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Variable phase equation in quantum scattering
(Equação da fase variável no espalhamento quântico)
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This paper presents the derivation and applications of the variable phase equation for single channel quan-
tum scattering. The approach was first presented in 1933 by Morse and Allis and is based on a modification
of the Schrödinger equation to a first order differential equation, appropriate to the scattering problem. The
dependence of phase shift on angular momentum and energy, together with Levinson’s theorem, is discussed.
Because the variable phase equation method is easy to program it can be further explored in an introductory
quantum mechanics course.
Keywords: phase equation, scattering matrix, phase shift.

Este artigo apresenta a dedução e aplicações da equação da fase variável para o caso de um canal no espal-
hamento quântico. Esta abordagem foi apresentada pela primeira vez em 1933 por Morse e Allis e baseia-se numa
modificação da equação Schrödinger para uma equação diferencial de primeira ordem, adequada para o problema
de espalhamento. A dependência do deslocamento de fase com o momento angular e a energia, juntamente com
o teorema de Levinson, é discutida. A equação resultante do método da fase variável é de fácil programação e
pode ser explorado em cursos introdutórios de mecânica quântica.
Palavras-chave: equação da fase, matriz de espalhamento, deslocamento de fase.

1. Introduction

The variable phase method was first introduced in 1933
by Morse and Allis [1] who established the basic equa-
tion for zero angular momentum scattering. In 1949,
Drukarev extended their results in the book ”The The-
ory of Electron-Atom Collision” [2]. In this book, the
method was established in a more general form for an-
gular momentum different from zero. A presentation
of this method is given by F. Calogero [3] in his 1967
book, although the simplicity of the method is not
fully explored. The present discussion will be based on
a single channel problem, but the method can be gen-
eralised to several channels [3, 4]. The variable phase
method has been used before in several applications,
such as in detection of bound and meta-stable states [5].

Due to its simplicity, the variable phase method rep-
resents an attractive tool, both for the theoretical and
numerical understanding of the scattering process. The
objective of the present work is to emphasise this sim-
plicity. The original Morse and Allis [1] derivation for
zero angular momentum can be adequately adapted for
any angular momentum, as will be discussed. There

will be no need to apply boundary conditions or to cal-
culate Bessel functions. This simplifies the approach
considerably, presenting a very efficient and straight-
forward approach to elastic scattering. Numerical ex-
amples will be considered for model potential energy
functions, together with the angular momentum and
energy dependence for the phase shift. A discussion of
the Levinson theorem will also be carried out.

2. Basic quantum scattering theory

In a central field collision process, one can seek a solu-
tion of the Schrödinger equation by expressing the total
wavefunction as partial waves,

ψ(R) =
∞∑
l=0

ul(R)
Pl(cos(θ))

R
(1)

in which Pl(cos(θ)) are the Legendre polynomials. If
the interaction between the particles is described by a
potential energy function Ep(R), it is appropriate to

define an effective potential, U = 8π2µ
h2 Ep(R) +

l(l+1)
R2 ,

with h the Planck’s constant, µ the system reduced
mass’s, R the scattering coordinate and l the angular
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momentum. Substitution of Eq. (1) into Schrödinger
equation then gives for ul(R),(

d2

dR2
+ k2 − l(l + 1)

R2
− 8π2µ

h2
Ep(R)

)
ul(R) = 0. (2)

For a given potential energy function one has to find the
solution ul(R). Because this potential energy function
goes to zero at large distances, the appropriate bound-
ary condition will be

ul(R) ∝ e−(kR− lπ
2 ) − Se+(kR− lπ

2 ) ∝ sin(kR− lπ

2
+ δl),

(3)
in which S is the scattering matrix, Sl = e2iδl , where
δl denotes the phase shift. The phase shift, or the scat-
tering matrix, gives complete information about the
collision process, including the differential and total
cross sections. The relation between the phase shift
and cross section can be found in quantum scattering
textbooks [6, 7].

The theoretical information about a collision pro-
cess is completely described by the scattering matrix or
phase shift. In a time independent formalism, this scat-
tering matrix is calculated in a three steps procedure,
involving the following: a) initial conditions for the
wavefunction; b) numerical solution of the Schrödinger
equation and c) boundary conditions with Bessel func-
tions at the end point. There are a variety of methods
to solve the Schrödinger equation, and a comparison
between two common algorithms, log-derivatives and
Numerov methods [8], is presented in the literature.
These numerical procedures are simplified by using an
important scattering matrix property: the matrix S
is a ratio of amplitudes, and the overall wavefunction
normalisation is irrelevant, a fact made clear in Eq.
(3). This is an important point to be explored in the
variable phase approach.

3. The variable phase equation

In the variable phase approach, the potential energy
function is divided into two regions as

U(R) =

{
Uρ(R) 0 ≤ R ≤ ρ,
0 R > ρ.

(4)

In an analogous way, the solution is considered in these
two regions as ϕ(R) for 0 ≤ R ≤ ρ and ϕρ(R) for R ≥ ρ.
This method seeks the solution ϕ(R), because the solu-
tion for R ≥ ρ corresponds to a free particle wavefunc-
tion conveniently written as

ϕρ(R) = α(ρ) sin(kR+ δ(ρ)). (5)

The amplitude and phase for this free particle solution
will carry information about the inner region and, as a
consequence, must depend on ρ.

From Schrödinger equation one obtains for the log-

derivative wavefunction, Yρ(R) =
1

ϕρ(R)
dϕρ(R)

dR ,

dYρ(R)

dR
+ k2 − Uρ(R) + Y 2

ρ (R) = 0. (6)

Using Eq. (5) one can develop

−k2 − k dδ
dR

sin2(kR+ δ(ρ))
+k2−Uρ(R)+k

2 cos
2(kR+ δ(ρ))

sin2(kR+ δ(ρ))
= 0,

(7)
or (using cos2 x = 1− sin2 x),

dδ(ρ)

dR
= −Uρ(R)

k
sin2(kR+ δ(ρ)), (8)

which is the variable phase equation for the one-
dimensional case. This is essentially the Morse and
Allis deduction but is developed here for the effective
potential considering angular momentum different from
zero. This extremely simple proof will be enough to
understand the basic concepts in elastic atomic colli-
sion.

Equation (8) requires an initial condition to be prop-
agated. To avoid numerical instability, it is convenient
to start integration at a point, R0, close to the ori-
gin. Assuming the wavefunction to be zero at this
point and for zero angular momentum, one must satisfy
u0(R0) = 0. From Eq. (3), it is clear that δ = −kR0,
which can be used as an initial condition. Changing
the angular momentum to larger values will shift the
potential energy function to the right, making this ini-
tial condition appropriate for any angular momentum.
The initial condition is then

δ(R0) = −kR0. (9)

The phase shift calculated from Eq. (8) will also
carry information about the centrifugal term. To clar-
ify this point, consider the solution of Eq. (2) for
a very large scattering coordinate, in a region with
Ep(R) = 0. In this case, solutions will be given by
the Riccati-Bessel function, with asymptotic behaviour
of sin(kR − lπ

2 ) and cos(kR − lπ
2 ). Consequently, so-

lutions of the Schrödinger equation for zero potential
energy will carry a phase of − lπ

2 due to the centrifu-
gal contribution. Therefore, the phase for the potential

U = 8π2µ
h2 Ep(R) can be calculated from the phase shift

for the potential U = 8π2µ
h2 Ep(R)+

l(l+1)
R2 by subtracting

the centrifugal term contribution, − lπ
2 . The required

phase shift will be

δ = lim
R→∞

δ(R) +
lπ

2
. (10)

Consequently, usage of the variable phase equation can
be summarised by three equations,

dδ
dR = −U(R)

k sin2(kR+ δ),
δ(R0) = −kR0,
δ = limR→∞ δ(R) + lπ

2 .
(11)
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Implementation of this approach can be performed in
any computer language, for it will involve the numerical
propagation of a first order differential equation.

4. Model potential

A Morse potential energy function [9],

Ep(R) = De(1− e−α(R−Re))2 −De (12)

with De =1136 Å−2, α = 2.4 Å−1 and Re =0.74 Å [10],
which are approximate values for hydrogen-hydrogen
interaction, will be used to illustrate the method. Units

for energy are in Å−2 as, for example, in the l(l+1)
R2 term.

These units are obtained by first calculating energy in
atomic units and then converting to Å−2.

This prototype potential energy function is meant to
be a model potential and does not precisely describe the
H2 molecule. In fact, any model potential can be used,
as long as results are compared with a more precise
calculation. This will be done here by comparing scat-
tering matrix values calculated by the variable phase
approach with those calculated by the Renormalized
Numerov method [8, 11].

5. Results and discussion

Propagation of the variable phase equation for
k2 = 25 Å−2 and several values of angular momentum
will be discussed. The initial condition was taken at
R0 = 10−3 Å, but the final integration coordinate has to
be tested against convergence. For example, for l = 0,
the maximum scattering coordinate was Rmax = 10 Å.
For angular momentum different from zero, integration
has to be carried out to large scattering coordinates,
because one must approximately cancel the centrifugal
contribution. The maximum integration point will de-
pend on the angular momentum and can be estimated

by imposing the condition ε = l(l+1)
R2 , in which ε is a

small number. For a typical value of ε = 10−4 and
l = 30, one obtains the maximum integration point
at 3000 Å, which is the consequence if Bessel function
boundary conditions are not considered.

Numerical integration was performed using a
Runge-Kutta fifth and sixth order method with variable
step size, as in Forsythe and Moler [12]. This variable
step size is very important because for low collision en-
ergy, the phase shift will have a step function behaviour.
Additionally, for large scattering coordinates, consider-
able computer time can be saved by using larger step
sizes.

The reliability of the present approach can be in-
ferred by comparing phase shifts with another more pre-
cise scheme. The scattering matrices calculated from
the variable phase method and the very precise Renor-
malized Numerov method are presented in Table 1. The
real and imaginary parts of the scattering matrix are

given by S = ei2δ = cos(2δ) + i sin(2δ). The results in-
dicate that the variable phase method gives essentially
exact answers and can be further explored.

Table 1 - Scattering matrix comparison.

l Scalculated Sexact

0 -0.2521-i0.9677 -0.2521-i0.9677
1 -0.5164-i0.8563 0.5164+i0.8563
2 -0.9452-i0.3266 -0.9452-i0.3265
4 0.3851+i0.9229 0.3852+i0.9228

Phase shift convergence against the scattering coor-
dinate is shown in Fig. 1. If the potential is positive,
the phase shift will be negative. From Eq. (8) one
may infer the sign of the phase shift, because it is pro-
portional to −Ep(R). If an approximation is used for
the phase shift derivative, one can write that for Eq.

(8), δ(R + h) ≈ δ(R)− U(R)
k sin2(kR + δ). Then, for a

positive potential energy function, the phase shift, to-
gether with the initial condition, will give negative val-
ues. However, if the potential changes sign, the phase
shift will also carry this information, as exemplified in
Fig. 1. The potential energy function changes sign at
R = 0.46 Å, exactly at the point at which the phase
shift changes its behaviour. The constant phase shift
value for large R, shown in Fig. 1, is also evident from
Eq. (8). In this region, the potential energy function
will go to negligible values and, consequently, dδ

dR ≈ 0.

Figure 1 - Phase shift (full line) and potential energy function in
atomic units (dashed line) plotted scattering coordinates. The
parameters used in the phase shift calculations were l = 0 and
k2 = 25 Å−2.

As the angular momentum is increased, the cen-
trifugal term will become more important, making the
potential energy function negligible. Hence, the total
potential for large angular momentum will be approx-
imately given by the centrifugal contribution. In this
case, phase shift must go to zero, because the reference
potential in the present formulation is the centrifugal
potential. In fact, that is the reason for subtracting the
phase − lπ

2 from the computed phase shift. At approx-
imately l = 30, the phase shift goes to zero, and no
more scattering processes can take place, as shown in



1310-4 Viterbo et al.

Fig. 2. This maximum angular momentum can be esti-
mated from a classical analysis. The maximum impact
parameter, b, above which there will be no scattering,
can be estimated to be equal to the potential range,
Rmax. Because total angular momentum is given by
L = bk, one has lmax ≈ Rmaxk. Considering the po-
tential range to be 6 Å one has lmax ≈ 6 ×

√
25 = 30,

as confirmed numerically. Additionally, this maximum
angular momentum estimation is important to calcu-
late cross section because it will involve a summation
on phase shifts for different angular momenta.

Oscillations in Fig. 2 can also be explored to clar-
ify the connection between classical and quantum scat-
tering. In a semiclassical context, the derivative of
the phase shift is proportional to the scattering angle.
For this reason, the maximum in Fig. 2 corresponds
to a concentration of trajectories, and consequently,
greater intensity in the differential cross section, an ef-
fect known as the rainbow effect in atomic and molec-
ular collision [13].
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Figure 2 - Phase shift convergence for several angular momenta
and k2 = 25 Å−2.

Levinson’s theorem [6] states that at the limit of
zero collision energy the phase shift is a multiple of π,

lim
k→0

δ = nbπ, (13)

in which nb is the number of bound states that the
molecule can support. If there are bound states with
zero energy and angular momentum different from zero,
then Eq. (13) has to be modified to limk→0 δ =
(nb+

1
2 )π [5,6]. As confirmed numerically, these bound

states with zero energy were not detected here. Equa-
tion (13) is thus used in the present study.

Levinson’s theorem is a powerful and elegant the-
orem that makes a connection between the continuum
and the discrete states of system. The variable phase
equation is appropriate to investigate this theorem nu-
merically. Because the energy will be small, only zero

angular momentum has to be considered. Numerical
integration will provide information on the number of
bound states, and because transitions in infrared spec-
tra are due to vibrational mode excitation, one can infer
consequences, such as the number of lines, about the in-
frared spectrum [10]. The results are shown in Table 2.
There is a clear tendency to show that the prototype
molecule can accommodate 14 bound states. In fact, at
the limit for k2 = 10−4 Å2, it was found that δ

π = 13.98,
confirming this tendency. Thus, the prototype poten-
tial represents a molecule with 14 bound states. This
procedure is the same as the procedure adopted for a
realist potential energy function and was used to detect
bound and meta-stable states of rare gas hydrides [5].

Table 2 - Numerical solution of Levinson’s theorem.

k2 δ
π

25 9.7
2.5 12.34
0.25 13.42

Further theoretical and computational aspects of
the method can be explored. For example, the first
Born approximation [6] is a special case of the variable
phase method. For small phase shift values, such that
sin2(kR + δ) ≈ sin2(kR) is a valid approximation, the
phase differential equation reduces to

dδ

dR
≈ −U(R)

k
sin2(kR) (14)

which is the first Born approximation in differential
form. Integration of this differential equation gives
the usual presentation for this approximation, δ ≈
−
∫∞
0

U(R)
k sin2(kR).Thus, usage of the variable phase

approach can provide a simple and convincing proof of
the first Born approximation.

6. Conclusion

In contrast with numerical methods to calculate elastic
scattering that require knowledge of Bessel functions,
a simple approach based on the variable phase method
was discussed. The algorithm discussed is very sim-
ple to implement and allows several important conse-
quences to be explored. Calculation of the scattering
matrices were conducted and compared with results
obtained using the Renormalized Numerov method.
Phase shift behaviour as a function of energy and angu-
lar momentum was discussed, together with numerical
examples of Levinson’s theorem.

The variable phase method as presented here can be
explored further to calculate other quantum properties.
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