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After the work of Navier, the Navier-Stokes equation was re-obtained by different arguments by numerous
investigators. We have chosen to revisit the approaches of Navier not only because they were pioneering, but also
because, unexpectedly, by undergirding his theory on Laplace’s new concept of molecular forces – thought to be
capable of capturing the effects of viscosity – Navier managed to derive for the first time the ultimate equation
for the laminar motion of viscous fluids. A fragile model was thus capable of generating a true prediction in
comparison to other, more rigorous models of the Navier-Stokes equation. Navier’s derivation appeared in two
almost simultaneous publications. In the first one of them, he extended his theory for the motion of elastic solids
to the motion of viscous fluids. In the second publication, Navier again derived his equation using Lagrange’s
method of moments, which could yield the boundary conditions. However, both derivations were not influential,
and were neglected by his contemporaries and by specialized publications alike. The fact that his theory could
only be applied to slow motion in capillaries may have later discouraged Navier, who abandoned his theory of
fluid motion in favour of experiment-based formulations for ordinary applications.
Keywords: history of the Navier–Stokes equation, history of fluid mechanics, history of viscosity.

1. Introduction

The first derivations of the Navier–Stokes equation ap-
peared in two memoirs by Claude-Louis Navier (1785–
1836): Sur les lois des mouvements des fluides, en ayant
égard à l’adhésion des molecules [1], here referred to
as the 1st memoir, published in the Annales de Chimie
et de Physique; and Sur Les Lois du Mouvement des
Fluides [2], here referred to as the 2nd memoir, read at
the Academy on 18th March, 1822, and which appeared
in the Mémoires de L’Académie Royale des Sciences de
L’Institut de France for the year of 1823.

These publications formally introduced, for the first
time, friction in the equations of fluid motion. Up until
then, all the theoretical developments related to the mo-
tion of fluids had considered them as media with perfect
fluidity, devoid of viscosity. It is possible to say that the
equations of motion of fluids had been limited to perfect
fluids since 1755, following the publication of the well-

known Euler equation of motion for non-viscous fluids
[3].

However, it had been recognized for a long time that
the friction of fluids was the main cause for the deviation
of experiments from theory. Nonetheless, despite its im-
portance, only a few theoretical developments attempted
to include the effects of viscosity in the equations of mo-
tion of fluids. One of these was proposed by Leonhard
Euler (1707-1783) himself [4], in which he incorrectly
assumed that, similar to the case of friction in solids,
fluid friction was proportional to pressure [5].

After Euler, it appears that only Navier was motivated
to formally tackle this problem and to succeed in solving
it. His interest in the subject was not fortuitous, but mo-
tivated by his recognized competence in hydraulics, given
that he had edited Belidor’s popular treatise Architecture
hydraulique1.

Navier’s inclination for scholarship and his background
in higher analysis at the École Polytechnique and in prac-

∗Endereço de correspondência: sbistafa@usp.br.
1 Bernard Forest de Belidor (1697?–1761), a military engineer, taught mathematics at the artillery school at La Fère where he authored
several textbooks. Seeking to introduce mathematics into practical engineering, he wrote La science des ingenieurs (1729) and Architecture
hydraulique (1737-1739). In the 1810s Belidor’s two works were issued in revised and expanded editions by Navier, who had been recruited
by the École des Ponts et Chaussées to edit the works of his great-uncle, the great French engineer Émiland Gauthey. By 1813 Navier had
completed this task, and had also issued a revised and expanded edition of Belidor’s La science des ingenieurs. Navier’s success as editor
of Belidor’s Science des ingenieurs and of Gauthey’s works led their publisher, Firmin Didot, to invite him to prepare a revised edition of
Belidor’s Architecture hydraulique. Navier sought to correct the errors found in this work and to give it a mathematical sophistication
that would make it useful to the graduates of the École Polytechnique. Navier’s contributions to the Architecture hydraulique are confined
to the first volume, which contains notes and commentary equal or surpassing the original text in length. The remaining volumes
consist of reissues, with new titles dated 1810, of the edition published in 1780. (Text extracted and adapted from Jeremy Norman’s
Historyofscience.com https://www.jnorman.com/cgi-bin/hss/38462.html accessed on March 9, 2017.)

Copyright by Sociedade Brasileira de F́ısica. Printed in Brazil.

www.scielo.br/rbef
mailto:sbistafa@usp.br


e2603-2 On the development of the Navier–Stokes equation by Navier

tical engineering at the École des Ponts et Chaussées put
him in the ideal position to make significant contributions
to engineering. From 1807 to 1820 he made mathematical
analysis a fundamental tool for the civil engineer and
codified the nascent concept of mechanical work for the
science of machines. Therefore, Navier had the essential
pre-requisites necessary to develop what later became
known as the Navier–Stokes equation (referred hereafter
simply as the N-S equation), namely, mathematical rigor
associated with practicality, or the embodiment of an
engineer in a scientist.

After Navier, the N-S equation was re-obtained by
different arguments by a number of authors2. Nonethe-
less, Navier was never acknowledged for his contribution,
as his approaches were not influential and were ignored
by his successors and by specialized publications on the
subject alike. At the time, though each new discoverer
of the N-S equation seemed to have been aware of the
derivation by Navier, they chose to ignore it.

Despite the fact that several authors have obtained
the N-S equation perhaps in a more rigorous fashion,
we chose to revisit the approaches of Navier, not only
because they were pioneering, but also because even after
basing his developments on uncertain methods to deal
with molecular forces deemed responsible for the friction,
Navier unexpectedly managed to develop for the first
time the ultimate equation for the motion of real viscous
fluids.

The modern theory of elasticity may be considered to
have its birth in 1821 when Navier first gave the equa-
tions for the equilibrium and motion of an (isotropic,
one-constant) elastic solid in a memoir titled Sur les
Lois de l’Équilibre et du Mouvement des Corps Solides
Élastiques [6], read at the Academy on 14th May, 1821,
and which appeared in the Mémoires de L’Académie
Royale des Sciences de L’Institut de France in 1827. He
soon perceived that these equations could be extended to
other continuous media, and taking as a starting point
the equations for elastic solids, he wrote in the 1st memoir
the equation for the motion of viscous fluids, substitut-
ing fluid particle velocities for elastic solid displacements,
and the fluid viscosity constant (called ‘adherence con-
stant’ by Navier) for the elastic solid constant. Other
investigators such as Cauchy, Poisson, and Saint-Venant,
presumably encouraged by Navier’s publications, took
the opportunity to offer the equation for viscous fluid
motion from their equations of elasticity. From the case
for a ‘non-elastic body’, and by assuming that the stress
tensor is proportional to the rate of deformation tensor,
Cauchy [7] obtained the equation of motion for viscous
fluids given by Navier. By assuming that the stresses in a
fluid are related to the fluid’s rate of deformation, in the
same manner that the stresses in a solid are related to
strain, Poisson [8] obtained the N–S equation, with some
additions to the pressure gradient term. Saint-Venant
[9], in turn, thinking in terms of transverse pressure act-

ing on the faces of the sliding fluid particles, obtained
a stress tensor that yields the differential equations of
Navier, Cauchy, and Poisson with one constant parame-
ter. All of these 19th century investigators tried to fill the
gap between the rational fluid mechanics of the perfect
non viscous fluid developed in the 18th century by the
Bernoullis (Daniel and Johann), d’Alembert, Euler, and
Lagrange, and the actual behaviour of real viscous fluids
in hydraulic systems.

As for the involvement of Stokes with the equation of
motion for viscous flows, whose name is also associated
with the N–S equation, it begins with his interest on
pendulum experiments that seem to indicate that vis-
cosity could play a role on the altered behaviour of the
ideal pendulum motion. Stokes’ first strategy was to cal-
culate cases of motion including oscillating spheres and
cylinders that would represent the bob and the suspend-
ing thread of a pendulum, considering perfect fluidity,
to investigate the departure of real fluids from perfect
ones [10]. He pointed out that friction, of course, would
be a cause of departure, but not the only one. He then
indicates other causes such as the discontinuity of flow,
and instabilities that lead to a turbulent wake. However,
Stokes recognized that without accurate experiments it
was not possible to advance in his initial proposal. He
then changed his strategy, and decided to include internal
fluid friction into the fundamental equations of hydrody-
namics. By applying methods similar to Cauchy’s and
Poisson’s, he arrived at the N-S equation by saying that
this equation and the equation of continuity “[...] are
applicable to the determination of the motion of water
in pipes and canals, to the calculation of friction on the
motions of tides and waves, and such questions” [11].

Since many investigators had corroborated the equa-
tion of motion for viscous flows as developed by Navier,
one may wonder why Stokes became also associated with
this equation. The answer may be that he made exten-
sive comparisons of theory and experiments of different
researchers with cylindrical rods, spheres, spheres at
the end of long and short rods, oscillating disks, long
and short pendula oscillating in air and water etc. [12].
Despite having wrongly assumed that viscosity is pro-
portional to density, and by neglecting the convective
term in the N–S equation, Stokes succeeded in obtaining
good agreement with the N–S equation by comparing
predictions with experimental data for oscillating pen-
dula. Therefore, differently from the other authors of
the N–S equation, and similarly to Navier, Stokes had a
very clear intention on the practicality of his efforts by
confronting theory with experiments, and this may be a
reason why he and Navier became associated with the
equation of motion for viscous flows.

A matter of such importance as the development of
the N–S equation has been, of course, the subject of
many historians of mechanics. René Dugas’ A History of
Mechanics [13] offers an exposition of Navier’s 2nd mem-

2 We refer the reader to the book by Darrigol [15, pp.101-144] for a detailed and thorough analysis of the history of the N-S equation.
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oir, and a brief account of Navier’s memoir on elasticity.
Grattan-Guinness’ Convolutions in French Mathematics
[14] reviewed both Navier’s memoirs on viscous fluids, in
association with his works on elastic rods, surfaces and
bodies. Darrigol’s Worlds of Flow [15] gives an excellent
brief summary and contextualization of all of Navier’s
works on fluids; it also fully describes their influence
on (and neglect by) Cauchy, Saint-Venant, Poisson and
Stokes. Therefore, one might wonder what is new in the
present work. The answer to that question can be found
at the end of this article, in the Conclusions. The present
work uncovers current concepts on the topic of viscous
fluid flow that have Navier’s imprint, but whose author-
ship has often been overlooked, taken for granted and
other results that customarily have not been directly
attributed to him. These new discoveries show that the
impact of Navier’s works on viscous flow was more pro-
found than Navier scholars have so far proposed.

2. What is the Navier–Stokes equation?

The Navier–Stokes equation is a nonlinear partial differ-
ential equation, which governs the motion of real viscous
fluids and can be seen as Newton’s second law of motion
for fluids. In the case of an incompressible Newtonian
fluid, this yields

Navier–Stokes equation written in vector notation:
∂u
∂t + u · ∇u = g− 1

ρ∇p+ ν∇2u ,

where u is the velocity vector, g is the acceleration vector
due to a body force, p is pressure, ν = µ

% is the kinematic
viscosity, µ is the dynamic viscosity, and ρ is the density.

If we call ∂u
∂t + u · ∇u = a the acceleration of the fluid

particle, and
(

g− 1
ρ∇p+ ν∇2u

)
=
∑

fext., the summa-
tion of the external forces that act in the fluid particle
per unit of mass, we have that a =

∑
fext., which is

Newton’s second law of motion per unit of mass.
The acceleration a is composed of two parts, the first

part ∂u
∂t is the local acceleration, and reflects the change

in velocity with time observed in a fixed point in the
flow as the particles pass by; the second part u · ∇u is
the convective acceleration, and reflects the change in
velocity in space, as the particle moves from one point
to another in the flow field in infinitesimal time.

Here g, represents the body force term per unit of
mass, and indicates the force (such as the gravitational
force or the electromagnetic force) that acts in the fluid
particle; 1

ρ∇p is the pressure term, and indicates that
the fluid flows in the direction of the largest change in
pressure; ν∇2u is the viscous term, and indicates the
friction force due to the viscosity acting on the fluid par-
ticle as it flows with velocity u. Both the pressure force
and the viscous force are forces that act at the surface of
the fluid particle, and as such are classified as external
forces.

The Navier–Stokes equation is an evolution of the Eu-
ler’s equation. This equation governs the motion of the
perfect non viscous fluid and as such can be seem as the
Navier–Stokes equation without the viscous term ν∇2u

Euler’s equation written in vector notation:(
∂u
∂t + u · ∇u

)
= g− 1

ρ∇p.

It is possible to write Euler’s equation along a stream-
line in the so-called intrinsic coordinate system (s, n)
(see Figure 1) as(

∂Vs
∂t

+ Vs
∂Vs
∂s

)
= −g ∂z

∂s
− 1
ρ

∂p

∂s
.

For steady incompressible flow
d

ds

(
V 2
s

2

)
+ g

d

ds
(z) + 1

ρ

d

ds
(p) = 0,

d

ds

(
V 2
s

2 + gz + p

ρ

)
= 0,

which upon integration yields
V 2
s

2 + gz + p
ρ = cte., along a streamline.

which is recognized as Bernoulli’s equation, the most
popular equation of fluid dynamics.

2.1. A word about notation

When Navier wrote his memoirs on viscous flows, the
vector notation had not been invented yet. We have al-
ready written the Navier–Stokes equation in the more
modern vector notation at the beginning of this section.
We can write it in another form, in the so-called index
notation, also known as tensor notation, in which case
the Navier–Stokes equation is written as

Navier–Stokes equation written in index notation:
∂u
∂t + uk

∂uj
∂xk

= gj − 1
ρ
∂p
∂xj

+ ν
∂2uj
∂xi∂xi

,

where repeated index means summation.

Figure 1: Streamlines with the indication of the intrinsic coordi-
nate system.
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In Cartesian coordinates this equation reads

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= gx −

1
ρ

∂p

∂x
+ ν

(
∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

)
,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= gy −

∂p

∂y
+ ν

(
∂2v

∂x2 + ∂2v

∂y2 + ∂2v

∂z2

)
,

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= gz −

∂p

∂z
+ ν

(
∂2w

∂x2 + ∂2w

∂y2 + ∂2w

∂z2

)
.

Vector and index notations are not only elegant; they are also useful because of their compactness. They make it
possible to handle vectors as single objects rather than collections of components. However, vector notation has some
difficulties, a major one of them being that there is a whole heap of vector algebraic and differential identities that
are hard to remember and hard to derive. In index notation, there are certain rules to be followed for operations such
as dot and cross products, which can represent a challenge in the developments. A major hindrance, however, is that
both notations tend to overshadow the physics of the problem, particularly for the reader unfamiliar with compact
notations. This can be readily seen by comparing the Navier–Stokes equation written in the compact notations with
the equation written in Cartesian coordinates – the latter is seen to be more readily connected with the physical
meanings of the various terms.

As we shall see, Navier writes his equations in the
Cartesian coordinate system. As for his developments
and equations, the only concession asked of the modern
reader is that he notices that Navier writes partial deriva-
tives as du

dt , dudx , d2u
dx2 , etc., instead of ∂u

∂t , ∂u∂x , ∂2u
∂x2 , etc. As

far as notation is concerned, with this in mind, the reader
will encounter no obstacles or additional difficulties in
following Navier developments.

3. The nature of the molecular forces
according to Navier

Shortly before the 2nd memoir [2], Navier presented a
first attempt to include viscous effects in the equations
of fluid motion of the 1st memoir [1]. Navier begins the
latter memoir by saying that the illustrious geometers
d’Alembert and Euler were the first to express the laws of
equilibrium and motion of fluids by means of differential
equations with partial derivatives, by considering these
media as an ensemble of molecules, susceptible to have
free motion without opposing any resistance between
each other, and that the scholars who followed them had
also adopted the same hypothesis. He then points out
that Laplace3 was the only one who had investigated
the laws of equilibrium of incompressible fluids, with
regard to the molecular actions. Navier then proposes
to discuss the effects of molecular actions in the state of
fluid motion.

According to Navier [1]:
[...] the positions of the molecules in the state
of fluid equilibrium are such that the mu-
tual distances are only determined by the
actual temperature, which is assumed uni-
form throughout the fluid. This state of affair
is the same when these molecules are ani-
mated with a common motion. In both cases,
the actions exercised on each molecule by
all others that surround it are reciprocally
destroyed4, such that these actions have no
influence in the state of the fluid. However,
when a fluid is animated with a motion such
that the molecules are continuously displaced
with respect to each other, actions are exer-
cised among them, which must necessarily be
investigated if we wish to know the true laws
of fluid motion [1].

Navier [1] continues by saying that:
[...] from a great number of experiences it
appears that the pressure does not sensibly
influences the resistances coming from the
molecular actions that are exercised among
the parts of a fluid in motion. The causes of
these resistances must be sought, therefore,
in the differences, either in the magnitude
or in the direction, of the velocities of the
neighbouring molecules [1].

3 Imitating Newton’s gravitation theory, Laplace sought to explain the properties of matter in terms of central forces acting between
molecules. His first successful attempt in this direction was a theory of capillarity published in 1805/1806. He also indicated in his Système
du monde, published in 1808, how physical processes including elasticity and viscosity could all be reduced to short-range forces between
molecules. Navier adopted Laplace’s ideas about molecular forces, and emphasized that the conditions of equilibrium of fluids and fluid
motion could not be established without the molecular viewpoint. [15].
4 This terminology was first used by D’Alembert in the Traité de Dynamique associated with a principle on how to deduce the solution
of problems of dynamics from conditions of equilibrium: “If we impress to several bodies motions that are forced to change as a result
of their mutual action, it is clear that we can regard these motions as composed of those they will really take and of motions that are
destroyed; from what it follows that the latter must be such that the animated bodies be in equilibrium under their own motions” [20].
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When considering the equilibrium of an incompress-
ible fluid whose surface is submitted to a pressure which
tends to reduce its volume, Navier [1] conceives that:

[...] any two neighbouring molecules are in
such state as if there existed between them a
spring that has contracted by an insensible
quantity, and which opposes the approach
of these molecules. If the fluid moves, and
all the molecules, being carried away by a
common motion, preserve their respective sit-
uations, the state of these springs does not
change, and no new action is established in
the interior of the fluid. In the two cases
just mentioned, a molecule is equally pressed
by all those which surround it. But if, by
the effect of the diversity of motions of the
neighbouring particles, the two molecules in
question tend to approach or to move away
from each other, the spring established be-
tween them will be contracted more in the
first case, and less in the second [1].

According to this circumstance, Navier [1] admits that:

[...] the effect of the diversity of these mo-
tions is to modify the actions which existed
between the molecules in a state of equilib-
rium, or of a motion common to all, actions
which had no influence on this motion. In the
general case of any motion, this molecule is
pressed more closely by those which approach
it; it is less pressed by those which withdraw
from it. The increase in pressure on the part
of the former and the decrease in pressure on
the part of the latter constitute forces which
tend to modify the motion of the molecule,
and which are combined with the accelerating
forces acting on the fluid. The modification
of motion does not depend on the intensity of
the pressure or on the intensity of the forces
existing between the molecules. It depends
on the increase or decrease which these forces
undergo when the molecules tend to approach
or to depart from each other. This increase
or reduction itself depends entirely or almost
entirely, as experience shows, on the relative
velocity of the molecule, and not on the mag-
nitude of the pressure [1].

Navier [1] then adopts the following principle:

[...] when two molecules of the fluid, in con-
sequence of the diversity of their motions,
approach or depart from one another, there

exists between them a repulsion or attrac-
tion, the intensity of which depends on the
speed with which these molecules approach
or depart from each other [1].

Navier [1] then concludes by saying that:

[...] this attraction or repulsion is in the na-
ture of molecular forces, which take place
only between very neighbouring molecules,
and may be considered as null for molecules
whose distance from each other is of sensible
magnitude. The molecules, of which the mu-
tual action will be considered, will never have
but very different velocities, that is to say,
they will approach or depart from each other
with an extremely small speed. Consequently,
whatever may be the general function of the
relative velocity of the molecules, which must
exhibit their mutual action, not having to
consider very small values of this (relative)
velocity, we may suppose that the action of
the molecules is proportional to it5 [1].

Navier’s hypothesis that no viscous forces are mani-
fested when the molecules are being carried away by a
common motion, and that these only arise when there
is a relative motion of the molecules, is in perfect agree-
ment with the modern view of considering viscous effects
to be confined in the layer in the immediate vicinity
of a bounding surface where the particles present rela-
tive motion and the effects of viscosity are significant
(the boundary-layer); as opposed to the flow outside the
boundary-layer (the outer potential flow), where viscous
effects are small because the particles are animated by a
common motion in this region.

Therefore, the equationing of the molecular forces in
the state of fluid motion by Navier is essentially based on
the difference in velocities between two molecules, and is
established by him as follows: two molecules with masses
m and m′, animated with velocities v and v′, and angles
λ and λ′ which are formed between the directions of the
velocities and the line joining the molecules, the repulsive
force between these two molecules would be proportional
to

mm
′
(v cosλ− v′cosλ′). (1)

This quantity, when multiplied by a function of the dis-
tance of these two molecules (which decreases very fast
as the distance increases), and by a constant relative to
the ‘adherence of the fluid molecules’ (viscosity), gives
the repulsive force between the two molecules (force that
will be of attraction if this quantity is negative).

5 In 1687 Newton had already hypothesized viscous forces in fluid motion proportional to the relative velocities of the fluid particles: “The
resistance arising from the want of lubricity in the parts of a fluid is caeteris paribus, proportional to the velocity with which the parts of
the fluid are separated from each other” (Newton, Principia Section IX, Book II).
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4. The derivation of the N–S equation in
the 1st memoir

In the 1st memoir [1], after having established the nature
of the molecular forces for fluids in motion, Navier makes
an analogy between the motion of viscous fluids and the
motion of elastic solids as developed in the memoir Sur
les Lois de l’Équilibre et du Mouvement des Corps Solides
Élastiques [6] in order to write the expressions for the
components of the force that acts on the molecule m due
to the motion of the neighbouring molecules as

ε

(
3d

2u

dx2 + d2u

dy2 + d2u

dz2 + 2 d2v

dxdy
+ 2 d

2w

dxdy

)
,

ε

(
2 d2u

dxdy
+ d2v

dx2 + 3d
2v

dy2 + d2v

dz2 + 2 d
2w

dydz

)
, (2)

ε

(
2 d2u

dxdz
+ 2 d2v

dydz
+ d2w

dx2 + d2w

dy2 + 3d
2w

dz2

)
,

where ε is what Navier called the ‘adherence of the fluid
molecules constant’ (later called viscosity), which had
been substituted for the elastic solid constant, called ε
as well by Navier.

In these expressions, the components of a fluid par-
ticle velocityu, v andw, at a point (in the Euler sense)
whose rectangular coordinates are x, y and z, had been
substituted for the elastic solid displacements x, y and z
at a point whose rectangular coordinates are a, b, and c.

Equating this force to the accelerative forces X, Y, andZ in the x, y and z directions that act on the molecule m,
with density ρ, subjected to the pressure p gives

1
ρ

dp

dx
= X + ε

(
d2u

dx2 + d2u

dy2 + d2u

dz2

)
− du

dt
− udu

dx
− v du

dy
− wdu

dz
,

1
ρ

dp

dy
= Y + ε

(
d2v

dx2 + d2v

dy2 + d2v

dz2

)
− dv

dt
− udv

dx
− v dv

dy
− wdv

dz
, (3)

1
ρ

dp

dz
= Z + ε

(
d2w

dx2 + d2w

dy2 + d2w

dz2

)
− dw

dt
− udw

dx
− v dw

dy
− wdw

dz
,

which are recognized as the three components of the Navier–Stokes equation for an incompressible fluid.

Astonishingly Navier did not indicate in the 1st mem-
oir that once the viscous terms given by Eq. (2) are
rewritten by invoking the equation of continuity for an
incompressible fluid du

dx + dv
dy + dw

dz = 0, the result would
be the standard form of the N–S equation as given by
Eq. (3).

Next, Navier gives an application for a flow through a
conduit with rectangular cross section, by considering a
non-slip boundary condition at the walls of the conduit6.
He then found the average fluid velocity in a tube with
square cross section to be proportional to the square of
its perimeter. This result was in contrast with Girard’s
formulation which experimentally found an average fluid
velocity proportional to the diameter of capillaries with
circular cross sections.

In fact, Girard7 [16] also adopted a non-slip boundary
condition, by assuming that a layer of fluid remained at
rest at the tube walls, and gave the formula U = gDh4la
for the average velocity through a capillary with diame-
ter D, length l, subjected to the gravity g, and head h,
where a represents a coefficient that is constant for the
same capillary, but which significantly diminishes as the

temperature rises, and that varied with the diameter of
the capillary.

It is well known, that the average velocity in a lam-
inar flow through a tube (‘linear motion in a capillary’
according to the Navier/Girard terminology), known as
the Hagen-Poiseuille flow, is given by U = g R

2hL
8(µρ )l , where

hLis the head loss due to viscous effects in the tube, µ
is the dynamic viscosity, and ρ is the density.

The application formulated by Navier in the 1st mem-
oir, where he considers a tube with square cross section
of side R, which is very small (a capillary), yields for the
average velocity approximately U ∼= g R2hL

8(2 ερ )l , where it
can be seen that Navier’s adherence of molecules constant
ε is roughly equal to half the dynamic viscosity µ.

It is also surprising that already in the 1st memoir,
Navier had anticipated, on purely theoretical grounds,
what became later known as the Hagen-Poiseuille law.
Both Hagen and Poiseuille confirmed the same result
experimentally [17, 18].

Unfortunately, because of the contrasting results re-
lated to the dependence of the average velocity on the
tube diameter as experimentally found by Girard, Navier

6 This is what we call a ‘strict non-slip boundary condition’. More details on the different types of boundary conditions considered by the
19th century investigators can be found in the last section (Supplementary material).
7 Pierre-Simon Girard (1765-1836) worked on fluid mechanics at the École des Ponts et Chaussées. He was in charge of planning and
constructing the Amiens canal and the Ourcq canal. He collaborated with Gaspard de Prony on the Dictionnaire des Ponts et Chaussées.
He authored works on fluids and on the strength of materials
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was led to consider changing the non-slip boundary con-
dition. Moreover, at the end of the 1st memoir, by com-
paring Girard’s experimental results of water flowing
through capillaries made of glass [16] and capillaries
made of copper [19], Navier verified in these experimen-
tal results that in capillaries of about the same length
and diameter, the flow is three to four times slower in
tubes made of glass than in tubes made of copper.

Intrigued by this discrepancy, Navier concludes the 1st

memoir with the following conjecture:
[. . . ] For a reconciliation of this result it appears that

an action on the liquid in motion is exerted on the part
of the solid wall which greatly influences the effects, and
that it would not be allowed in this kind of phenomena
to suppose that a very thin layer of fluid adhering to
the surface of the bodies which it wets acts alone on the
fluid in motion. The solution of our application is well
suited to the hypothesis on which it is based: it gives the
general law of the motion of the fluid, a law which is the
same, whatever the nature of the wall is; and moreover,
it would also give the absolute value of the velocity in
the particular case where the action of the molecules of
the wall upon those of the fluid would be equal to the
action of these molecules upon themselves. But, in any
other case, the velocity has other absolute values; and
the theory of this kind of phenomena will be entirely
formed only so far as the particular forces emanating
from the molecules of the fixed walls have been taken
into consideration [1].

Therefore, if Navier had wanted to explore more deeply
the interaction between the molecules of the fluid layer in
contact with the wall and the molecules of the wall itself,
he would have to rely on a method that could yield the
boundary conditions. This method is Lagrange’s method
of moments, which Navier had already applied in the
memoir Sur les Lois de l’Équilibre et du Mouvement
des Corps Solides Élastiques [6]. In fact, in this memoir,
Navier gave two different derivations of the equations
of elasticity for an isotropic body with one elastic con-
stant, the first by direct summation of forces acting on a
molecule, and the second by Lagrange’s method of mo-
ments, with both methods yielding the same “undefined
equations”, as Navier called the equations to be satisfied
in all interior points of the body. However, in order to
obtain the particular conditions that exist on points sit-
uated at the boundaries of the bodies, Navier proposed
the use of Lagrange’s method of moments. By applying
this method in the 2nd memoir, Navier reconfirmed the
same so-called undefined equations as obtained in the
1st memoir, and further obtained the equations to be
satisfied for the forces applied at the boundaries of the
bodies in contact with the fluid.

Since Navier’s main concern now was to know what
would be the appropriate boundary conditions to be satis-
fied at the tube boundaries, for cases where the molecules
of the walls exert a particular action upon those of the
fluid, he then, in the 2nd memoir, applied the method of
moments, obtaining again the N–S equation, but with
new boundary conditions.

5. Expressions derived by Navier for
forces arising from molecular-actions
occurring in a fluid in a state of
equilibrium by the method of
moments

In Mécanique Analytique [20], Lagrange considers a body
to be composed of infinitely small particles, each of which
subject to forces P, Q, R, etc, arising from the action
of gravity. These forces tend to drive the particles along
the directions p, q, r, etc with infinitely small varia-
tions of 8δp, δq, δr, etc. The moment of each one of
these forces was defined as the product of the force and
the corresponding variation, e.g., Pδp, Qδq, Rδr, etc.
The sum of the moments that acts on each particle was
given by 9(Pδp + Qδq + Rδr + . . .). Then, the integral∫

(Pδp+Qδq +Rδr + . . . ) yielded the sum of the mo-
ments of all the forces of the system, which in general was
expected to be equal to zero in the state of equilibrium10.
This condition then led to the particular equations for
the equilibrium of the system.

As for the application of the method of moments, we
now present the derivation of the equations of equilib-
rium for an incompressible fluid as developed by Navier
in the first part of the 2nd memoir [2]. In this derivation,
Navier begins by considering two molecules (fluid par-
ticles) M and M ′, the first of which is located at point
(x, y, z) and the second placed in the vicinity of M at
(x+ α, y + β, z + γ). The Euclidean distance r between
these two points, then, is r =

√
α2 + β2 + γ2. The re-

pulsive force established between these two molecules
depends on the location of point M as it must balance
the pressure, which can vary in various parts of the fluid.
This repulsive force depends on the distance r, and simi-
lar to all molecular actions, it decreases rapidly as the
distance increases. The repulsive force, denoted as f(r),
depends on the coordinates (x, y, z). Consequently, each
fluid molecule M is subjected to similar forces that arise
from each molecule M ′ that surrounds it. It is supposed
that this molecule is also subjected to the accelerative
forces (per unit volume) P, Q, andR in the x, y, and z
directions, respectively.

When a minor motion (virtual displacement) is im-
printed on the molecule M such that its components cor-

8 These are called virtual displacements, and are assumed to be infinitesimal along with no passage of time and constant applied forces.
Strictly, they should also not violate the constraints of the system.
9 This sum is called virtual work

10 This is the so-called principle of the virtual work
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responding to each orthogonal axis are δx, δy, and δz,
the molecule M ′ will be displaced along the same axis,
and the corresponding distances between these molecules
will change according to

δα = dδx

dx
α+ dδx

dy
β + dδx

dz
γ, (4)

δβ = dδy

dx
α+ dδy

dy
β + dδy

dz
γ, (5)

δγ = dδz

dx
α+ dδz

dy
β + dδz

dz
γ, (6)

δr = αδα+ βδβ + γδγ

r
. (7)

Therefore,

δr = 1
r

(
dδx

dx
α2 + dδx

dy
αβ + dδx

dz
αγ + dδy

dx
αβ

+dδy

dy
β2 + dδy

dz
βγ + dδz

dx
αγ + dδz

dy
βγ + dδz

dz
γ2
)
.(8)

The product f(r) · δr represents the sum of the moment
of the force f(r), acting between the two molecules M
and M ′, considered as acting on the point M and the
moment of the same force acting on the point M ′.

Next, Navier considers eight M ′ molecules around the
molecule M , situated at the same distance r such that
the relative coordinates (α, β, γ) have values that differ
two-by-two only by the sign of one of the coordinates.
Therefore, the sum of the eight values of the product
f(r) · δr that correspond to these eight points is given by

8 · f(r)
r

(
dδx

dx
α2 + dδy

dy
β2 + dδz

dz
γ2
)
. (9)

This latter expression is then integrated with respect
to α, β, and γ in the 1/8th part of the sphere, where
these quantities have only positive values. To this end,
the orthogonal coordinates α, β, and γ are changed to
polar coordinates, where ψ represents the elevation angle
with respect to the plane αβ and ϕ is the azimuth angle
measure from α such that

α = r · cosψ · cosϕ, (10)

β = r · cosψ · sinϕ, (11)
γ = r · sinψ . (12)

Considering that the volume element is given by dr · dψ ·
dϕ · r2 · cosψ, integrating11 between the limits r from
zero to infinity, ψ from zero to π/2, and ϕ from zero to
π/2, yields

4π
3

∫ ∞
0

f(r) · r3 · dr·
(
dδx

dx
+ dδy

dy
+ dδz

dz

)
, (13)

which, on defining 4π
3
∫∞

0 f (r) · r3 · dr = p, gives

p

(
dδx

dx
+ dδy

dy
+ dδz

dz

)
, (14)

where p is a measure of the opposing resistance to the
pressures that tends to approximate the fluid parts.

Above is the sum of the moments of the molecular
forces that act between the molecule M and all the
molecules that surround it.

Considering that geometrically, the molecule M de-
fines a rectangular volume element with dimensions
dx, dy, and dz, and the sum of the moments of all
the forces acting in this volume element is given by
p
(
dδx
dx + dδy

dy + dδz
dz

)
+Pδx+Qδy+Rδz. Integrating this

last expression with respect to x, y, and z throughout
the extent of the fluid and equating it to zero results in
the equation that expresses the conditions of equilibrium
of the system as12

∫∫∫ [
p

(
dδx

dx
+ dδy

dy
+ dδz

dz

)
+Pδx+Qδy +Rδz

]
dxdydz = 0. (15)

Integrating the first term of this equation by parts
results in∫∫∫ [(

P − dp

dx

)
δx+

(
Q− dp

dy

)
δy

+
(
R− dp

dz

)
δz

]
dxdydz −

∫∫
(p

′
δx

′
−p

′′
δx

′′
)dydz

−
∫∫

(p
′
δy

′
−p

′′
δy

′′
)dxdz

−
∫∫

(p
′
δz

′
−p

′′
δz

′′
)dxdy = 0 , (16)

in which the prime and double primes in the surface
integrals represent the quantities belonging to the limits
of integration.

Therefore, we firstly have for the equilibrium conditions
at any point in the interior of the fluid, the undefined
equations

dp

dx
= P,

dp

dy
= Q,

dp

dz
= R, (17)

which imply that the expressions for the forces P, Q and
R given as functions of x, y and z, should be partial
differentials with respect to x, y, and z, respectively, of

11 Navier’s method of summating molecular virtual moments, replacing discrete summations by integrals, essentially presupposes the
continuity of the fluid. This is the reproach addressed to Navier by Poisson, a purist of the molecular physics.

12Here Navier notes that the moments of the interior forces were considered twice, because the sum of the moments of the two forces that
act along the line r, represented by f(r) · δr, was counted for both the molecules M and M ′. However, this in fact makes no difference in
the final result, because the factor 1/2 that should have been applied in the first term of this equation may be considered as being part of
the quantity p, the absolute value of which always depends on the magnitude of the forces applied to the fluid.
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the same function p of these coordinates. Therefore, the
total differential of this function is

dp = Pdx+Qdy +Rdz , (18)

and consequently,

p =
∫

(Pdx+Qdy +Rdz) + const. (19)

In the case that no force is applied to the interior points
of the fluid, the value of p must be constant in the entire
fluid.

Secondly, with respect to the boundary conditions, we
begin with points belonging to the free surface. The vari-
ation of the coordinates of each point is entirely arbitrary,
so, each surface integral vanishes independently, and the
only way for this to be possible is p = 0 on the free
surface. Therefore, on the free surface

0 =
∫

(Pdx+Qdy +Rdz) + const. (20)

and the resulting differential equation is

(Pdx+Qdy +Rdz) = 0 , (21)

implying that the net force resulting from the combina-
tion of the forces P, Q, and R that acts on each molecule
belonging to the free surface should be directed towards
the normal of this surface.

With respect to the points belonging to the fluid in
contact with a solid surface, the molecules cannot move,
and the relation between the variations δx, δy and δz is
given by the equation

δx · cos l + δy · cosm+ δz · cosn = 0, (22)

where l, m, and n are the angles formed by a tangent
planar to the solid surface. Consequently, these terms
add to zero in the above surface integrals, and there is no
particular condition for the pressure at the solid surfaces.

6. The derivation of the N–S equation
by the method of moments in the 2nd

memoir

In the second part of the 2nd memoir [2], the steps to
determine the expressions for the forces arising from the
molecular actions that take place in a state of fluid mo-
tion follow quite closely the basic structure presented in
the previous section for the case of a fluid in equilibrium.
Therefore, and also because of the forbidding appearance

of the expressions thus developed by Navier, we will only
highlight the new assumptions and the main results, to
omit highly voluminous calculation passages for the sake
of economy of space and readers’ time.

For the case of a moving fluid, Navier assumes that
the repulsive actions of the molecules are increased or
diminished by a quantity proportional to the velocity
with which the distance of the molecules decreases or
increases.

In contrast, for the case of a fluid in equilibrium, the
repulsive force between two molecules is f(r), and for
the case of a moving fluid, f(r) · v represents the force
that exists between any two fluid molecules, where v is
the difference in velocity of the molecules at points M
and M ′ , calculated along the line MM

′ , and is given by

v = α

r

(
du

dx
α+ du

dy
β + du

dz
γ

)
+β

r

(
dv

dx
α+ dv

dy
β + dv

dz
γ

)
+γ

r

(
dw

dx
α+ dw

dy
β + dw

dz
γ

)
, (23)

where u, v, andw are the components of the velocity of
the molecule M and as before, x, y, and z are the coor-
dinates of point M , while (x+ α, y + β, z + γ) are the
coordinates of point M ′.

The moment of the molecular force is given by f(r) ·
vδv, where δv represents the difference in velocities be-
tween M and M ′ , calculated along the line joining these
two molecules, when a virtual displacement (here a vir-
tual velocity) is applied to the moving fluid. δv is

δv = α

r

(
δdu

dx
α+ δdu

dy
β + δdu

dz
γ

)
+β

r

(
dδv

dx
α+ δdv

dy
β + δdv

dz
γ

)
+γ

r

(
δdw

dx
α+ δdw

dy
β + δdw

dz
γ

)
. (24)

Let’s remember that in the previous section, for the case
of a fluid in a state of equilibrium, eight M ′ molecules
were situated at the same distance r around the molecule
M such that the relative coordinates α, β, and γ had
values that differed two-by-two only by the sign of one
of the coordinates, and an expression was obtained for
the sum of the eight values of the product f(r) · vδv.
Changing the orthogonal coordinates α, β, and γ to po-
lar coordinates, and integrating this expression in the
1/8th part of the sphere results in

ε


3dudx

δdu
dx + du

dy
δdu
dy + du

dz
δdu
dz + dv

dy
δdu
dx + dv

dx
δdu
dy + dw

dz
δdu
dx + dw

dz
δdu
dz

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+ 3dvdy
δdv
dy + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..+ 3dwdz
δdw
dz

 , (25)

DOI: http://dx.doi.org/10.1590/1806-9126-RBEF-2017-0239 Revista Brasileira de Ensino de F́ısica, vol. 40, nº 2, e2603, 2018



e2603-10 On the development of the Navier–Stokes equation by Navier

where ε = 8π
30
∫∞

0 f (r) · r4 · dr .
Integrating this last expression by parts with respect to x, y, and z throughout the extent of the fluid gives13

−ε
∫∫∫

dxdydz
[(

3d
2u

dx2 + d2u

dy2 + d2u

dz2 + 2 d2v

dxdy
+ 2 d

2w

dxdy

)
δu+

(
2 d2u

dxdy
+ d2v

dx2 + 3d
2v

dy2 + d2v

dz2 + 2 d
2w

dydz

)
δv +(

2 d2u

dxdz
+ 2 d2v

dydz
+ d2w

dx2 + d2w

dy2 + 3d
2w

dz2

)
δw
]

+ surface integral terms evaluated at the limits of integration. (26)

By invoking the continuity equation du
dx + dv

dy + dw
dz = 0, the last integral transforms into

−ε
∫∫∫

dxdydz
[(d2u

dx2 + d2u

dy2 + d2u

dz2

)
δu+

(
d2v

dx2 + d2v

dy2 + d2v

dz2

)
δv +

(
d2w

dx2 + d2w

dy2 + d2w

dz2

)
δw
]

+ surface integral terms evaluated at the limits of integration. (27)

This is the expression for the moments of forces arising from the molecular actions that occur in the state of fluid
motion.

Equating to zero, the sum of the moments of the forces applied to all the molecules in the interior (no surface
integral terms) of an incompressible fluid in the state of motion gives

∫∫∫
dxdydz


[
P − dp

dx − ρ
(
du
dt + ududx + v dudy + w du

dz

)
+ ε
(
d2u
dx2 + d2u

dy2 + d2u
dz2

)]
δu+[

Q− dp
dy − ρ

(
dv
dt + u dvdx + v dvdy + w dv

dz

)
+ ε
(
d2v
dx2 + d2v

dy2 + d2v
dz2

)]
δv+[

R− dp
dz − ρ

(
dw
dt + udwdx + v dwdy + w dw

dz

)
+ ε
(
d2w
dx2 + d2w

dy2 + d2w
dz2

)]
δw

 = 0 . (28)

Finally, the three components of the equation of motion, in the x, y, and z directions, for an incompressible fluid
subjected to external forces P, Q, andR, and the repulsive molecular forces proportional to ε are

ρ

(
du

dt
+ u

du

dx
+ v

du

dy
+ w

du

dz

)
= P − dp

dx
+ ε

(
d2u

dx2 + d2u

dy2 + d2u

dz2

)
,

ρ

(
dv

dt
+ u

dv

dx
+ v

dv

dy
+ w

dv

dz

)
= Q− dp

dy
+ ε

(
d2v

dx2 + d2v

dy2 + d2v

dz2

)
, (29)

ρ

(
dw

dt
+ u

dw

dx
+ v

dw

dy
+ w

dw

dz

)
= R− dp

dz
+ ε

(
d2w

dx2 + d2w

dy2 + d2w

dz2

)
,

which are seen to be the three components of the Navier–Stokes equation for an incompressible fluid.

The surface integrals in equation (27), and the surface
integral given by 14∫∫ E(uδu+ vδv + wδw) will give the
conditions to be satisfied at the boundaries, whether
they are for an empty space or a solid surface, where
4π
6
∫∞

0 f (r) · r2 · dr = E, which is a quantity that de-
pends on the nature of the surface in contact with the
fluid. It is understood that for an empty space, E = 0.

7. Navier’s new boundary conditions in
the 2nd memoir

In the 2nd memoir [2], after a lengthy evaluation of the
surfaces integrals, Navier summarizes the applicable con-

ditions for the cases where the solid surfaces are perpen-
dicular to a particular axis. For these cases, the equations
to be satisfied at these boundaries are given by

Eu+ ε
du

dz
= 0, Ev + ε

dv

dz
= 0 , (30)

when the surface is perpendicular to the z-axis.

Eu+ ε
du

dy
= 0, Ew + ε

dw

dy
= 0 , (31)

when the surface is perpendicular to the y-axis.

Ev + ε
dv

dx
= 0, Ew + ε

dw

dx
= 0 , (32)

when the surface is perpendicular to the x-axis.
13 The following transformations should be made before integration by parts: du

dx
δdu
dx

= du
dx

dδu
dx

, dv
dy

δdv
dy

= dv
dy

dδv
dy

, dw
dz

δdw
dz

= dw
dz

dδw
dz

, etc.,
that is, the derivative of an infinitesimal variation is equal to the infinitesimal variation of the derivative. This is an important step
because it reveals that after the due integrations, the viscous forces become proportional to the second derivative of the velocity field.

14 Although this is a rather simple result, the derivation of this expression, which gives the condition to be satisfied at a solid surface, is
quite lengthy and will not be presented here.
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From these expressions, Navier provides a physical
interpretation of the nature of the quantities ε and E.
For this purpose, he considers a fluid flow where all
molecules move along layers parallel to a given plane. In
each layer, parallel to this plane, the molecules have the
same velocity, but the velocities increase uniformly and
progressively from layer to layer as the distance from
the plane increases, such that two layers are apart by a
linear unit and the difference in velocities is also equal
to a linear unit. Under such a hypothesis, the quantity
ε represents, in units of force, the resistance that arises
from the sliding of two layers of fluid one over the other,
per unit surface area. This is indeed what is currently
known as the viscous stress, where ε is recognized as the
dynamic viscosity. Similarly, E represents the resistance
in units of force per unit of surface area that arises from
the sliding of the layer of fluid in contact with a solid
surface, which according to Navier, would depend on the
nature of the surface in contact with the fluid.

The term Eui in these expressions implies a fluid–solid
slip, which was later proved to be incorrect. Moreover,
there is no such thing as a coefficient that depends on the
nature of the surface in contact with the fluid, as E would
represent. Nonetheless, the term ε ∂ui∂xj

is the only term
that should subsist at a solid boundary. This is in fact
the viscous stress τij that arises not only at a fluid–solid
interface, but also from the sliding of two parallel layers
of molecules in the inner parts of the fluid, although, in
the former case, the non-slip condition (zero velocity)
at a stationary solid boundary should still hold. This
was the first time in the history of fluid mechanics that
Newton’s law of viscosity was formally established15.

In the last part of the 2nd memoir, Navier presents
two applications of his theory, one for a tube with square
cross section, with side R, and another for a tube with
circular cross section, with radius R. For both cases, in
the limit of narrow tubes, he found the average velocity
to be given by = ρgRhL2El , that is, proportional to the
tube radius R, and finally, reconciling with Girard’s for-
mula. He goes on to comment that the average velocity is
seen to be independent of the viscosity ε, and to depend
only on the adherence between the fluid and the tube
wall, characterized by the constantE. As the diameter
of the tube increases, the effect of the viscosity ε should
increase accordingly, and for sufficiently large diameters,
the viscosity ε would solely determine the fluid average
velocity.

An estimate for E = 0.234 units is then given and
interpreted by Navier based on Girard’s experimental

results, for the flow of water inside a capillary of cop-
per. This value would represent in units of weight, the
resistance necessary to overcome the friction of a fluid
layer, flowing over a wall with a velocity equal to a linear
unit, for a layer with surface area equal to a linear unit.
Therefore, the resistance from the friction of a layer of
water of one square meter, flowing over copper with a
velocity of one meter per second, at a temperature of 12
◦C is approximately 1/4 kg.

As for the value of ε, according to Navier it would be
difficult to conduct experiments in order to find its value
with sufficient exactitude because capillary tubes are not
proper16 and because with larger pipes, it would be hard
to be certain that the motion is exactly linear17.

8. The aftermath

Probably discouraged by the fact that his theory could
only be applied to slow motion in capillaries (laminar
flows), Navier never returned to his theory of viscous
flow. In the hydraulic session of his course at the École
des Ponts et Chaussées [21], he presents the formula for
the velocity in narrow tubes proportional to the tube
diameter, for which an estimate for the fluid-surface co-
efficient E was obtained from “Girard’s very curious
experiments”. However, for the cases of ordinary appli-
cations he deemed the result of experiments as the only
guide. He then turned to the experiment-based formu-
lation of M. Prony18 for the calculation of the average
velocities in viscous flows in tubes of lengths at least 400
times the diameter, in which the velocities do not surpass
2.5 m/s.

The correct dependence of the average velocity propor-
tional to the square of the tube diameter, anticipated by
Navier in the 1st memoir on purely theoretical grounds
and by the adoption of a non-slip boundary condition,
had to wait the experimental confirmations by Hagen,
published in 1839 [17], and by Poiseuille, published in
1844 [18]19. Unfortunately, Navier, who died in 1836, did
not live long enough to know these results.

9. Conclusions

The development of the Navier–Stokes equation by Navier
shows his great ability as a scientist because, by under-
girding his theory on Laplace’s new concept of molecular
forces, thought to be also capable of capturing the ef-
fects of viscosity, Navier managed to reach for the first
time the ultimate equation for the laminar motion of

15 τij = ε ∂ui
∂xj

is the constitutive relation for a Newtonian fluid, popularly known as Newton’s law of viscosity. Nonetheless, Newton never
formulated this law in such terms, and never proposed a mathematical expression for it.

16 Because in capillaries, the coefficient E is dominant over ε
17 Navier here refers to the flow not being laminar
18 Gaspard Clair François Marie Riche de Prony (1755-1839) was a French mathematician and engineer who worked on hydraulics.
19 Hagen discovered his law without knowledge of Girard’s conflicting results. Poiseuille did not consider the capillaries used by Girard

narrow enough, and used instead capillaries one hundred times narrower than Girard’s. Both Hagen and Poiseuille used very meticulous
experimental protocols, which eliminated important sources of errors that had escaped Girard’s attention. All these factors seem to justify
Girard’s wrong dependence of average velocity on tube diameter.
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real viscous fluids. This seems to be the case of a fragile
model that was capable of generating a true prediction,
in comparison to the more rigorous models of the other
developers of the Navier–Stokes equation.

Navier also reveals strong analytical skills in the use
of Lagrange’s method of moments. His concern of con-
fronting the theory with available experimental data
also shows an engineer interested in the practical use of
his contributions. However, it has been recognized that
Navier’s derivation of the Navier–Stokes equation was
not influential and has since been neglected in specialized
publications on the subject. That fact that his theory
of fluid motion could only be applied to slow motion in
capillaries (laminar flows) may have later discouraged
Navier, who abandoned it in favour of experiment-based
formulations for ordinary applications.

Revisiting the two memoirs authored by Navier al-
lowed the identification of current concepts on the topic
of viscous fluid flow that have his imprint, but whose
authorship has often been either overlooked by Navier
scholars, taken for granted, or even customarily not di-
rectly attributed to him.

• By distinguishing between the relative motion and
the common motion of molecules, he may be con-
sidered the precursor of the concepts of boundary
layer and outer potential flow, which according to
the established view, was only introduced much
later, in the beginning of the 20th century.

• His ideas about molecular forces – the considera-
tion of the independence of pressure from viscous
stresses in incompressible flows, which translates
into the equality between mechanical and thermo-
dynamic pressure – are remarkable, considering his
fragile molecular model.

• His principle for the viscous forces for fluids in mo-
tion being proportional to the relative velocities
of the fluid particles redeemed the old Newtonian
principle for imperfect fluidity, and provided the
main undergird for his theory.

• Navier anticipated on purely theoretical grounds
what later became known as the Hagen-Poiseuille
law. Both Hagen and Poiseuille were able to later
confirm experimentally Navier’s theoretical find-
ings.

• Navier should also be acknowledged for establishing
the constitutive relation for a Newtonian fluid for
the first time, in the form of the so-called Newton’s
law of viscosity.

• His expression for the fluid-solid slip boundary
condition, characterized by a two constant model,
opened up new perspectives for the quest for the
conditions at the interface of a fluid in contact with
a solid wall (more on that in the next section).

Supplementary material

The following online material is available for this article:

On the conditions at the interface of a fluid in contact
with a solid wall
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[19] P.S. Girard, Mémoires de L’Académie Royale des Sci-

ences de L’Institut de France, Paris (1816), p. 187-274.
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