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On the electrostatic energy of two point charges
(A energia eletrostática de duas cargas pontuais)
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The electrostatic field energy due to two fixed point-like charges shows some peculiar features concerning the
distribution in space of the field energy density of the system. Here we discuss the evaluation of the field energy
and the mathematical details that lead to those peculiar and non-intuitive physical features.
Keywords: electrostatic energy, self-energy, classical renormalization.

A energia eletrostática de duas cargas puntiformes fixas exibe algumas peculiaridades que dizem respeito à
distribuição da densidade de energia associada ao campo elétrico total do sistema. Discutimos aqui o cálculo
da energia do ponto de vista do campo e os detalhes que levam a essas caracteŕısticas f́ısicas peculiares e não
intuitivas.
Palavras-chave: eletrostática, auto-energia, renormalização clássica.

1. Introduction

The electrostatic energy of two point charges is given
by the simple expression

U12 =
1

4πϵ0

q1 q2
R

, (1)

where R is distance between the charges the values of
which are q1 and q2. If the charges have the same al-
gebraic sign the electrostatic energy is positive but if
the algebraic signs are not equal then the electrostatic
energy is negative. Eq. (1) is interpreted as a poten-
tial or energy due to the spatial configuration of the
charges. If constraints forces are removed this energy
will be transformed into kinetic energy of the charges.
On the other hand, from the field point of view the total
energy of the system is given by the expression

U =
ϵ0
2

∫∫∫
∥E(P )∥2 dV ≥ 0, (2)

where E(P ) is the total field of the system at a point
P of the space, that is

E(P ) = E1(P ) +E2(P ). (3)

In order to extract the interaction or potential energy
of the configuration we must subtract the self-energies
of the point charges and next we show how this can be
accomplished.

Figure 1 - Geometry for the evaluation of the interaction energy
of two point charges.

The field energy can be split into three separate contri-
butions

ϵ0
2

∫∫∫
E2(P ) dV =

ϵ0
2

∫∫∫
E2

1(P ) dV +

ϵ0
2

∫∫∫
E2

2(P ) dV + ϵ0

∫∫∫
E1(P ) ·E2(P ) dV. (4)

The first two terms on RHS of Eq. (4) can be inter-
preted as the classical self-energies of the point charges.
From a classical point of view both terms lead to diver-
gent contributions. To deal with this problem we must
introduce a regularization and renormalization scheme.
A simple one is to compare two configurations, say the
configuration shown in Fig. 1 and the configuration
where both point charges are at a different distance,
say D, from each other and then subtract one con-
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figuration from the other. This procedure leads to a
subtraction of infinities and may cause discomfort even
among the not so mathematically-minded. A simple
way out of this situation is to replace the point charges
by two small identical spherical distributions, for exam-
ple, a spherical shell of radius δ uniformly charged with
a charge density σ. This is convenient because inside
the shells considered one at a time the electric field is
zero. This will yield a finite self-energy contribution
given by 2× e2/(2 · 4πϵ0δ)2. Upon subtraction the self-
energy terms will cancel out and we will be left with
two crossed terms. Then we let the distance between
the two shells in one of the configurations approach in-
finity (D → ∞). This procedure will leave us with one
relevant finite crossed term to be calculated. Now we
let δ → 0 keeping the charge constant. The surviv-
ing crossed term then represents the finite variation of
the interaction energy of the two point charges with re-
spect to the reference configuration and must reproduce
Eq. (1), that is

ϵ0

∫∫∫
E1(P ) ·E2(P ) dV =

1

4πϵ0

q1 q2
R

, (5)

but this must be proved by explicit evaluation of integral.
The first time the author heard of this problem was

when he was reading the first edition of Ref. [1] where it
was proposed as an advanced problem in a special chap-
ter at the end of the book. The challenge was to prove
that the potential energy point of view and the field
energy one were not mutually incompatible by arguing,
not necessarily by explicit calculations. Recently, in a
paper on the role of field energy in introductory physics
courses Hilborn [2] commented on this and some pecu-
liar features concerning the distribution in space of the
field energy of the system. To appreciate these features
consider for simplicity two equal positive charges. Then

1. There is a spherical region centered at one of the
charges that does not contribute to the total in-
teraction energy.

2. This region can be divided into two subregions
that contribute with algebraically opposite ener-
gies and the amount of negative energy is very
small when compared with the total energy.

3. And, finally, 90% of the field energy lies in a lim-
ited part of the space.

Here the present author will try to show to the in-
terested reader the details of those peculiar and non-
intuitive aspects by performing explicitly the calcula-
tions.

Figure 2 - The distribution of the electrostatic energy density for
two similar positive point charges.

2. Evaluation of the electrostatic en-
ergy

It is convenient to use spherical coordinates with the
origin at one of the charges and the polar z-axis along
the line that passes through both, see Fig. 1. Let us
set q1 = q2 = e. The crossed term reads

E1 ·E2 =
e2

(4πϵ0)2r21r
2
2

er1 · er2 . (6)

Now we introduce, see Fig. 1

r1 = R+ r2 (7)

hence

r22 = r21 +R2 − 2r1R cos θ, (8)

and, see Fig. 1,

er1 · er2 = cos α. (9)

Therefore

E1 ·E2 =
e2

(4πϵ0)2
cos α

r21 (r
2
1 +R2 − 2r1R cos θ)

. (10)

To relate α and θ we apply the sine law to the triangle
in Fig. 1

R

sin α
=

r2
sin θ

. (11)

Combining this relation with the fundamental trigono-
metric identity cos2 α+ sin2 α = 1, we find after some
simple manipulations

cos α =

√
1− R2

r22
(1− cos2 θ). (12)

2Recall that the electrostatic energy associated with a uniformly charged spherical shell whose radius is a and total charge is q is
given by

1

2

q2

4πϵ0a
.
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Now we take Eq. (8) into the equation above and after
some simplifications we get

1− R2

r22

(
1− cos2 θ

)
=

(r1 −R cos θ)
2

r21 +R2 − 2r1R cos θ
. (13)

It follows that

cos α =
r1 −R cos θ√

r21 +R2 − 2r1R cos θ
, (14)

and

E1 ·E2 =
e2

(4πϵ0)2
r1 −R cos θ

r21 (r
2
1 +R2 − 2r1R cos θ)

3/2
. (15)

Therefore we must now compute

U12 = ϵ0 × e2

(4πϵ0)2

∫ ∞

0

r21 dr1 ×∫
Ω

r1 −R cos θ

r21 (r
2
1 +R2 − 2r1R cos θ)

3/2
dΩ, (16)

where dΩ = sin θ dθ dϕ. The integration over the az-
imuthal angle is trivial and yields a factor 2π, and upon
introducing the variable ξ = cos θ we have

U12 =
e2

8πϵ0

∫ ∞

0

f(r1) dr1, (17)

where we have defined

f(r1) =

∫ +1

−1

r1 −Rξ

(r21 +R2 − 2r1Rξ)
3/2

dξ. (18)

This integral can evaluated straightforwardly and be-
cause R > 0 , r1 > 0, we can write the result as

f(r1) =
|R− r1| (R+ r1)− (R+ r1) (R− r1)

|R− r1| (R+ r1) r21
. (19)

To proceeed we must consider two cases.

Case r1 < R. In this case it is easily seen that

f(r1) = 0. (20)

This means that inside of an imaginary sphere of radius
equal to R, the interaction energy of the two charges is
zero.

Case r1 > R. In this case, Eq. (19) yields

f(r1) =
2

r21
. (21)

Taking this result into Eq. (17) we obtain the expected
result

U12 =
e2

4πϵ0

∫ ∞

R

dr1
r21

=
e2

4πϵ0 R
. (22)

Notice that if we set the upper limit equal to 10R, then
a simple calculation shows that

U ′
12 =

e2

4πϵ0

∫ 10R

R

dr1
r21

=
9

10

e2

4πϵ0 R
, (23)

that is, as stated in Ref. [2], 90% of energy is contained
between two spheres, one of radius R and the other one
of radius 10R. If the charges are not identical, all we
have to do is replace e2 by q1q2.

3. The energy density distribution

Though the final result is the one we expected the way
it was obtained reveals some details that are some-
what surprising, to wit, the part of the field energy
that corresponds to the interaction energy of the two
point charges comes from the region r > R. The region
r < R makes no contribution at all. This conclusion
agrees with Ref. [2]. How can this physically be?

To answer this question we must first realize that
the electrostatic interaction energy density of the sys-
tem is essentially given by the dot product of the fields.
In the case of two positive identical charges it is not
difficult to see that the angle between the fields, let us
denote it by α as before, is obtuse near the charges
and acute far away from them, see Fig. 2. In fact, the
negative contributions comes from a spherical region of
radius equal to R/2 centered at the midpoint between
the two charges, see Fig. 2. The positive contribution
comes from the rest. The volume of the spherical re-
gion is smaller than the volume of the rest, but the fields
are more intense near the charges than far away from
them. Therefore, we conclude that in the end there is
a cancellation between the corresponding contributions
and this is reason why the entire region r < R makes
no contribution at all to the final result. The electro-
static field energy of this system comes from the region
R < r < ∞.

Inside the region r < R there is a surface that
separates the negative energy density region from the
positve one. On this surface the fields are perpendicu-
lar to each other and the energy density is null. This
can be seen from Eq. (15). The dot product between
the fields is zero if and only if

r1 = R cos θ, (24)

but if we inspect Fig. 2 this relation is a consequence of
Thales’ theorem that states that any triangle inscribed
in a semicircle is a right triangle which is the case of
the triangle formed by the three segments of line whose
lengths are r1, r2, and R. It follows easily that on the
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spherical surface of radius equal to R/2 the fields are
perpendicular to each other and consequently the inter-
action energy is zero.

4. The ratio between negative and pos-
itive energy

Let us now evaluate the ratio between the negative and
the positive field interaction energy. The hard part is
the evaluation of the contribution of the negative en-
ergy. In order to perform this calculation some geomet-
rical transformations will have to be made. Consider
Fig. 3. In order to shift the origin of the coordinate
system to the midpoint between the charges we intro-
duce the position vectors of the charges with respect to
the midpoint, x1 and x2, such that x1 + x2 = 0 and
∥x1∥ = ∥x2∥ = R/2. We introduce also the position
vector X of an arbitrary point P with respect to the
midpoint. Notice that the magnitude ∥X∥ = X of this
vector lies in the interval 0 ≤ X ≤ R/2. The new polar
angle is θ ′ and the following vector relations are easily
seen to hold

Figure 3 - Geometry for the evaluation of the negative energy
density contribution.

r1 = x2 +X; r2 = −x2 +X. (25)

The interaction energy as before depends on the dot
product

E1 ·E2 =
e2

(4πϵ0)2r21r
2
2

er1 · er2 =
e2

(4πϵ0)2r21r
2
2

r1
r1

· r2
r2

.

(26)
From the vector relations above it follows that

r21 =
R2

4
+X2 +RX cos θ ′, (27)

and

r22 =
R2

4
+X2 −RX cos θ ′. (28)

We also have

r1
r1

· r2
r2

=
X2 − R2

4
r1r2

. (29)

Defining the dimensionless variable

u :=
X

R
, 0 ≤ u ≤ 1, (30)

the field energy content of this region A12 can be writ-
ten as

A12 = U12

∫ 1/2

0

duu2

(
u2 − 1

4

)
×∫ 1

0

dξ(
1
4 + u2 + u ξ

)3/2 (
1
4 + u2 − u ξ

)3/2 , (31)

where ξ := cos θ ′. The integral in ξ is

∫ 1

0

dξ(
1
4 + u2 + u ξ

)3/2 (
1
4 + u2 − u ξ

)3/2 =

64

∥2u− 1∥ (2u+ 1) (16u4 + 8u2 + 1)
, (32)

and after performing the integral in u we obtain

A12 = −U12
π − 2

4
. (33)

In order to get zero energy inside the spherical region
of radius R centered at one of the charges we must have
an equal amount of a positive contribution B12

B12 = +U12
π − 2

4
. (34)

Therefore the ratio of the negative energy to the posi-
tive energy is

A12

U12 +B12
= −

(
π − 2

π + 2

)
≈ −0.2220. (35)

This means that the negative energy content is consid-
erable less than the positive energy one.

5. Final remarks

To conclude let us call the reader’s attention to two
points. The first one is that if the point charges have
opposite algebraic signs then as before there will still be
a sphere centered at one of the charges of radius equal
to their separation inside of which the total content of
energy is zero, but the energy contained in the smaller
sphere of radius R/2 will be positive and the rest of
the energy will be negative. This can be easily seen by
sketching the dot product E1 ·E2.

The second one is that all calculations done for the
configuration considered here – mutatis muntandis –
apply to the corresponding gravitational case. The con-
tent of energy stored in the gravitational field is given
by

U = − 1

8πG

∫∫∫
g 2(P ) dV, (36)
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where g(P ) is the resultant field at a point P . For a
gravitational configuration similar to the electrostatic
one considered here g(P ) = g1(P ) + g2(P ), and de-
pending on the model we choose for the mass distribu-
tion we will not need to deal with infinities due to self-
energies.The same can be said about extended charge
distributions.

As a final remark, we would like to emphasize that
the regularization and renormalization of the divergent
self-energy of a point charge is an important problem
in classical and quantum electrodynamics, and quan-
tum fields in general. For a pedagogical introduction
to renormalization in a classical context see Refs. [3,4].
The reader interested in the quantum aspects of the
problem will find plenty of references in the literature.
An introduction to its general aspects can be found in
Ref. [5]. More technical approaches can be found in
Ref. [6]. See also the pioneering work of M. Schönberg
in Ref. [7].
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