
Revista Brasileira de Ensino de F́ısica, v. 33, n. 1, 1303 (2011)
www.sbfisica.org.br

MATLAB GUI for computing Bessel functions

using continued fractions algorithm
(GUI Matlab para o cálculo de funções de Bessel usando frações continuadas)

E. Hernández1, K. Commeford2 y M.J. Pérez-Quiles3

1Departamento de Matemáticas, Universidad de Pinar del Rı́o, Pinar del Rı́o, Cuba
2Colorado School of Mines, Department of Physics, Golden, CO, USA

3Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, Valencia, Spain
Recebido em 11/8/2009; Aceito em 23/1/2011; Publicado em 21/3/2011

Higher order Bessel functions are prevalent in physics and engineering and there exist different methods to
evaluate them quickly and efficiently. Two of these methods are Miller’s algorithm and the continued fractions
algorithm. Miller’s algorithm uses arbitrary starting values and normalization constants to evaluate Bessel func-
tions. The continued fractions algorithm directly computes each value, keeping the error as small as possible.
Both methods respect the stability of the Bessel function recurrence relations. Here we outline both methods
and explain why the continued fractions algorithm is more efficient. The goal of this paper is both (1) to intro-
duce the continued fractions algorithm to physics and engineering students and (2) to present a MATLAB GUI
(Graphic User Interface) where this method has been used for computing the Semi-integer Bessel Functions and
their zeros.
Keywords: Bessel functions, continued fraction, Matlab GUI.

Funções de Bessel de ordem mais alta são recorrentes em f́ısica e nas engenharias, sendo que há diferentes
métodos para calculá-las de maneira rápida e eficiente. Dois destes métodos são o algoritmo de Miller e o al-
goritmo de frações continuadas. O primeiro faz uso de valores iniciais e constantes de normalização arbitrários,
enquanto o segundo o faz calculando cada valor diretamente, minimizando tanto quanto posśıvel o erro. Ambos
respeitam a estabilidade das relações de recorrência das funções de Bessel. Neste trabalho descrevemos ambos
os métodos e explicamos a razão pela qual o algoritmo das frações continuadas é mais eficiente. O objetivo
do artigo é (1) introduzir o algoritmo de frações continuadas para estudantes de f́ısica e das engenharias e (2)
apresentar um GUI (Graphic User Interface) em Matlab no qual este método foi utilizado para calcular funções
de Bessel semi-inteiras e seus zeros.
Palavras-chave: funções de Bessel, frações continuadas, GUI em Matlab.

1. Introduction

Bessel functions arise when using separation of variables
to solve some partial differential equations in cylindrical
and spherical coordinates [1]. They appear naturally
when dealing with Laplace’s and Helmholtz’s equations.
The Bessel functions that result as solutions when solv-
ing these problems can be applied to various fields,
including electricity and magnetism, heat conduction,
acoustical vibrations, signal processing, and the radial
Schrödinger equation [2].

Students are usually introduced to Bessel functions
in their partial differential equations class. Attention
is focused on the differential equation to obtain Bessel
functions, with, usually, very little to the application of
such functions. Due to the many applications of Bessel

functions in several scientific fields, a curriculum should
be designed to touch on the subject of actually using
Bessel functions to solve real-world problems.

While Bessel functions are extremely useful, few al-
gorithms exist to calculate them quickly and efficiently.
A common method is Miller’s algorithm [3]. Another
method is the continued fractions algorithm developed
by Ratis and Fernández de Córdoba [4]. These algo-
rithms are necessary for various problems in physics.
For example, when solving the inhomogeneous Bessel
equation, Lommel functions arise. Lommel functions
of two variables are superpositions of ordinary Bessel
functions, and frequently appear when solving problems
in diffraction [1]. When studying scattering problems
at high frequencies [5], one must use high order Hankel

3E-mail: jperezq@mat.upv.es.

Copyright by the Sociedade Brasileira de F́ısica. Printed in Brazil.



1303-2 Hernández et al.

functions, which are linear combinations of Bessel func-
tions of the first and second classes. A specific example
of using numerical methods to evaluate Hankel func-
tions, and therefore Bessel functions, can be found in
an article of Havemann and Baran [6]. The continued
fractions algorithm can also be use to compute modified
Bessel functions and Fresnel integrals [7, 8]. For prob-
lems when a numerically reliable and quick algorithm
is needed, the continued fractions algorithm (CFA from
now on) is a perfect candidate. In all of these exam-
ples, we need to know the values of many functions for a
given argument at once. While Bessel functions can be
easily evaluated using the built-in functions in Mathe-
matica or MATLAB, these programs present some lim-
itations when several orders and points are needed at
the same time.

The goal of this paper is to present the CFA in a
pedagogical manner for the use of physics and engi-
neering students and for professors to implement in a
classroom. We present both algorithms and give the ad-
vantages of the CFA, with the help of a MATLAB GUI
that we have developed. This GUI can be downloaded
from http://www.intertech.upv.es and it includes
all the algorithms used to compute the Bessel functions
and their zeros.

The structure of the paper is as follows: In the
second section, we explain the concept of a continued
fraction and how it is constructed. The third section
presents the two previously mentioned algorithms for
evaluating Bessel functions of high order. We give de-
tailed descriptions of both Miller’s algorithm and the
CFA, and compare the two methods. The fourth sec-
tion is devoted to applications and examples. Finally,
some conclusions are outlined.

2. Continued fractions

In the mid 17th century, a large number of infinite
methods were developed for directly computing π, in-
cluding the method of continued fractions proposed by
William Brouncker [9], the president of the Royal So-
ciety at the time. However, the theory of continued
fractions goes back earlier. In Italy, Pietro Antonio
Cataldi had already expressed square roots using this
method [10].

Take, for example,
√

2. If we decompose it into the
form

√
2 = 1 + x, we see that

2 = (1 + x)2 ↔ x2 + 2x = 1 → x =
1

2 + x
. (1)

If we substitute Eq. (1) into itself, and continue this

substitution indefinitely, we get a continued fraction

x =
1

2 +
1

2 +
1

2 +
1

2 + . . .

. (2)

Following the notation in Wall [11], we define a lin-
ear fractional transformation as

z0(x) = b0 + x, zn(x) =
an

bn + x
, n = 1, 2, 3, . . . ,

(3)
where b0 is an integer, and an are positive integers,
which allows us to construct a continued fraction by in-
serting zn(x) as the argument to the previous term and
repeating indefinitely

b0 +
a1

b1 +
a2

b2 +
a3

b3 + . . .

. (4)

Consider the sequence given by the successive com-
positions of the transformations defined in Eq. (3)

z0z1(x) = z0[z1(x)] = b0 +
a1

b1 + x
,

z0z1z2(x) = z0[z1[z2(x)]] = b0 +
a1

b1 + a2
b2+x

, (5)

...

z0z1 . . . zn(x) = b0 +
a1

b1 +
a2

b2 + · · ·+ an

bn + x

, (6)

...

From this, we see that

z0z1 . . . zn(0) = b0 +
a1

b1 +
a2

b2 + · · ·+ an

bn

, (7)

denoting the n-th convergent of the continued fraction,
with z0(0) = b0 denoting the 0-th convergent.

It is useful to use the equivalent notation for Eq. (5),
following the notation of Wallis [12]

z0z1 . . . zn(x) =
An−1x + An

Bn−1x + Bn
, n = 0, 1, 2, . . . , (8)

where

A−1 = 1, B−1 = 0, A0 = b0, B0 = 1,

An+1 = bn+1An + an+1An−1, Bn+1 =
bn+1Bn + an+1Bn−1, n = 0, 1, 2, . . . , (9)

http://www.intertech.upv.es�


MATLAB GUI for computing Bessel functions using continued fractions algorithm 1303-3

which allows us to rewrite the n-th convergent in Eq. (7)
as

z0z1 . . . zn(0) =
An

Bn
. (10)

For a continued fraction to have convergence, the limit

lim
n→∞

z1z2 . . . zn(0) = lim
n→∞

An

Bn
, (11)

should exist and be finite.
An efficient algorithm for calculating continued frac-

tions is the Steed algorithm [13]. The method of con-
tinued fractions explained in the next section uses the
Steed algorithm to calculate a continued fraction.

3. Bessel function evaluation

Bessel functions are the canonical solutions, ω(z), of
Bessel’s differential equation

z2ω′′(z) + zω′(z) + (z2 − α2)ω = 0, (12)

where α, the order of the Bessel function, is an arbi-
trary number that can be either real or complex. Bessel
functions of integer order have α = n = 0, 1, 2, . . .
Semi-integer order Bessel functions, more commonly
known as spherical Bessel functions, have α = n + 1/2,
n = 0, 1, 2, . . . When z is a purely imaginary argument,
we get modified Bessel functions [14].

Bessel functions are split into two different classes:
first class and second class. First class Bessel functions
are the solutions to Bessel’s differential equation that
are finite at the origin. Second class Bessel functions are
the solutions to Bessel’s differential equation that have
a singularity at the origin. Usual methods of evaluat-
ing Bessel functions use recurrence relations [14]. The
class of the Bessel function determines whether we use
ascending or descending recurrence relations to obtain
the next term in the sequence by either increasing or
decreasing n. The direction the recurrence relations
take serve to maintain numerical stability [15]. If we
were to go the opposite way of the defined relations,
the loss of significant figures would skew the results
significantly [15].

Second class Bessel functions use an ascending re-
currence relation to maintain stability, meaning we can
use the first two known values to calculate all higher
terms up to some value n = N . First class Bessel func-
tions use a descending recurrence relation to maintain
numerical stability. This means that we cannot start
from the first two well known values, but must instead
find a clever way around this hindrance. A commonly
used method to compute Bessel functions is known as
Miller’s algorithm [3].

3.1. Miller’s algorithm

Let us consider the first and second class spherical
Bessel functions of semi-integer order, jn(z) and yn(z).

The recurrence relations for these two functions are
given by

jn−1(z) =
2n + 1

z
jn(z)− jn+1(z),

n = 1, 2, . . . , (13)

yn+1(z) =
2n + 1

z
yn(z)− yn−1(z),

n = 1, 2, . . . (14)

As you can see, Eq. (13) is a descending recurrence
relation, and Eq. (14) is an ascending recurrence rela-
tion. As we discussed before, using an ascending rela-
tion to evaluate jn would lead to absurd results, but
we do not know jn nor jn−1. Miller’s algorithm serves
to “guess”the initial values and re-normalize at a later
step.

For a desired value n, we use N > n and as-
sume that ĵN+1 = 0 and ĵN = 1 and then use
the recurrence relation in Eq. (13) to obtain the se-
quence ĵN−1, ĵN−2, . . . , ĵ1, ĵ0. If we have chosen N
large enough, the terms of this sequence up to n (i.e.
ĵn, ĵn−1, . . . , ĵ1, ĵ0) will be proportional to the cor-
responding term in the sequence jn, jn−1, . . . , j1, j0
of desired values. The proportionality factor p can
be obtained by comparing the value of ĵ0 with the
known value of j0. The terms of the sequence
pĵ0, pĵ1, . . . , pĵn−1, pĵn reproduce the required values
j0, j1, . . . , jn−1, jn. If the precision obtained is not suf-
ficient, you can repeat the process with a larger value
of N .

To obtain the second class Bessel functions, we sim-
ply use the initial values, y0(z) and y1(z), and apply
the ascending recurrence relation until desired n.

Below is an example of the application of Miller’s
algorithm. We have included the same numerical ex-
ample as illustrated in the work of Abramowitz and
Stegun so that the reader may complete the details in
the above work [14].

3.2. Miller’s algorithm example

Suppose we want to evaluate the value of j15(x) for
x = 24.6 using Miller’s algorithm. Let us start, for
example, at N = 39 and suppose

ĵ40 = 0, ĵ39 = 1. (15)

Using the recurrence

ĵN−1(z) =
2N + 1

z
ĵN (z)− ĵN+1(z),

N = 39, 38, 37, . . . , 1, (16)

we generate the sequence ĵ38, ĵ37, . . . , ĵ1, ĵ0.
If we evaluate

j0(24.6) =
sin(24.6)

24.6
= −0.02064620296, (17)



1303-4 Hernández et al.

we obtain the proportionality factor

p =
j0(24.6)
ĵ0(24.6)

= 0.000000383917642. (18)

The value pĵ0 coincides with the value of j0(24.6) with
8 correct significant figures [14].

Fortran can be used to evaluate Bessel functions us-
ing subroutines of the IMSL library. Numerical analysis
for these routines can be found in the work of Ratis and
Fernández de Córdoba [4]. These routines are based on
Miller’s algorithm.

3.3. Continued fractions algorithm

The method of continued fractions introduced in sec-
tion 2 can be used to directly evaluate the first class
Bessel functions without any normalization. By ap-
plying the ascending recurrence relation to the second
class Bessel functions, we generate the set {yn(z); n =
0, 1, 2, . . . , N}, for a desired value of the order n = N .
We then use the last two values, yN (z) and yN−1(z), a
continued fraction, and the Bessel function Wronskian
to solve for jN (z) and jN−1(z). We then apply the de-
scending recurrence relation to evaluate the first class
Bessel functions, {jn(z); n = 0, 1, 2, . . . , N}. This
method achieves the correct values without the need
for a normalization factor. Relying on normalization
relations to maintain stability hinders the performance

speed of Miller’s algorithm. By disposing of this neces-
sity, the CFA runs faster, while still preserving stability
by using the appropriate recurrence relations.

In Fig. 1 we present the flowcharts for Miller’s al-
gorithm and the CFA to illustrate each method.

We continue to use the usual notation of
Abramowitz and Stegun and formally introduce spher-
ical Bessel functions of the first and second class [14]

jn(z) =
√

π

2z
Jn+ 1

2
(z), (19)

yn(z) =
√

π

2z
Yn+ 1

2
(z), (20)

as solutions to the differential equation,

z2ω′′(z) + 2zω′(z) + [z2 − n(n + 1)]ω(z) = 0,

n = 0, ±1, ±2, . . . (21)

Jn(z) and Yn(z) are ordinary Bessel functions of integer
order.

With the CFA we can simultaneously calculate the
spherical Bessel functions of all orders less than or equal
to N , i.e. we generate the set

BE(z) ≡ {jn(z), yn(z); n = 0, 1, 2, 3, . . . , N}. (22)

c

Figura 1 - Continued Fractions and Miller’s algorithm flowcharts.



MATLAB GUI for computing Bessel functions using continued fractions algorithm 1303-5

We generate all spherical Bessel functions of the sec-
ond class, {yn(z), n = 0, 1, 2, . . . , N}, starting with
the known values of

y0(z) = −cos(z)
z

, y1(z) = − sin(z)
z

− cos(z)
z2

, (23)

by using the ascending recurrence relation in Eq. (14)
until the fixed value N .

To calculate the highest order of the first class spher-
ical Bessel functions, {jn(z),
n = 0, 1, 2, . . . , N}, we use the calculated values of
yN (z) and yN−1(z), and the value of the spherical
Bessel function Wronskian [14]

W{jN (z), yN (z)} ≡
jN (z)yN−1(z)− jN−1(z)yN (z) = z−2. (24)

We can rewrite Eq. () as

jN−1(z) =
1

z2

(
jN (z)

jN−1(z)
yN−1(z)− yN (z)

) . (25)

To evaluate the ratio jn/jn−1, we rearrange the re-
currence relation for jn(z) given in Eq. (13) to read

jn(z)
jn−1(z)

=
1

2(n + 1
2 )z−1 − jn+1(z)

jn(z)

, (26)

allowing us to construct the continued fraction

H(z) ≡ jN (z)
jN−1(z)

=

1

2(N + 1
2 )z−1 +

1

2(N + 3
2 )z−1 − 1

2(N + 5
2 )z−1 − . . .

.

(27)

Eq. (27) is easily evaluated using the Steed algo-
rithm for a fixed N and z. Using the resulting value,
we see that

jN (z) = H(z)jN−1(z). (28)

Equations (25) and (28) allow us to generate all spher-
ical Bessel functions of the first class, {jn(z), n =
0, 1, 2, . . . , N}, by considering the calculated values of
jN (z) and jN−1(z) and using the descending recurrence
relation,

jn−1(z) =
2n + 1

z
jn(z)− jn+1(z). (29)

The CFA maintains the stability of each function by
ensuring the use of the proper recurrence relations. Un-
like Miller’s algorithm, the CFA directly calculates the

first class Bessel functions, rather than using arbitrary
values and normalizing. Miller’s algorithm relies on the
normalization process, which requires more values than
needed in order to converge to a reasonable proportion-
ality factor. This necessity introduces not only another
source of error, but also longer calculation times. A
detailed numerical analysis can be found in the work of
Ratis and Fernández de Córdoba [4].

4. MATLAB GUI development

In Fig. 2 we have shown the MATLAB GUI developed
for this article. This GUI is divided in four parts. In
the left-most section there are several tools to control
the functions to plot, number of points, order and pre-
cision (Steed tolerance) of the CFA. The user can plot
the Bessel function of order n or the complete set of
functions from orders 0 to n. It is also possible to layer
the graphics using the hold on option, and change the
color of the new plots using the first menu of the sec-
ond column. The yn(z) functions are plotted using a
continuous line, while the jn(z) functions are shown by
a dashed line.

The MATLAB’s Bessel functions section compares
the computation times using CFA and MATLAB’s li-
braries, and checks the realtive error between CFA and
MATLAB codes. It is easy to check that, for n = 50
with 500 points in the range (100, 200) of z, CFA code
is much faster than MATLAB’s. See Fig. 3 for this ex-
ample. In a modern computer, the difference between
the computation times of the two methods can be up
to two orders of magnitude. In this figure it is possible
to see that the relative error distribution in the jn(z)′s
is higher than that of yn(z)′s.

The last group of the second column and the right-
most column are devoted to computing the roots of
the Bessel functions. The algorithm that we have im-
plemented is a combination of a brute force strategy
and a bisection method. First, we compute in the de-
sired interval (zmin, zmax) the Bessel functions with
(zmax − zmin) ∗ 10 points. Second, using this infor-
mation, we compute the zeros in the subintervals where
the functions change their sign, using a simple bisection
method. There also exists another implementation of
the code that computes the desired number of roots
starting at zmin. The firsts ten zeros found from each
function are displayed in the rightmost part of the fig-
ure. Beneath the graph, it is possible to save all the
data computed.

4.1. Example

A nice exercise is to compute the zeros of yn(z) and
check how they distribute in space. The same proce-
dure can be used to check the zeros of jn(z), but the
dotted plotting line makes higher order functions diffi-
cult to follow. One procedure to compare zeros is the
following:



1303-6 Hernández et al.

Figura 2 - GUI implementation.

Figura 3 - Relative error between CFA and MATLAB. The points with the largest error are close to the roots of the Bessel function
involved.

1. Plot yn(z) for n = 50, for example, in the interval
(1000, 1200) with 5000 points. It seems clear from
the plot that the difference between the zeros is
almost constant, see Fig. 4.

2. Compute the zeros of several cases, n =
50, 100, 200, 300, 500 for instance. Save the data
in file1, file2, file3...

3. Load the data and plot the mean of the difference
between the zeros in each case. The following
matlab script computes and plots the mean.

orders = [50,100,200,300,500];
meanZeros=zeros(5,1);
figure(2); clf; hold on
for i = 1:5

load([’file’,num2str(i)]);
meanZeros(i) = mean(diff(y0));
plot(1:length(y0)-1,diff(y0));

end
figure(3); clf; plot(orders,meanZeros,’o’);

It is easy to see in Fig. 5 that the zeros are more dis-
persed as we increase the order. However, the student
can increase the value of zmin to check that the larger
z is, the closer the difference between zeros is to π. This
is shown in Fig. 6, but one can also prove this statement
using asymptotic Bessel function expansions [14].

Of course, the code and GUI can be easily modified
in order to show many other interesting properties of
Bessel functions.



MATLAB GUI for computing Bessel functions using continued fractions algorithm 1303-7

Figura 4 - y50(z) for z ∈ (1000, 1200).

Figura 5 - Variation of the mean difference between zeros in terms of the order.

Figura 6 - Difference between zeros of the yn(z) when z is large. As z increases, the difference approaches π.

5. Conclusions

We have explained how both Miller’s algorithm and the
continued fractions algorithm can be used to compute

Bessel functions of high order in a manner conducive to
the understanding of the average physics or engineering
student. However, we focused on the benefits of using



1303-8 Hernández et al.

the method of continued fractions for such computa-
tions.

The continued fraction algorithm maintains the sta-
bility of each function by ensuring the use of the proper
recurrence relations. Unlike Miller’s algorithm, the con-
tinued fraction algorithm directly calculates the first
class Bessel functions, rather than using arbitrary val-
ues and normalizing. Miller’s algorithm relies on the
normalization process, which requires more values than
needed in order to converge to a reasonable proportion-
ality factor. This necessity introduces not only another
source of error, but also longer calculation times. A
detailed numerical analysis can be found in Ratis and
Fernández de Córdoba [4]. A MATLAB implementa-
tion of this algorithm, together with a GUI, can be
downloaded from http://www.intertech.upv.es.

Acknowledgments

The authors wish to thank the financial support re-
ceived from the Universidad Politécnica de Valencia
under grant PAID-06-09-2734, from the Ministerio de
Ciencia e Innovación through grant ENE2008-00599
and specially from the Generalitat Valenciana under
grant reference 3012/2009.

References

[1] B.G. Korenev, Bessel Functions and Their Applica-
tions: Analytical Methods and Special Functions, (CRC
Press, Boca Raton, FL, 2002)

[2] G.B Matthews and E. Meissel, A Treatise on Bessel
Functions and Their Applications to Physics, (Macmil-
lan and Co., 1895).

[3] J.C.P. Miller, Bessel Functions, Part II, Functions of
Positive Integer Order, Mathematical Tables, Vol. 10,
(Cambridge University Press, 1952).

[4] Yu. L. Ratis and P. Fernández de Córdoba, Comput.
Phys. Commun. 76, 381-388 (1993).

[5] E. Giladi, J. Comput. Appl. Math. 198, 52-74 (2007).

[6] S.Havemann and A.J. Baran, J. Quant. Spectrosc. Ra.
89, 87-96 (2004).

[7] J. Segura, P. Fernández de Córdoba, and Yu. L. Ratis,
Comput. Phys. Commun. 105, 263-272 (1997).

[8] J.L. Bastardo, S. Abraham Ibrahim, P. Fernández de
Córdoba, J.F. Urchueguia Schölzel, and Yu.L. Ratis,
Appl. Math. Lett. 18, 23-28 (2005).

[9] J.L. Coolidge, The Mathematics of Great Amateurs,
(Oxford Clarender, 1994).

[10] C.B. Boyer, A history of mathematics (John Wiley
Sons, 1968 ).

[11] H.S. Wall, Analytic Theory of Continued Fractions,
(Chelsea Publishing Company, Bronx, New York,
1967).

[12] J. Wallis, Opera Mathematica, (Oxonieae e Theatro
Shedoniano, 1695, Reprinted by Georg Olms Verlag,
Hildeshein, New York, 1972), vol. 1, p. 355.

[13] A.R. Barnett, D.H. Feng, J.W. Steed and L.J.B Gold-
farb, Comput. Phys. Commun. 8, 377-395 (1974).

[14] M. Abramowitz and I. Stegun, Handbook of mathemat-
ical functions, (Dover Publications, Inc., WA, 1972),
pp. 358, 437-453.

[15] W. H. Press, B.P. Flannery, S.A. Teukolsky and W.
T. Vetterling, Numerical Recipes. The Art of Scientific
Computing, (Cambridge University Press, 1986).

http://www.intertech.upv.es�

