-
ternal uniform magnetic field along ẑ axis. In this way,
we can express the magnetic vector potential by the Lan-
dau gauge which allows us to include the axial symmetry
as we explained in last section,

~A = 1
2
(

−yB, xB, 0
)
. (62)

Replacing the vector potential in Eq. (61) and dividing
this equation by 2m0 yields,(

E2−m2
0c

4

2m0c2

)
φ

=
[

−~2

2m0

(
∂2

∂x2 + ∂2

∂y2

)
+ e2B2

8m0

(
x2+y2)

+ eB

2m0

(
L̂z +2Ŝz

)
− ~2

2m0

∂2

∂z2

]
φ.

(63)

The first three terms on the right hand side correspond to
the Hamiltonian of the two-dimensional harmonic oscil-
lator and the magnetic field interaction between angular
momentum and spin. The fourth term corresponds to
the Hamiltonian of a free particle along ẑ axis. We can
express the first two elements of the electron spinor by
the product of the eigenfunctions of the two-dimensional
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harmonic oscillator obtained in the previous section, and
a plane wave function of a free particle along the direction
of the external field,

φ(~r) = F (x, y)eipzz/~Γ, (64)

where Γ is the spinorial function that we defined previ-
ously in Eq. (12). The first two spinor elements, which
are related to the positive energy particle, have two spin
orientations: up and down. We further have the last two
spinor elements which are related to negative energy par-
ticle (i.e., an antiparticle); these are related to the spin
orientation similarly. Therefore, we can denote the two
positive spinor elements as,

U
(+)
+ 1

2
(x, y)=

(
F (x, y)

0

)
, U

(+)
− 1

2
(x, y)=

(
0

F (x, y)

)
.

(65)
When the spin operator acts on the spinor positive energy
elements, we obtain the relation,

ŜzU
(+)
ms

(x, y) = ~msU
(+)
ms

(x, y), ms =
{

+1/2
−1/2 . (66)

Furthermore, the commutation relations between the ax-
ial angular momentum and the harmonic Hamiltonian
are equal to zero, we can say that L̂z is a conserved physi-
cal quantity, and its eigenfunctions are the eigenfunctions
of the two-dimensional harmonic oscillator. Thus, we get
the following relation,

L̂zU
(+)
ms

(x, y) = ~mlU
(+)
ms

(x, y), (67)

where ml is the quantum number of the axial angular
momentum. When we replace Eq. (64) in Eq. (63) we
obtain,(

E2−m2
0c

4

2m0c2

)
F =

[
−~2

2m0

(
∂2

∂x2 + ∂2

∂x2

)
+ 1

2m0ω
2(x2+y2)+ p2

z

2m0

+~ω
(
ml+2ms

)]
F.

(68)

Rearranging the last equation yields,[
−~2

2m0

(
∂2

∂x2 + ∂2

∂x2

)
+ 1

2m0ω
2(x2+y2)]F

=
[
E2−m2

0c
4

2m0c2 − p2
z

2m0
−~ω

(
ml+2ms

)]
F,

(69)

from which we notice that the left hand terms in brackets
correspond to the Hamiltonian of the two-dimensional
harmonic oscillator in Cartesian coordinates with a char-
acteristic frequency ω=eB/2m0. Subsequently, we can
say that the right hand terms is equal to the energy of
the oscillator. We accordingly have,[
E2−m2

0c
4

2m0c2 − p2
z

2m0
−~ω

(
ml+2ms

)]
=~ω

(
nx+ny+1

)
. (70)

Due to the total energy being present to the second
power, when we isolate E, we obtain two signs for the
total energy of the particle, being the positive sign related
to the electron and the negative sign to the positron,

E=±
√
m2

0c
4+p2

zc
2+eB~c2

(
n+ml+2ms+1

)
. (71)

If we have the particular case of an electron with null lin-
ear momentum, an angular momentum projection equal
to ml =−n and a weak magnetic field in relation to the
rest mass of the electron, then we can approximate the
energy expression as,

E ≈ m0c
2
(

1 + eB~
2m2

0c
2 (2ms+1)

)
,

= m0c
2 + eB~

2m0
(2ms+1) .

(72)

From this, we can obtain the energy levels of the spin
interaction with an external magnetic field (as we have
shown in the last two sections), the energy shift related
to the zero-point energy of the harmonic potential, and
the rest mass of the electron, which is relevant by a
relativistic description as we done using Dirac equation.

According to the axial symmetry exhibited by the
two dimensional harmonic Hamiltonian Eq. (13), we can
make a coordinate system transformation in order to
rewrite the Hamiltonian in cylindrical coordinates, as we
have done in the previous section. We thus obtained the
same radial eigenfunctions of the electron, Eq. (42) as
those in the case where the electron state is expressed
by the Dirac spinor.

Specifically, if we describe the electron using the Dirac
equation, we have to consider the first two elements of
the Dirac spinor as the radial eigenfunctions obtained
in last section. Thus, we implement the relation (56),
according to the orientation of the electron’s spin. In the
same way, we can obtain the other two elements of the
spinor which are related to negative energy states. Then,
we express the complete Dirac spinor associated with a
particular quantum state of the electron.

To exemplify this process, we calculate a particular
case to obtain the Dirac spinor for an electron in a specific
state. We choose the ground state of the electron n=0,
ml = 0 and its spin orientation ms = +1/2. Then, the
electron relativistic energy is,

E0,0 =
√
m2

0c
4+p2

zc
2+2eB~c2. (73)

Previously, we have obtained the radial wave function of
the ground state via Schrödinger equation,

F0,0(%, ϕ) = β√
π
e−β2%2/2, β =

√
eB

2~ . (74)

We can write the first two elements of the spinor,

U
(+)
0,0 (~r) =

(
F0,0(%, ϕ)

0

)
eipzz/~. (75)
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when we transform the relations (56) in cylindrical coor-
dinates.

Firstly, we have to express every unit vector in Carte-
sian coordinate as, x̂

ŷ
ẑ

 =

 cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 %̂
ϕ̂
ẑ

 . (76)

In this way, the magnetic vector potential is,

~A = B%

2 ϕ̂. (77)

Similarly, the nabla operator in cylindrical coordinates
is,

∇ = %̂
∂

∂%
+ ϕ̂

%

∂

∂ϕ
+ ẑ

∂

∂z
. (78)

Also, the Pauli matrices vector is written as,

~σ = σ̂xx̂+ σ̂y ŷ + σ̂z ẑ,

=
(

0 e−iϕ

eiϕ 0

)
%̂+
(

0 −ie−iϕ

ieiϕ 0

)
ϕ̂+
(

1 0
0 −1

)
ẑ.

(79)

Once we have calculated all the relevant transformations,
we are able to use Eq. (56) to calculate the two negative
energy elements of the spinor as follows,

cσ̂ ·
(
−i~∇+ eB%

2 ϕ̂
)

E+m0c2 = 1
E+m0c2

 −i~c ∂
∂z

−2i~cβâR

2i~cβâ†
R i~c

∂

∂z

 ,

(80)
where â†

R and âR are the ladder operators defined in
Eq. (37). Therefore, the two electron spinor elements
corresponding to the negative energy of the ground state
can be expressed as,

U
(−)
0,0 = 1

E+m0c2

(
cpzF0,0(%, ϕ)

2i~cβF1,1(%, ϕ)

)
eipzz/~. (81)

Therefore, we obtain the complete Dirac spinor associated
to the ground state of the electron,

U0,0(~r) = N0,0


F0,0(%, ϕ)

0
cpzF0,0(%, ϕ)
(E0,0+m0c2)

2i~cβF1,1(%, ϕ)
(E0,0+m0c2)

 eipzz/~, (82)

where its normalization constant is,

N0,0 =
[
1+ c2p2

z

(E0,0+m0c2)2 + 4~2c2β2

(E0,0+m0c2)2

]− 1
2

. (83)

We would like to emphasize the relevance of the two
negative elements of the Dirac spinor for an electron in
two specific cases: i) When the electron has a great linear

momentum and it is the dominant physical quantity, we
have that the electron speed is very close to the speed of
light and the third spinor element becomes relevant for
this description. ii) When we have a strong confinement
of the electron and it is trapped in a region less than or
equal to its Compton wavelength [29,30]. Thereby, the
fourth spinor element becomes relevant to the physical
description. Thus, we can obtain this last case when the
electron is in a region with a very strong magnetic field,
yielding a high characteristic frequency ω of the harmonic
potential, as consequence a very small natural length of
the harmonic oscillator

√
~/m0ω. As such, we show in

Figure 4 a different radial probability density of the
electron ground state via Dirac equation, in comparison
to that obtained before via Schrödinger equation.

The fourth element of the spinor shows an excited
eigenstate n,ml =1, 1; whose contribution is comparable
to the first element. Subsequently, this element of the
spinor becomes relevant for the description of the electron
quantum state; and this is why we observe a more open
electron radial probability density via the Dirac equation.

We advise to the reader to see a short animation [31]
about the radial probability density according to both the-
ories in relation to the external magnetic field strength.

In summary, we can conclude that the quantum me-
chanical description via the Dirac equation requires more
complicated mathematical steps, but that it also brings
new concepts, such as the negative energy of the elec-
tron and a different treatment through the application
of Dirac spinors; this yields a more general way to de-
scribe the quantum state of an electron when relativistic
effects are taken into account which is richer than the
Schrödinger description.

Figure 4: Comparison of radial probability density via
Schrödinger and Dirac equation of the electron ground state.
Radial distance units is expressed inversely proportional to β, or
inversely proportional to magnetic field strength as

√
(2~)/(eB).

This quantity in meters is approximately β−1≈20fm.
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