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The human sense of hearing perceives a combination of sounds ‘in tune’ if the corresponding harmonic spectra
are correlated, meaning that the neuronal excitation pattern in the inner ear exhibits some kind of order. Based
on this observation it is suggested that musical instruments such as pianos can be tuned by minimizing the
Shannon entropy of suitably preprocessed Fourier spectra. This method reproduces not only the correct stretch
curve but also similar pitch fluctuations as in the case of high-quality aural tuning.
Keywords: classical physics, acoustics, biophysics.

Nossa audição percebe que um som está “no tom” quando os espectros harmônicos a ele correspondentes são
correlacionados, ou seja o padrão de excitação neuronal de nosso ouvido interno apresenta uma certa ordem.
Baseado nesta observação, propomos que instrumentos musicais, tais como pianos, possam ser afinados pela
minimização da entropia de Shannon de espectros de Fourier convenientemente pré-processados. Este método
produz não apenas a curva de alongamento (stretching curve) correta mas também flutuações de altura similares
àquelas presentes no caso de afinamento auricular de alta qualidade.
Palavras-chave: f́ısica clássica, acústica, biof́ısica.

1. Introduction

Western musical scales are based on the equal tempera-
ment (ET), a system of tuning in which adjacent notes
differ by a constant frequency ratio of 21/12 [1]. Tu-
ning musical instruments in equal temperament by ear
used to be a challenging which was carried out by ite-
rating cyclically over certain interval sequences. Today
this task is performed much more accurately with the
help of electronic tuning devices which automatically
recognize the tone, measure its frequency, and display
the actual pitch deviation from the theoretical value.
However, if one uses such a device to tune a piano or
a harpsichord exactly in equal temperament, the ins-
trument as a whole will eventually sound as if it were
out of tune, even though each string is tuned to the
correct frequency. This surprising effect was first ex-
plained by O.L. Railsback in 1938, who showed that
this perception is caused by inharmonic corrections in
the overtone spectrum [2]. Professional aural tuners
compensate this inharmonicity by small deviations, a
technique known as stretching. The stretch depends on
the specific amount of inharmonicity and can be visua-
lized in a tuning chart (see Fig. 1).

Since the inharmonicity changes from instrument to
instrument, it is difficult to compute the appropriate
stretch by means of electronic tuning methods. Some

appliances allow the user to preselect typical average
stretches for certain classes and sizes of instruments.
More advanced tuning devices measure the individual
overtone spectra of all notes and compute the necessary
stretch by correlating higher harmonics. Although the
latter method gives fairly good results and is increasin-
gly used by professional piano tuners, many musicians
are still convinced that electronic tuning cannot com-
pete with high-quality aural tuning by a skilled piano
technician. This raises the question why aural tuning
is superior to electronic methods.

When measuring the frequencies of an aurally well-
tuned piano one finds that the tuning curve is not smo-
oth: rather it exhibits irregular fluctuations from note
to note on top of the overall stretch (see Fig. 1). At
first glance one might expect that these fluctuations are
randomly distributed and caused by the natural inac-
curacy of human hearing. However, as we will argue
in the present paper, these fluctuations are probably
not totally random; they might instead reflect to some
extent the individual irregularities in the overtone spec-
tra of the respective instrument and thus could play an
essential role in high-quality tuning. Apparently our
ear can find a better compromise in the highly com-
plex space of spectral lines than most electronic tuning
devices can do.
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Figura 1 - Typical tuning curve of a piano (figure taken from [3]). The plot shows how much the fundamental frequency of each note
deviates from the equal-tempered scale. The deviations are measured in cents, defined as 1/100 of a halftone which corresponds to a
frequency ratio of 21/1200 ≈ 1.0005778.

As a first step towards a better understanding of
these fluctuations, we suggest that a musical instru-
ment can be tuned by minimizing an appropriate en-
tropy functional. This hypothesis anticipates that a
complex sound is perceived as ‘pleasant’, ‘harmonic’ or
‘in tune’ if the corresponding neuronal activity is or-
dered in such a way that the Shannon entropy of the
excitation pattern is minimal. The hope is that such an
entropy-based optimization allows one to find a better
compromise between slightly detuned harmonics than
a direct comparison of selected spectral lines.

2. Harmonic spectrum, musical scales,
and temperaments

Sound waves produced by musical instruments involve
many Fourier components. The simplest example is the
spectrum of a vibrating string [5]. Depending on the ex-
citation mechanism, one finds not only the fundamental
mode with the frequency f1 but also a large number of
higher partials (overtones) with frequencies f2, f3, . . .
(see Fig. 2). For an ideal string the frequencies of the
higher partials are just multiples of the fundamental
frequency, i.e.

fn = nf1 . (1)

Such a linearly organized spectrum of overtones is cal-
led harmonic.

Since harmonic overtones are ubiquitous in Nature,
our sense of hearing prefers intervals with simple fre-
quency ratios for which the spectra of overtones parti-
ally coincide. Examples are the octave (2:1), the perfect
fifth (3:2), and the perfect fourth (4:3), which play an
important role in any kind of music. On the other hand,
music is usually based on scales of notes arranged in

octave-repeating patterns. Since the frequency doubles
from octave to octave, it grows exponentially with the
index of the notes. This exponentially organized struc-
ture of octave-repeating notes is in immediate conflict
with the linear spectrum of the harmonics. A musical
scale can be seen as the attempt to reconcile these con-
flicting schemes, defining the frequencies in such a way
that the harmonics of a given note coincide as much as
possible with other notes of the scale in higher octaves.
As demonstrated in Fig. 3, this leads quite naturally to
heptatonic scales with seven tones per octave, on which
most musical cultures are based. In traditional Western
music the seven tones (the white piano keys) are sup-
plemented by five halftones (black keys), dividing an
octave in twelve approximately equal intervals.

Figura 2 - Harmonic modes of a string [4].

As the twelve intervals establish a compromise
between the arithmetically ordered harmonics and the
exponentially organized musical scale, their sizes are
not uniquely given but may vary in some range. Over
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the centuries this freedom has led to the development of
various tuning schemes, known as intonations or tem-
peraments, which approximate the harmonic series to
a different extent. One extreme is the just intonation,
which is entirely built on simple rational frequency ra-
tios. As shown in Fig. 3b, the just intonation shares
many spectral lines with a suitable harmonic spectrum.
However, this tuning scheme is not equidistant on a lo-
garithmic representation, breaking translational invari-
ance under key shifts (transpositions). Therefore, the
just intonation is in tune only with respect to a specific
musical key (e.g. C Major), while it is out of tune in all
other musical keys.

With the increasing complexity of Western music
and the development of advanced keyboard instruments
such as harpsichords, organs and pianos, more flexible
intonations were needed, where the musical key can be
changed without renewed tuning. Searching for a bet-
ter compromise between purity (rational frequency ra-
tios) and temperament independence (transposition in-
variance) various tuning schemes have been developed,
including the famous meantone temperament in the re-
naissance and the well-tempered intonation of the baro-
que era. Since the 19th century Western music is predo-
minantly based on the aforementioned equal tempera-
ment, which is fully invariant under key shifts. In equal
temperament, frequencies of neighboring tones differ by
the irrational factor 21/12 so that they are equidistant
in a logarithmic representation (see Fig. 3c). However,

this invariance under key shifts comes at the price that
all intervals (except the octave) are slightly out of tune,
but apparently our civilization learned to tolerate these
discrepancies.

3. Inharmonicity

The harmonic series of overtones fn = nf1 is valid only
for ideal oscillators whose evolution is governed by a
linear second-order partial differential equation. In re-
alistic musical instruments there are higher-order cor-
rections in the force law which lead to small deviations
from the harmonic spectrum. The degree of inharmo-
nicity is characteristic of each instrument and accounts
for much of the color and texture of its sound.

Inharmonicity in string instruments is caused by the
circumstance that a realistic string is an intermediate
between an ideal string and a stiff bar. An ideal string
vibrates according to the differential equation ÿ ∝ −y′′

with a linear dispersion f ∝ |k|, while a stiff bar is
known to evolve according to a fourth-order differential
equation ÿ ∝ −y′′′′ with a quadratic dispersion f ∝ k2.
Therefore, the stiffness of realistic strings causes lowest-
order corrections of the form

ÿ ∝ −y′′ − ϵy′′′′ ⇒ f2 ∝ k2 + ϵk4 (2)

so that the spectrum of a string is given by

fn ∝ n f1
√

1 +Bn2 , n = 1, 2, . . . (3)

Figura 3 - Harmonic overtone spectrum compared with musical temperaments (logarithmic scale). Lower part: (a) Fundamental
frequency f1 = 11 Hz and the corresponding series of harmonics. (b) Just intonation in C-Major with octave-repeating patterns of
non-equidistant pitches. (c) Equally tempered intonation with constant pitch differences. The upper part of the figure shows a zoom of
the octave C4-C5. As can be seen, the heptatonic scale (the white piano keys, thick lines) of the just intonation (b) matches perfectly
with the harmonics in (a), while the half tones (black keys, thin lines) do not lock in. Contrarily the equal temperament (c) deviates
in all tones except A440 but it is equidistant and therefore invariant under shifts (transpositions) of the musical key.
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where f1 denotes the fundamental frequency and fn
is the frequency of the nth partial. The dimension-
less number B is the so-called inharmonicity coefficient
which depends on the length, diameter, tension and
material properties of the string. In a piano the va-
lue of B varies typically between 0.0002 for bass strings
up to 0.4 for treble strings (see left panel in Fig. 4).
Strong inharmonicity can be recognized as an unplea-
sant dulcimer-like sound. An important part in the art
of piano construction is to keep the inharmonicity as
small as possible.

4. Perception of being in tune

As mentioned before, intervals with simple rational fre-
quency ratios are perceived as pleasant. In this context
it is important to note that the human ear, when hea-
ring two different tones simultaneously, cannot evaluate
the frequency ratio of the fundamental modes directly:
rather it recognizes coincidences in the corresponding

overtone spectra. For example, if we hear an octave,
say A2-A3, our ear compares the partials 2, 4, 6,... of
the lower tone with the partials 1, 2, 3... of the upper
one, perceiving the octave as being ‘in tune’ when the
two harmonic series lock in (see Fig. 5).

In the presence of inharmonic corrections, however,
it is no longer possible to match the two series exactly.
In this case our ears search for the best possible com-
promise, minimizing the frequency differences between
almost coinciding low-lying partials. These tiny diffe-
rences are heard as so-called beats, a superposition of
enveloping modulations of a few Hertz which an aural
tuner tries to make as slow as possible. As demonstra-
ted in Fig. 6, in an octave such a compromise can be
achieved by slightly increasing the pitch of the upper
tone. This means that we perceive an interval as correc-
tly tuned if it is slightly out of tune in the mathematical
sense. This correction, called stretch, plays a major role
in the practice of tuning, even when the inharmonicity
of the instrument is small.

Figura 4 - Inharmonicity coefficients B of an upright piano. The two parts of the data correspond to the two diagonally crossed bass
and treble sections of the strings. Right: Power spectrum of the leftmost string. The red/light arrow marks the fundamental frequency
of 27.5 Hz. The blue/dark arrows indicate particularly weak partials which are suppressed due to the position of the hammer.

Figura 5 - Harmonic spectrum of partials of an octave in a linear representation. The octave is perceived as pleasant since every second
partial of the lower tone locks in with one of the a partials of the upper one.

Figura 6 - Compensating inharmonicity by stretching octaves (see text).
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Today high-priced electronic tuning systems are
available which can compute the appropriate stretch
for individual instruments. To this end some of the to-
nes are recorded and the inharmonicity coefficients of
the strings are estimated by identifying the partials in
the corresponding spectra. The stretch is then compu-
ted e.g. by selecting sequences of octaves and stretching
them in such a way that the fourth partial of the lower
tone coincides with the second partial of the upper (4:2-
tuning). More specifically, enumerating the piano keys

by k = 1 . . .K and denoting by f
(k)
n the nth partial of

the kth string, this 4:2 method provides K − 12 equati-
ons for the octave stretches of the form

f
(k+12)
1

f
(k)
1

=
r
(k)
4

r
(k+12)
2

, (4)

where rkn = f
(k)
n /f

(k)
1 is the ratio of the nth partial

to the fundamental frequency of the string. By taking
the logarithm this turns into a system of K − 12 linear
equations for the K unknown fundamental frequencies

f
(k)
1 . The remaining 12 unknowns are determined by
the reference pitch A440 and the choice of the tempe-
rament. Equal temperament can be approximated by
introducing a quadratic penalty function for the change
of adjacent interval ratios. By solving these equations
one can translate the measured partials directly into a
tuning curve. If the inharmonicity coefficient is a pie-
cewise smooth function (like the one shown in Fig. 4),
the tuning curve will be piecewise smooth as well. Li-
kewise one can use a 6:3 tuning scheme, which produ-
ces an even larger stretch. The overall magnitude of
the stretch is therefore not strictly defined but rather a
matter of taste. Some devices even interpolate between
4:2 and 6:3 stretching in order to get a more acceptable
compromise.

Computing the stretch by direct comparison of par-
tials as described above yields piecewise smooth tuning
curves. However, as mentioned in the Introduction, au-
ral tuners produce tuning curves with pronounced fluc-
tuations on top of the overall stretch, especially in the
bass and in the treble. One of the main messages of this
work is the conjecture that these fluctuations are not
random but to some extent essential for a good tuning
result.

The fluctuations may have different reasons. On
the one hand, each partial couples differently to the
resonator of the instrument (the soundboard of the pi-
ano), leading to additional frequency shifts so that the
inharmonic spectrum deviates slightly from the predic-

ted form in Eq. (3). Another reason is the highly irregu-
lar intensity of the partials. As shown in the right panel
of Fig. 4, the spectrum of a piano string may consist of
dozens of partials, but even adjacent partials may differ
in their power by more than a magnitude. Even worse,
some of the partials (indicated by blue arrows in the
figure) are strongly suppressed if the hammer hits the
string at a node of the corresponding vibrational mode.
This suggest that in realistic situations the perception
of being in tune does not only depend on the frequency
of the partials but also on their amplitude.

5. Psychoacoustic aspects

As tuning can be understood as the search for a com-
promise in matching higher partials, it will significantly
depend on the acoustic and psychoacoustic properties
of the inner ear. Psychoacoustics is a research field on
its own (see e.g. [6–8]) and plays an important role e.g.
in lossy data compression methods such as MP3. Here
we only sketch a few basic elements which are essential
for the method presented below.

Let us first consider the frequency range of the ear.
Starting point is a sound wave, which can be descri-
bed as a time-dependent pressure variation p(t). Its
complex-valued Fourier transform is given by

p̃(f) =
1√
2π

∫
dt e2πift p(t) , (5)

where p̃(−f) = p̃∗(f). The corresponding power spec-
trum

I(f) = |p̃(f)2|, (6)

describes the energy density of the spectral line at fre-
quency f . As a technically useful measure one defines
the logarithmic sound pressure level (SPL)

L(f) = 10 log10

(I(f)
I0

)
, (7)

measured in decibels (dB), where I0 refers to the hea-
ring threshold.

Depending on the frequency the SPL will be cor-
related with a certain mechanical response in the in-
ner ear. Since the physical transmission mechanism is
highly complex, one usually approximates this relati-
onship by certain weighting functions. Below 55 dB the
most commonly used one is the so-called A-weighting
according to the international standard IEC 61672:2003
with the filter function ⌋

RA(f) =
122002f4

(f2 + 20.62)(f2 + 122002)
√
(f2 + 107.72) (f2 + 737.92)

, (8)

which defines the A-weighted sound pressure level (SPLA)
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LA(f) =
(
2.0 + 20 log10 RA(f)

)
L(f), (9)

in units of A-weighted decibels (dBA). The SPLA
can be considered as a rough measure of frequency-
dependent energy deposition in the cochlea.

The receptor cells in the inner ear convert the ex-
citation pattern into a certain neuronal response which
causes the auditory perception in the brain. The neuro-
nal processing is even more complex and not yet entirely
understood. For this reason one uses a psychoacoustic
measure for the perceived intensity, the so-called loud-
ness N(f), which is an empirical psychological quan-
tity averaged over many test persons. According to the
literature this relationship is well approximated by a
piecewise exponential function and a power law

N(f) =

{
2(LA(f)−40)/10 if LA(f) > 40 dBA,
(LA(f)/40)

2.86 if LA(f) ≤ 40 dBA.
(10)

Not only the sensitivity of the ear is frequency-
dependent but also its ability to discriminate between

different frequencies. In the literature different measu-
res for the frequency resolution are reported, of which
the so-called just noticeable difference (jnd) plays the
role of a lower bound [6]. The jnd is usually approxi-
mated by

∆f =

{
3 Hz if f ≤ 500Hz,
0.006f if f > 500Hz .

(11)

6. Entropy-based tuning scheme

We now suggest a simple entropy-based tuning scheme
for musical instruments. It is motivated by the observa-
tion that tuning can be understood as the search for the
best possible compromise in matching higher partials,
and the main idea is that this compromise is characteri-
zed by a local minimum of the entropy of the intensity
spectrum. This is highly plausible since the entropy
of two spectral lines decreases as they begin to overlap
(see Fig. 7). ⌋

Figura 7 - Shannon entropy as a measure for the coincidence of spectral lines. The figure show the superposition of two Gaussian functions
representing two partials. If the two partials are sufficiently separated, the (continuous) entropy H = −

∫+∞
−∞ f(x) log2(f(x))dx gives

a constant value H ≈ 4.094. When the two partials begin to overlap (audible as beats), the entropy decreases and reaches a minimum
(H ≈ 2.094 in this example) if they coincide.

⌈

To test this idea we individually recorded all keys of
an aurally tuned piano, computed their power spectra
and reorganized them in logarithmic bins in order to
account for the finite frequency resolution of the inner
ear. Furthermore, we removed the pitch differences,
resetting the tune of all tones to equal temperament.
Then we applied the following simple zero-temperature
Monte-Carlo scheme of statistical physics (see Fig. 8,
technical details are given in the appendix):

• Add the A-weighted power spectra of all 88 tones
and compute the entropy.

• Randomly change one the of the pitches and com-
pute the entropy again.

• If the entropy is lower accept the pitch change,
otherwise restore the previous value.

This simple procedure is iterated until no further im-
provement is obtained, meaning that the algorithm has

found a local minimum of the entropy. Note that by
adding up all tones, the method is inherently sensitive
to all intervals, not only to octaves.

Figura 8 - Monte-Carlo scheme.
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7. Discussion

Fig. 9 shows the resulting tuning curve of a typical run
compared with the actual curve produced by an au-
ral tuner for an upright piano. As can be seen, not
only the overall stretch is predicted correctly but even
the fluctuations of the two curves are highly correla-
ted, especially in the bass and the treble. Apparently
the entropy-based tuning method is capable of genera-
ting the same individual deviations from the average
stretch as an aural tuner. This is surprising and not
yet understood, but it indicates that these fluctuations
are reproducible and may play an essential role in the
practice of tuning.

Figura 9 - Typical result of the tuning procedure described in
Section 6 (gray curve - red in electronic version) compared with
the tuning curve produced by aural tuning (black curve).

The implementation of the method is very easy.
The tones are recorded, Fourier-transformed, mapped
pointwise by the psychoacoustic filtering functions as
described above, binned logarithmically, added up, and
finally plugged into the entropy functional. An explicit
identification of higher partials and the measurement
of the inharmonicity is not needed. The method is ex-
pected to take automatically any anomalous spectral
properties of the instrument into account.

However, the method suggested here is still in an im-
mature state. It could be modified in various respects
and a systematic study is still outstanding. Moreover,
the method was tested so far with only one instrument.
The main open questions are the following:

• Apparently there are many local minima, so that
the algorithm outlined above produces similar but
not reproducible results.

• The Monte-Carlo results presented above were
based on the A-weighted spectra (SPLA) in
Eq. (9). If one uses instead the loudness defined
in Eq. (10), one obtains unreasonably stretched
tuning curves in the bass.

• The spectra were logarithmically binned in units
of one cent. This models a frequency resolution
of one cent, which is smaller than the just notable
difference (jnd). However, convolving the spectra
with a frequency-dependent Gaussian according
to the expected jnd in Eq. (11) does not improve
the results.

• More advanced Monte Carlo techniques such as
simulated annealing have not yet been tested.

• Instead of adding up the spectra of all piano keys,
we tried to work with subsets of octaves, fifths
and fourths, imitating the practice of aural tu-
ners. This destabilizes the method, probably dri-
ving the pitches out of equal-tempered into just
intonation. Apparently the summation over all
keys allows the system as a whole to stay in equal
temperament.

Regarding possible technological realizations, it could
be interesting to develop electronic tuning devices using
a hybrid method, which first compute an approximate
tuning curve by matching higher partials, and then op-
timize the fluctuations of the pitches by searching for a
suitable local minimum in the vicinity.

8. Appendix - Technical details

Data recording and preprocessing

1. Record the piano keys k = 1 . . .K in WAV for-
mat. Extract the binary PCM amplitudes and
convert them to a series of floating point numbers

y
(k)
j ∈ R with an index j = 0 . . . ST − 1, where
S = 44100 Hz is the sample rate and T ≈ 20 s is
the recording time.

2. Apply a fast Fourier transform (e.g. package

fftw3) to obtain the spectra ỹ
(k)
q ∈ C indexed

by q = 0 . . . Q, where Q = ST/2 (the other half
of the data is complex conjugate). The qth com-
ponent corresponds to the frequency f(q) = q/T .

3. For each k coarse-grain the power spectrum

|ỹ(k)q |2 ∈ R+ by logarithmic binning. To this end

define an array I
(k)
m ∈ R+ corresponding to the

frequencies f(m) = 10 · 2m/1200 Hz with m run-
ning from zero (10 Hz) to 12000 (10 kHz). Let

I(k)m :=

Q∑
q=0

δm,[1200+log2(
q

10T )] |ỹ(k)q |2 , (12)

where [·] denotes rounding to an integer. Note
that in this representation adjacent bins differ by
a frequency ratio of one cent.

4. Map the intensities I
(k)
m to the corresponding A-

weighted sound pressure levels (SPLA) L
(k)
m .
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5. After this preprocessing the pitch of a tone can
be increased or lowered by c cents through a shift
of the array index m → m − c. This allows us
to tune the instrument virtually on the compu-
ter. Remove the recorded pitch deviations by tu-
ning the first partial to equal temperament, i.e.

f
(k)
1 = 440 · 2(k−k0)/12 Hz, where k0 is the index
of A440. This means that the recorded stretch
corrections are initially eliminated.

Monte-Carlo dynamics

1. Change one of the pitch differences randomly by
±1 cent.

2. Compute the sum pm =
∑88

k=1 L
(k)
m of the SPLA

over all keys.

3. Normalize pm such that
∑

m pm = 1.

4. Compute the Shannon entropy H =
−
∑

m pm ln pm.

5. If the entropy decreases, keep the pitch change,
otherwise restore the old pitch.

This procedure is repeated until no further changes
take place.
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