Acessibilidade / Reportar erro

Aedes aegypti queenslandensis: first geographic occurrence in Brazil and epidemiological implications

ABSTRACT

Aedes aegypti is the mosquito that has been most successful in adapting to the anthropic environment and transmitting several viruses to humans as well. The species has three subspecies that can identified by the variations in the color of the abdominal scales. Each subspecies possesses a distinct scale color pattern. Herein, it is described the first register of Ae. aegypti queenslandensis in São Paulo State, Brazil. Both the scale color pattern, and factor involved in the emergence of the local population are discussed, as well as possible epidemiological implications.

Keywords:
Arboviruses; Culicidae; Scale Color Variations; Population Genetics; Scale Pattern

Aedes (Stegomyia) aegypti (Linnaeus, 1762) is the main hematophagous arthropod vector of several arboviruses in urban areas (Kraemer et al., 2015Kraemer, M.U.G., Sinka, M.E., Duda, K.A., Mylne, A., Shearer, F.M., Barker, C.M., Moore, C.G., Carvalho, R.G., Coelho, G.E., van Bortel, W., Hendrickx, G., Schaffner, F., Elyazar, I.R.F., Teng, H.-J., Brady, O.J., Messina, J.P., Pigott, D.M., Scott, T.W., Smith, D.L., William Wint, G.R., Golding, N., Hay, S.I., 2015. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 4, e08347. https://doi.org/10.7554/eLife.08347.
https://doi.org/10.7554/eLife.08347...
; Kraemer et al., 2019Kraemer, M.U.G., Reiner Jr, R.C., Brady, O.J., Messina, J.P., Gilbert, M., Pigott, D.M., Yi, D., Johnson, K., Earl, L., Marczak, L.B., Shirude, S., Davis Weaver, N., Bisanzio, D., Perkins, T.A., Lai, S., Lu, X., Jones, P., Coelho, G.E., Carvalho, R.G., van Bortel, W., Marsboom, C., Hendrickx, G., Schaffner, F., Moore, C.G., Nax, H.H., Bengtsson, L., Wetter, E., Tatem, A.J., Brownstein, J.S., Smith, D.L., Lambrechts, L., Cauchemez, S., Linard, C., Faria, N.R., Pybus, O.G., Scott, T.W., Liu, Q., Yu, H., Wint, G.R.W., Hay, S.I., Golding, N., 2019. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 4 (5), 854–863. https://doi.org/10.1038/s41564-019-0376-y.
https://doi.org/ https://doi.org/10.1038...
). It has an extensive record of synonyms, many of which are related to its color variation and are often linked with the species behavior (Hill, 1921Hill, G.F., 1921. Notes on some unusual breeding-places of Stegomyia fasciata, Fabr., in Australia. Ann. Trop. Med. Parasitol. 15 (1), 91–92. https://doi.org/10.1080/00034983.1921.11684253.
https://doi.org/10.1080/00034983.1921.11...
; Mattingly, 1957Mattingly, P.F., 1957. Genetical aspects of the Aedes aegypti Problem I.-Taxonomy and bionomics. Ann. Trop. Med. Parasitol. 51 (4), 392–408. https://doi.org/10.1080/00034983.1957.11685829.
https://doi.org/10.1080/00034983.1957.11...
; McClelland, 1974McClelland, G.A.H., 1974. A worldwide survey of variation in scale pattern of the abdominal tergum of Aedes aegypti (L.) (Diptera: Culicidae). Trans. R. ent. Soc. Land 126 (2), 239–259. https://doi.org/10.1080/00034983.1957.11685829.
https://doi.org/10.1080/00034983.1957.11...
; Raŝić et al., 2016Raŝić, G., Filipovic, I., Callahan, A.G., Stanford, D., Chan, A., Lam-Phua, S.G., Tan, C.H., Hoffman, A.A., 2016. The queenslandensis and the type form of the dengue fever mosquito (Aedes aegypti L.) are genomically indistinguishable. PLoS Negl. Trop. Dis. 10 (11), e0005096. https://doi.org/10.1371/journal.pntd.0005096.
https://doi.org/10.1371/journal.pntd.000...
). Currently, it is well known that the species exhibit scale colors variations that are associated with three distinct subspecies (Mattingly, 1957Mattingly, P.F., 1957. Genetical aspects of the Aedes aegypti Problem I.-Taxonomy and bionomics. Ann. Trop. Med. Parasitol. 51 (4), 392–408. https://doi.org/10.1080/00034983.1957.11685829.
https://doi.org/10.1080/00034983.1957.11...
; McClelland, 1974McClelland, G.A.H., 1974. A worldwide survey of variation in scale pattern of the abdominal tergum of Aedes aegypti (L.) (Diptera: Culicidae). Trans. R. ent. Soc. Land 126 (2), 239–259. https://doi.org/10.1080/00034983.1957.11685829.
https://doi.org/10.1080/00034983.1957.11...
; Mori et al., 2016Mori, A., Tsuda, Y., Takagi, M., Higa, Y., Severson, D.W., 2016. Multiple QTL determine dorsal abdominal scale patterns in the mosquito Aedes aegypti. J. Hered. 107 (5), 438–444. https://doi.org/10.1093/jhered/esw027.
https://doi.org/10.1093/jhered/esw027...
). Aedes (Stegomyia) aegypti formosus (Walker, 1848) represents the original genetic pool, is sylvatic and has a blackish color speckled with white scales (Soghigian et al. 2020Soghigian, J., Gloria-Soria, A., Robert, V., Le Goff, G., Failloux, A.B., Powell, J.R., 2020. Genetic evidence for the origin of Aedes aegypti, the yellow fever mosquito, in the southwestern Indian Ocean. Mol. Ecol. 29, 3593–3606. https://doi.org/10.1111/mec.15590.
https://doi.org/10.1111/mec.15590...
).

Aedes aegypti aegypti (type locality: Kuala Lumpur, Selangor, Malaysia), considered a type form, originated in Africa, whose domestication process began with the exploration of the African continent by Europeans in the 15th century. Its distribution around the world has made it one of the main vectors of arboviruses such as dengue, chikungunya, Zika and urban yellow fever. It currently forms the Aegypti Group along with Ae. mascarensis (MacGregor, 1848) and Ae. pia (Le Goff & Robert, 2013). It is characterized by having a pale or brownish coloration, with few whitish scales in the first tergite, and a line of pale scales in the first abdominal tergite (Forattini, 2002Forattini, O.P., 2002. Culicidologia Médica. Editora da Universidade de São Paulo, São Paulo, Brasil, v2.; Huang, 2004Huang, Y.M., 2004. The subgenus Stegomyia of Aedes in the Afrotropical Region with keys to the species (Diptera:Culicidae). Zootaxa 700, 1–120. https://doi.org/10.11646/zootaxa.700.1.1.
https://doi.org/10.11646/zootaxa.700.1.1...
; Le Goff et al, 2013Le Goff, G., Brengues, C., Robert, V., 2013. Stegomyia mosquitoes in Mayotte, taxonomic study and description of Stegomyia pia n. sp. Parasite 20, 31. https://doi.org/10.1051/parasite/2013030.
https://doi.org/10.1051/parasite/2013030...
; Powell & Tabachnick, 2013Powell, J.R., Tabachnick, W.J., 2013. History of domestication and spread of Aedes aegypti - A Review. Mem. Inst. Oswaldo Cruz 108 (1), 11–17. https://doi.org/10.1590/0074-0276130395.
https://doi.org/10.1590/0074-0276130395...
; Kraemer et al., 2015Kraemer, M.U.G., Sinka, M.E., Duda, K.A., Mylne, A., Shearer, F.M., Barker, C.M., Moore, C.G., Carvalho, R.G., Coelho, G.E., van Bortel, W., Hendrickx, G., Schaffner, F., Elyazar, I.R.F., Teng, H.-J., Brady, O.J., Messina, J.P., Pigott, D.M., Scott, T.W., Smith, D.L., William Wint, G.R., Golding, N., Hay, S.I., 2015. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 4, e08347. https://doi.org/10.7554/eLife.08347.
https://doi.org/10.7554/eLife.08347...
; Mori et al., 2016Mori, A., Tsuda, Y., Takagi, M., Higa, Y., Severson, D.W., 2016. Multiple QTL determine dorsal abdominal scale patterns in the mosquito Aedes aegypti. J. Hered. 107 (5), 438–444. https://doi.org/10.1093/jhered/esw027.
https://doi.org/10.1093/jhered/esw027...
; Raŝić et al., 2016Raŝić, G., Filipovic, I., Callahan, A.G., Stanford, D., Chan, A., Lam-Phua, S.G., Tan, C.H., Hoffman, A.A., 2016. The queenslandensis and the type form of the dengue fever mosquito (Aedes aegypti L.) are genomically indistinguishable. PLoS Negl. Trop. Dis. 10 (11), e0005096. https://doi.org/10.1371/journal.pntd.0005096.
https://doi.org/10.1371/journal.pntd.000...
; Soghigian et al. 2020Soghigian, J., Gloria-Soria, A., Robert, V., Le Goff, G., Failloux, A.B., Powell, J.R., 2020. Genetic evidence for the origin of Aedes aegypti, the yellow fever mosquito, in the southwestern Indian Ocean. Mol. Ecol. 29, 3593–3606. https://doi.org/10.1111/mec.15590.
https://doi.org/10.1111/mec.15590...
; WRBU, 2021Walter Reed Biosystematics Unit, 2021. Aedes aegypti species page. Walter Reed Biosystematics Unit, Available in: http://wrbu.si.edu/vectorspecies/mosquitoes/aegypti (accessed 22 December 2021).
http://wrbu.si.edu/vectorspecies/mosquit...
).

Aedes aegypti formosus is the sylvatic subspecies found across the African continent; it was originally described in Sierra Leone but has been reported in forested regions in eastern and southern sub-Saharan Africa. Abdominal scales are dark-brown to black, covering the tergites (Forattini, 2002Forattini, O.P., 2002. Culicidologia Médica. Editora da Universidade de São Paulo, São Paulo, Brasil, v2.; Huang, 2004Huang, Y.M., 2004. The subgenus Stegomyia of Aedes in the Afrotropical Region with keys to the species (Diptera:Culicidae). Zootaxa 700, 1–120. https://doi.org/10.11646/zootaxa.700.1.1.
https://doi.org/10.11646/zootaxa.700.1.1...
; Mori et al., 2016Mori, A., Tsuda, Y., Takagi, M., Higa, Y., Severson, D.W., 2016. Multiple QTL determine dorsal abdominal scale patterns in the mosquito Aedes aegypti. J. Hered. 107 (5), 438–444. https://doi.org/10.1093/jhered/esw027.
https://doi.org/10.1093/jhered/esw027...
; Raŝić et al., 2016Raŝić, G., Filipovic, I., Callahan, A.G., Stanford, D., Chan, A., Lam-Phua, S.G., Tan, C.H., Hoffman, A.A., 2016. The queenslandensis and the type form of the dengue fever mosquito (Aedes aegypti L.) are genomically indistinguishable. PLoS Negl. Trop. Dis. 10 (11), e0005096. https://doi.org/10.1371/journal.pntd.0005096.
https://doi.org/10.1371/journal.pntd.000...
; WRBU, 2021Walter Reed Biosystematics Unit, 2021. Aedes aegypti species page. Walter Reed Biosystematics Unit, Available in: http://wrbu.si.edu/vectorspecies/mosquitoes/aegypti (accessed 22 December 2021).
http://wrbu.si.edu/vectorspecies/mosquit...
).

Aedes aegypti queenslandensis (Theobald, 1901) is a variety originally described in Burpengary, Queensland, Australia (type locality), but can be found in Asia, Oceania, Europe and North Africa, Mediterranean region. It has whitish scales covering the abdominal tergites and variation in the color of the scutal scales, which can vary from brown to whitish (Mattingly, 1957Mattingly, P.F., 1957. Genetical aspects of the Aedes aegypti Problem I.-Taxonomy and bionomics. Ann. Trop. Med. Parasitol. 51 (4), 392–408. https://doi.org/10.1080/00034983.1957.11685829.
https://doi.org/10.1080/00034983.1957.11...
; McClelland, 1960McClelland, G.A.H., 1960. A preliminary study of the genetics of abdominal colour variations in Aedes aegypti (L.) (Diptera, Culicidae). Ann. Trop. Med. Parasitol. 54 (3), 305–320. https://doi.org/10.1080/00034983.1960.11685991.
https://doi.org/10.1080/00034983.1960.11...
; McClelland, 1974McClelland, G.A.H., 1974. A worldwide survey of variation in scale pattern of the abdominal tergum of Aedes aegypti (L.) (Diptera: Culicidae). Trans. R. ent. Soc. Land 126 (2), 239–259. https://doi.org/10.1080/00034983.1957.11685829.
https://doi.org/10.1080/00034983.1957.11...
; Forattini, 2002Forattini, O.P., 2002. Culicidologia Médica. Editora da Universidade de São Paulo, São Paulo, Brasil, v2.; Mori et al., 2016Mori, A., Tsuda, Y., Takagi, M., Higa, Y., Severson, D.W., 2016. Multiple QTL determine dorsal abdominal scale patterns in the mosquito Aedes aegypti. J. Hered. 107 (5), 438–444. https://doi.org/10.1093/jhered/esw027.
https://doi.org/10.1093/jhered/esw027...
; Raŝić et al., 2016Raŝić, G., Filipovic, I., Callahan, A.G., Stanford, D., Chan, A., Lam-Phua, S.G., Tan, C.H., Hoffman, A.A., 2016. The queenslandensis and the type form of the dengue fever mosquito (Aedes aegypti L.) are genomically indistinguishable. PLoS Negl. Trop. Dis. 10 (11), e0005096. https://doi.org/10.1371/journal.pntd.0005096.
https://doi.org/10.1371/journal.pntd.000...
; Trari et al. 2017Trari, B., Dakki, M., Harbach, R.E., 2017. An updated checklist of the Culicidae (Diptera) of Morocco, with notes on species of historical and current medical importance. J. Vector Ecol. 42 (1), 94–104. https://doi.org/10.1111/jvec.12243.
https://doi.org/10.1111/jvec.12243...
; WRBU, 2021Walter Reed Biosystematics Unit, 2021. Aedes aegypti species page. Walter Reed Biosystematics Unit, Available in: http://wrbu.si.edu/vectorspecies/mosquitoes/aegypti (accessed 22 December 2021).
http://wrbu.si.edu/vectorspecies/mosquit...
).

Aedes a. aegypti occurs throughout the Pantropical Region and, in the American continent, it is the species with the largest geographical distribution (Brown et al., 2011Brown, J. E., McBride, C.S., Johnson, P., Ritchie, S., Paupy, C., Bossin, H., Lutomiah, J., Fernandez-Salas, I., Ponlawat, A., Cornel, A.J., Black, W.C., Gorrochotegui-Escalante, N., Urdaneta-Marquez, L., Sylla, M., Slotman, M., Murray, K.O., Walker, C., Powell, J.R., 2011. Worldwide patterns of genetic differentiation imply multiple ‘domestications’ of Aedes aegypti, a major vector of human diseases. Proc. Biol. Sci. 278, 2446–2454. https://doi.org/10.1098/rspb.2010.2469.
https://doi.org/10.1098/rspb.2010.2469...
; Brown et al., 2013Brown, J.E., Evans, B.R., Zheng, W., Obas, V., Barrera-Martinez, L., Egizi, A., Zhao, H., Caccone, A., Powell, J.R., 2013. Human impacts have shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever mosquito. Evolution. 68, 514–525. https://doi.org/10.1111/evo.12281.
https://doi.org/10.1111/evo.12281...
; Kraemer et al., 2015Kraemer, M.U.G., Sinka, M.E., Duda, K.A., Mylne, A., Shearer, F.M., Barker, C.M., Moore, C.G., Carvalho, R.G., Coelho, G.E., van Bortel, W., Hendrickx, G., Schaffner, F., Elyazar, I.R.F., Teng, H.-J., Brady, O.J., Messina, J.P., Pigott, D.M., Scott, T.W., Smith, D.L., William Wint, G.R., Golding, N., Hay, S.I., 2015. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 4, e08347. https://doi.org/10.7554/eLife.08347.
https://doi.org/10.7554/eLife.08347...
). In Brazil, the subspecies was introduced in the period of European colonization, being eliminated in the 1950s, but reintroduced in the 1960s (Fraiha 1968Fraiha, H., 1968. Reinfestação do Brasil pelo Aedes aegypti. Considerações sobre o risco de urbanização do vírus da febre amarela silvestre na região reinfestada. Rev. Inst. Med. Trop. São Paulo 10, 289–294.; Teixeira et al., 1999Teixeira, M.G., Barreto, M.L., Guerra, Z., 1999. Epidemiologia e Medidas de Prevenção do Dengue. Inf. Epidemiologico SUS. 8, 5–33.). After three decades, its presence could already be detected in all Brazilian states (Souza-Santos & Carvalho, 2000Souza-Santos, R., Carvalho, M.S., 2000. Análise da distribuição espacial de larvas de Aedes aegypti na Ilha do Governador, Rio de Janeiro, Brazil. Cad. Saude Publica 16, 31–42.). This species has the vectorial capacity to transmit, in addition to dengue viruses, the urban yellow fever virus and chikungunya. Since the arrival of this species in the 16th century, many dengue outbreaks have been recorded in Brazil of endemo-epidemic patterns occurring every three to five years (Dick et al., 2012Dick, O.B., San Martín, J.L., Montoya, R.H., del Diego, J., Zambrano, B., Dayan, G.H., 2012. The History of Dengue Outbreaks in the Americas. Am. J. Trop. Med. Hyg. 87 (4), 584–593. https://doi.org/10.4269/ajtmh.2012.11-0770.
https://doi.org/10.4269/ajtmh.2012.11-07...
; Zayed et al., 2012Zayed, A., Awash, A.A., Esmail, M.A., Al-Mohamadi, H.A., Al-Salwai, M., Al-Jasari, A., Medhat, I., Morales-Betoulle, M.E., Mnzava, A., 2012. Detection of Chikungunya virus in Aedes aegypti during 2011 outbreak in Al Hodayda, Yemen. Acta Trop. 123 (1), 62–66. https://doi.org/10.1016/j.actatropica.2012.03.004.
https://doi.org/10.1016/j.actatropica.20...
; Kotsakiozi et al., 2017Kotsakiozi, P., Gloria-Soria, A., Caccone, A., Evans, B., Schama, R., Martins, A.J., Powell, J.R., 2017. Tracking the return of Aedes aegypti to Brazil, the major vector of the dengue, chikungunya and Zika viruses. PLoS Negl. Trop. Dis. 11 (7), e0005653. https://doi.org/10.1371/journal.pntd.0005653.
https://doi.org/10.1371/journal.pntd.000...
). The state of São Paulo became infested in the early 1980s, due to the influence of neighboring states, with the spreading of the species from the west to the east (Glasser & Gomes 2000Glasser, C.M., Gomes, A.C., 2000. Infestation of S. Paulo State, Brazil, by Aedes aegypti and Aedes albopictus. Rev. Saude Publica 34 (6), 570–577.). In 2015, the presence of the domestic Ae. a. aegypti reached 99.69% of the Brazilian municipalities (Fonseca Júnior et al., 2019Fonseca Júnior, D.P., Serpa, L.L.N., Barbosa, G.L., Pereira, M., Holcmam, M.M., Voltolini, J.C., Marques, G.R.A.M., 2019. Vetores de arboviroses no estado de São Paulo: 30 anos de Aedes aegypti e Aedes albopictus. Rev. Saude Publica 53, 84. https://doi.org/10.11606/s1518-8787.2019053001264.
https://doi.org/10.11606/s1518-8787.2019...
).

Because of our finding of specimens of Ae. a. queenslandensis in a field work for scientific investigations activity carried out by the Superintendence for the Control of Endemic Diseases (SUCEN), this study aimed to report the presence Ae. a. queenslandensis in a Brazilian municipality.

Adults were collected in traps installed in residential properties along the urban perimeter of the city of Taubaté, São Paulo state, using the Adultrap® trap, from July to December 2020, and from January to February 2021. Inspections of the traps were performed twice a week and males and females captured were euthanized with ethyl acetate and stored in entomological boxes, for subsequent identification and photographic records using a Zeiss Stemi 2000-C microscope linked to an Opton 7100 camera and the TCapture software (Tucsen Photonics©). From the specimens of Ae. a. queenslandensis identified, three males (E-15942, E-15943, E-15944) and three females (E-15945, E-15946, E-15947) were deposited in the Entomological Reference Collection, Faculty of Public Health, University of São Paulo, São Paulo, Brazil and the others in the Culicidae Biology and Ecology Laboratory, SUCEN.

Overall, 62 specimens of Aedes a. queenslandensis were collected, 57 females and 5 males, categorized into 6 scale color patterns of abdominal tergites (Figure 1). These specimens can be identified by the following characteristics: (A) abdominal tergites I, II and III covered with white scales; (B) abdominal tergites I, II and III with longitudinal line of white scales; (C) abdominal tergite IV-VII with speckled patches of white scales; (D) white scale abdominal tergites, with spots of dark scale laterally; (E) white scaled abdominal tergites with; white and black scales covering the lateral areas; (F) completely white scaled tergites and sternites. The patterns described herein correspond to categories 07, 09, 11, 13, 14 and 15 of the classification of McClelland (1974)McClelland, G.A.H., 1974. A worldwide survey of variation in scale pattern of the abdominal tergum of Aedes aegypti (L.) (Diptera: Culicidae). Trans. R. ent. Soc. Land 126 (2), 239–259. https://doi.org/10.1080/00034983.1957.11685829.
https://doi.org/10.1080/00034983.1957.11...
.

Figure 1
Comparative chart of the scale patterns of the abdomen of Aedes aegypti queenslandensis found in the municipality of Taubaté correlated with the patterns described by McClelland (1974)McClelland, G.A.H., 1974. A worldwide survey of variation in scale pattern of the abdominal tergum of Aedes aegypti (L.) (Diptera: Culicidae). Trans. R. ent. Soc. Land 126 (2), 239–259. https://doi.org/10.1080/00034983.1957.11685829.
https://doi.org/10.1080/00034983.1957.11...
.

Aedes a. queenslandensis and the specimens with the scale color variation described in this study have other morphological similarities (Figure 2), such as: (A) clypeus with silver scales; (B) female maxillary palps, with sparse pale scales; (C) thorax with black and pale scales; (D) scutum with silver scales disposed in lines forming a characteristic “lyre” design.

Figure 2
Comparative table between females of Aedes aegypti aegypti and Ae. aegypti queenslandensis.

Currently, it is known that Ae. a. aegypti belongs to a monophyletic group with origins in Madagascar, from where it dispersed to the African continent in the last ice age, when the species separated into two distinct populations, with the emergence of lineages of Ae. a. formosus and the domestic form, Ae. a. aegypti (Fort et al., 2012Fort, P., Albertini, A., Van-Hua, A., Berthomieu, A., Roche, S., Delsuc, F., Pasteur, N., Capy, P., Gaudin, Y., Weill, M., 2012. Fossil rhabdoviral sequences integrated into arthropod genomes: ontogeny, evolution, and potential functionality. Mol. Biol. Evol. 29 (1), 381–390. https://doi.org/10.1093/molbev/msr226.
https://doi.org/10.1093/molbev/msr226...
; Soghigian et al. 2020Soghigian, J., Gloria-Soria, A., Robert, V., Le Goff, G., Failloux, A.B., Powell, J.R., 2020. Genetic evidence for the origin of Aedes aegypti, the yellow fever mosquito, in the southwestern Indian Ocean. Mol. Ecol. 29, 3593–3606. https://doi.org/10.1111/mec.15590.
https://doi.org/10.1111/mec.15590...
). The emergence of Ae. a. queenslandensis is attributed to the domestication process of Ae. a. aegypti, a variation that, despite being genetically indistinguishable from the domestic form, differs in the abdominal scale color patterns. The abdomen of Ae. a. queenslandensis is covered with whitish scales more than that of Ae. a. aegypti, and its trophic habits are always associated with human populations (Mattingly, 1957Mattingly, P.F., 1957. Genetical aspects of the Aedes aegypti Problem I.-Taxonomy and bionomics. Ann. Trop. Med. Parasitol. 51 (4), 392–408. https://doi.org/10.1080/00034983.1957.11685829.
https://doi.org/10.1080/00034983.1957.11...
; Huang, 1979Huang, Y.M., 1979. Medical Entomology Studies - XI. The Subgenus Stegomyia of Aedes in the Oriental Region with Keys to the Species (Diptera: Culicidae). Contrib. Amer. Ent. Inst. 15 (6), 1–83.; Raŝić et al., 2016Raŝić, G., Filipovic, I., Callahan, A.G., Stanford, D., Chan, A., Lam-Phua, S.G., Tan, C.H., Hoffman, A.A., 2016. The queenslandensis and the type form of the dengue fever mosquito (Aedes aegypti L.) are genomically indistinguishable. PLoS Negl. Trop. Dis. 10 (11), e0005096. https://doi.org/10.1371/journal.pntd.0005096.
https://doi.org/10.1371/journal.pntd.000...
).

The change in scale color pattern in Ae. aegypti can be explained by epigenetic regulation, where constant changes in environmental conditions to which the animal is subjected, during its developmental period, leads to phenotypic mutations, that is, changes in inheritance models that do not involve changes in DNA (Feeney et al., 2014Feeney, A., Nilsson, E., Skinner, M.K., 2014. Epigenetics and transgenerational inheritance in domesticated farm animals. J. Anim. Sci. Biotechnol. 5 (1), 48. https://doi.org/10.1186/2049-1891-5-48.
https://doi.org/10.1186/2049-1891-5-48...
). The manifestation of population variation can be influenced by elements such as the type of breeding site associated with the microclimate and sex-specific response (Paupy et al., 2010Paupy, C., Brengues, C., Ndiath, O., Toty, C., Hervé, J.P., Simard, F., 2010. Morphological and genetic variability within Aedes aegypti in Niakhar, Senegal. Infect. Genet. Evol. 10, 473–480. https://doi.org/10.1016/j.meegid.2010.03.001.
https://doi.org/10.1016/j.meegid.2010.03...
; Soghigian et al., 2017Soghigian, J., Andreadis, T.G., Livdahl, T.P., 2017. From ground pools to treeholes: convergent evolution of habitat and phenotype in Aedes mosquitoes. BMC Evol. Biol. 17 (1), 262. https://doi.org/10.1186/s12862-017-1092-y.
https://doi.org/10.1186/s12862-017-1092-...
); mutation of the kdr nuclear gene (Linss et al., 2014Linss, J.G.B., Brito, L.P., Garcia, G.A., Araki, A.S., Bruno, R.V., Lima, J.B.P., Valle, D., Martins, A.J., 2014. Distribution and dissemination of the Val1016Ile and Phe1534Cys Kdr mutations in Aedes aegypti Brazilian natural populations. Parasit. Vectors 7, 25. https://doi.org/10.1186/1756-3305-7-25.
https://doi.org/10.1186/1756-3305-7-25...
); and climate changes (Tsuda et al., 2003Tsuda, Y., Yotopranoto, S., Bendryman, S.S., Rosmanida, R., Dachlan, Y.P., Takagi, M., 2003. Seasonal changes in variation of dorsal scale pattern of Aedes aegypti (L.) (Diptera: Culicidae) in Surabaya, Indonesia. Jpn Soc Med Entomol Zool. 54, 73–80. https://doi.org/10.7601/mez.54.73.
https://doi.org/10.7601/mez.54.73...
).

The emergence of Ae. a. queenslandensis in the Brazilian mosquito population may be related to the occurrence of different genetic linages. Bracco et al. (2007)Bracco, J.E., Capurro, M.L., Lourenço-de-Oliveira, R., Sallum, M.A.M., 2007. Genetic variability of Aedes aegypti in the Americas using a mitochondrial gene evidence of multiple introductions. Mem. Inst. Oswaldo Cruz 102 (5), 573–580. https://doi.org/10.1590/S0074-02762007005000062.
https://doi.org/10.1590/S0074-0276200700...
suggested that Ae. aegypti has two genetic linages in Brazil. One linage is closely related to the type form, that contains individuals genetically related to Ae. a. formosus. The second linage clustered with mosquitos from Asia, like Ae. a. queenslandensis. On the other hand, Monteiro et al. (2014)Monteiro, F.A., Shama, R., Martins, A.J., Gloria-Soria, A., Brown, J.E., Powell, J.R., 2014. Genetic diversity of Brazilian Aedes aegypti: patterns following an Eradication Program. PLoS Negl. Trop. Dis. 8 (9), e3167. https://doi.org/10.1371/journal.pntd.0003167.
https://doi.org/10.1371/journal.pntd.000...
suggested the existence of an Ae. a. aegypti strain from the Caribbean, which settled in southern Brazil, and another from Venezuela, which has established and dispersed across the north, both resulting from the reintroduction of the species after its eradication in 1958. Hypothetically, the occurrence of different linages of Ae. aegypti in the municipality of Taubaté can be explained by the introduction of specimens Ae. a. queenslandensis. Further investigations will be necessary to verify the presence of Ae. a. queenslandensis across the region of Vale do Paraíba, eastern São Paulo state. Scarpassa et al. (2008)Scarpassa, V.M., Cardoza, T.B., Cardoso Junior, R.P., 2008. Population genetics and phylogeography of Aedes aegypti (Diptera: Culicidae) from Brazil. Am. J. Trop. Med. Hyg. 78 (6), 895–903. https://doi.org/10.4269/ajtmh.2008.78.895.
https://doi.org/10.4269/ajtmh.2008.78.89...
suggested that populations of Ae. aegypti from the city of Taubaté differ genetically from other populations present in Brazil, which according to the authors is due to the presence of a unique haplotype. The presence of Ae. a. queenslandensis corroborates our hypothesis.

Genetic plasticity influences disease transmission, resistance to control measures, reproductive behavior (Craig Junior et al., 1961Craig Junior, G.B., Vandehey, R.C., Hickey, W.A., 1961. Genetic variability in populations of Aedes aegypti. Bull. World Health Organ. 24 (4-5), 527–539.), and phenotypic plasticity in the heritability of body size (Schneider et al., 2011Schneider, J.R., Chadeeb, D.D., Moria, A., Romero-Seversona, J., Severson, D.W., 2011. Heritability and adaptive phenotypic plasticity of adult body size in the mosquito Aedes aegypti with implications for dengue vector competence. Infect. Genet. Evol. 11 (1), 11–16. https://doi.org/10.1016/j.meegid.2010.10.019.
https://doi.org/10.1016/j.meegid.2010.10...
). Mattingly (1958)Mattingly, P.F., 1958. Genetical aspects of the Aedes aegypti problem II. - Disease relationships, genetics and control. Ann. Trop. Med. Parasitol. 52 (1), 5–17. https://doi.org/10.1080/00034983.1958.11685838.
https://doi.org/10.1080/00034983.1958.11...
had already mentioned that the presence of subspecies and significant geographic or ecological separation could be associated with differences in the potential vector of the same mosquito species. Research carried out in Bangkok, Thailand, investigated the potential vector of Ae. aegypti variations. In this sense, Wasinpiyamongkol et al. (2003)Wasinpiyamongkol, L., Thongrungkiat, S., Jirakanjanakit, N., Apiwathnasorn, C., 2003. Susceptibility and transovarial transmission of dengue virus in Aedes aegypti: a preliminary study of morphological variations. Southeast Asian J. Trop. Med. Public Health 34 (Suppl 2), 131–135., although they found slightly low infection rates for DENV-2 in the Ae. a. aegypti and Ae. a. queenslandensis, have suggested that the persistence of transovarian transmission by successive generations of mosquitoes is an important mechanism in the maintenance of the dengue virus in interepidemic periods. Therefore, the natural transovarian transmission of dengue virus was verified in the type form (15.6/1,000) and in Ae. a. queenslandensis (12.9/1,000), in populations in a residential area of Bangkok, Thailand (Thongrungkiat et al., 2011Thongrungkiat, S., Maneekan, P., Wasinpiyamongko, L., Prummongkol, S., 2011. Prospective field study of transovarial dengue-virus transmission by two different forms of Aedes aegypti in an urban area of Bangkok, Thailand. J. Vector Ecol. 36 (1), 147–152.). Despite the finding of a higher frequency of the type form (98.2%), compared to Ae. a. queenslandensis (1.8%), they suggested that both morphological variations may act as a facilitator of virus persistence in an area in interepidemic periods. Thongrungkiat et al. (2012)Thongrungkiat, S., Wasinpiyamongkol, L., Maneekan, P., Prummongkol, S., Samung, Y., 2012. Natural transovarial dengue virus infection rate in both sexes of dark and pale forms of Aedes aegypti from an urban area in Bangkok, Thailand. Southeast Asian J. Trop. Med. Public Health 43 (5), 1146–1152. corroborated this fact and added data that the phenomenon occurs in both genders of adult mosquitoes, but with a higher rate in males, suggesting its importance in the epidemiology of dengue virus transmission.

Considering the epidemiological importance of Ae. a. aegypti in the transmission of several viruses that cause important diseases in humans, in due course, different studies have been carried out to clarify the potential effects that this phenotypic plasticity present in the species can generate on public health. However, in the literature, so far, there is more information about the biology, behavior, physiology, insecticide resistance, competence and vectoring capacity of the type form and the Ae. a. formosus, and little is known about the Ae. a. queenslandensis.

Given the above, the meeting reported here highlights the need for detailed systematic studies that include both the morphological and molecular characterization of Aedes, as well as competence and vectorial capacity studies.

Acknowledgments

To Maria Anice Mureb Sallum, Faculty of Public Health, University of São Paulo, for confirming the identification; and to the Granado Institute of Polyacrylonitrile Technology for the technical scholarship grant and to Helena Pereira Alves, for the translation into English.

References

  • Bracco, J.E., Capurro, M.L., Lourenço-de-Oliveira, R., Sallum, M.A.M., 2007. Genetic variability of Aedes aegypti in the Americas using a mitochondrial gene evidence of multiple introductions. Mem. Inst. Oswaldo Cruz 102 (5), 573–580. https://doi.org/10.1590/S0074-02762007005000062
    » https://doi.org/10.1590/S0074-02762007005000062
  • Brown, J. E., McBride, C.S., Johnson, P., Ritchie, S., Paupy, C., Bossin, H., Lutomiah, J., Fernandez-Salas, I., Ponlawat, A., Cornel, A.J., Black, W.C., Gorrochotegui-Escalante, N., Urdaneta-Marquez, L., Sylla, M., Slotman, M., Murray, K.O., Walker, C., Powell, J.R., 2011. Worldwide patterns of genetic differentiation imply multiple ‘domestications’ of Aedes aegypti, a major vector of human diseases. Proc. Biol. Sci. 278, 2446–2454. https://doi.org/10.1098/rspb.2010.2469
    » https://doi.org/10.1098/rspb.2010.2469
  • Brown, J.E., Evans, B.R., Zheng, W., Obas, V., Barrera-Martinez, L., Egizi, A., Zhao, H., Caccone, A., Powell, J.R., 2013. Human impacts have shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever mosquito. Evolution. 68, 514–525. https://doi.org/10.1111/evo.12281
    » https://doi.org/10.1111/evo.12281
  • Craig Junior, G.B., Vandehey, R.C., Hickey, W.A., 1961. Genetic variability in populations of Aedes aegypti. Bull. World Health Organ. 24 (4-5), 527–539.
  • Dick, O.B., San Martín, J.L., Montoya, R.H., del Diego, J., Zambrano, B., Dayan, G.H., 2012. The History of Dengue Outbreaks in the Americas. Am. J. Trop. Med. Hyg. 87 (4), 584–593. https://doi.org/10.4269/ajtmh.2012.11-0770
    » https://doi.org/10.4269/ajtmh.2012.11-0770
  • Feeney, A., Nilsson, E., Skinner, M.K., 2014. Epigenetics and transgenerational inheritance in domesticated farm animals. J. Anim. Sci. Biotechnol. 5 (1), 48. https://doi.org/10.1186/2049-1891-5-48
    » https://doi.org/10.1186/2049-1891-5-48
  • Fonseca Júnior, D.P., Serpa, L.L.N., Barbosa, G.L., Pereira, M., Holcmam, M.M., Voltolini, J.C., Marques, G.R.A.M., 2019. Vetores de arboviroses no estado de São Paulo: 30 anos de Aedes aegypti e Aedes albopictus. Rev. Saude Publica 53, 84. https://doi.org/10.11606/s1518-8787.2019053001264
    » https://doi.org/10.11606/s1518-8787.2019053001264
  • Forattini, O.P., 2002. Culicidologia Médica. Editora da Universidade de São Paulo, São Paulo, Brasil, v2.
  • Fort, P., Albertini, A., Van-Hua, A., Berthomieu, A., Roche, S., Delsuc, F., Pasteur, N., Capy, P., Gaudin, Y., Weill, M., 2012. Fossil rhabdoviral sequences integrated into arthropod genomes: ontogeny, evolution, and potential functionality. Mol. Biol. Evol. 29 (1), 381–390. https://doi.org/10.1093/molbev/msr226
    » https://doi.org/10.1093/molbev/msr226
  • Fraiha, H., 1968. Reinfestação do Brasil pelo Aedes aegypti Considerações sobre o risco de urbanização do vírus da febre amarela silvestre na região reinfestada. Rev. Inst. Med. Trop. São Paulo 10, 289–294.
  • Glasser, C.M., Gomes, A.C., 2000. Infestation of S. Paulo State, Brazil, by Aedes aegypti and Aedes albopictus. Rev. Saude Publica 34 (6), 570–577.
  • Hill, G.F., 1921. Notes on some unusual breeding-places of Stegomyia fasciata, Fabr., in Australia. Ann. Trop. Med. Parasitol. 15 (1), 91–92. https://doi.org/10.1080/00034983.1921.11684253
    » https://doi.org/10.1080/00034983.1921.11684253
  • Huang, Y.M., 1979. Medical Entomology Studies - XI. The Subgenus Stegomyia of Aedes in the Oriental Region with Keys to the Species (Diptera: Culicidae). Contrib. Amer. Ent. Inst. 15 (6), 1–83.
  • Huang, Y.M., 2004. The subgenus Stegomyia of Aedes in the Afrotropical Region with keys to the species (Diptera:Culicidae). Zootaxa 700, 1–120. https://doi.org/10.11646/zootaxa.700.1.1
    » https://doi.org/10.11646/zootaxa.700.1.1
  • Kotsakiozi, P., Gloria-Soria, A., Caccone, A., Evans, B., Schama, R., Martins, A.J., Powell, J.R., 2017. Tracking the return of Aedes aegypti to Brazil, the major vector of the dengue, chikungunya and Zika viruses. PLoS Negl. Trop. Dis. 11 (7), e0005653. https://doi.org/10.1371/journal.pntd.0005653
    » https://doi.org/10.1371/journal.pntd.0005653
  • Kraemer, M.U.G., Sinka, M.E., Duda, K.A., Mylne, A., Shearer, F.M., Barker, C.M., Moore, C.G., Carvalho, R.G., Coelho, G.E., van Bortel, W., Hendrickx, G., Schaffner, F., Elyazar, I.R.F., Teng, H.-J., Brady, O.J., Messina, J.P., Pigott, D.M., Scott, T.W., Smith, D.L., William Wint, G.R., Golding, N., Hay, S.I., 2015. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 4, e08347. https://doi.org/10.7554/eLife.08347
    » https://doi.org/10.7554/eLife.08347
  • Kraemer, M.U.G., Reiner Jr, R.C., Brady, O.J., Messina, J.P., Gilbert, M., Pigott, D.M., Yi, D., Johnson, K., Earl, L., Marczak, L.B., Shirude, S., Davis Weaver, N., Bisanzio, D., Perkins, T.A., Lai, S., Lu, X., Jones, P., Coelho, G.E., Carvalho, R.G., van Bortel, W., Marsboom, C., Hendrickx, G., Schaffner, F., Moore, C.G., Nax, H.H., Bengtsson, L., Wetter, E., Tatem, A.J., Brownstein, J.S., Smith, D.L., Lambrechts, L., Cauchemez, S., Linard, C., Faria, N.R., Pybus, O.G., Scott, T.W., Liu, Q., Yu, H., Wint, G.R.W., Hay, S.I., Golding, N., 2019. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 4 (5), 854–863. https://doi.org/10.1038/s41564-019-0376-y.
    » https://doi.org/ https://doi.org/10.1038/s41564-019-0376-y
  • Le Goff, G., Brengues, C., Robert, V., 2013. Stegomyia mosquitoes in Mayotte, taxonomic study and description of Stegomyia pia n. sp. Parasite 20, 31. https://doi.org/10.1051/parasite/2013030
    » https://doi.org/10.1051/parasite/2013030
  • Linss, J.G.B., Brito, L.P., Garcia, G.A., Araki, A.S., Bruno, R.V., Lima, J.B.P., Valle, D., Martins, A.J., 2014. Distribution and dissemination of the Val1016Ile and Phe1534Cys Kdr mutations in Aedes aegypti Brazilian natural populations. Parasit. Vectors 7, 25. https://doi.org/10.1186/1756-3305-7-25
    » https://doi.org/10.1186/1756-3305-7-25
  • Mattingly, P.F., 1957. Genetical aspects of the Aedes aegypti Problem I.-Taxonomy and bionomics. Ann. Trop. Med. Parasitol. 51 (4), 392–408. https://doi.org/10.1080/00034983.1957.11685829
    » https://doi.org/10.1080/00034983.1957.11685829
  • Mattingly, P.F., 1958. Genetical aspects of the Aedes aegypti problem II. - Disease relationships, genetics and control. Ann. Trop. Med. Parasitol. 52 (1), 5–17. https://doi.org/10.1080/00034983.1958.11685838
    » https://doi.org/10.1080/00034983.1958.11685838
  • McClelland, G.A.H., 1960. A preliminary study of the genetics of abdominal colour variations in Aedes aegypti (L.) (Diptera, Culicidae). Ann. Trop. Med. Parasitol. 54 (3), 305–320. https://doi.org/10.1080/00034983.1960.11685991
    » https://doi.org/10.1080/00034983.1960.11685991
  • McClelland, G.A.H., 1974. A worldwide survey of variation in scale pattern of the abdominal tergum of Aedes aegypti (L.) (Diptera: Culicidae). Trans. R. ent. Soc. Land 126 (2), 239–259. https://doi.org/10.1080/00034983.1957.11685829
    » https://doi.org/10.1080/00034983.1957.11685829
  • Mori, A., Tsuda, Y., Takagi, M., Higa, Y., Severson, D.W., 2016. Multiple QTL determine dorsal abdominal scale patterns in the mosquito Aedes aegypti. J. Hered. 107 (5), 438–444. https://doi.org/10.1093/jhered/esw027
    » https://doi.org/10.1093/jhered/esw027
  • Monteiro, F.A., Shama, R., Martins, A.J., Gloria-Soria, A., Brown, J.E., Powell, J.R., 2014. Genetic diversity of Brazilian Aedes aegypti: patterns following an Eradication Program. PLoS Negl. Trop. Dis. 8 (9), e3167. https://doi.org/10.1371/journal.pntd.0003167
    » https://doi.org/10.1371/journal.pntd.0003167
  • Paupy, C., Brengues, C., Ndiath, O., Toty, C., Hervé, J.P., Simard, F., 2010. Morphological and genetic variability within Aedes aegypti in Niakhar, Senegal. Infect. Genet. Evol. 10, 473–480. https://doi.org/10.1016/j.meegid.2010.03.001
    » https://doi.org/10.1016/j.meegid.2010.03.001
  • Powell, J.R., Tabachnick, W.J., 2013. History of domestication and spread of Aedes aegypti - A Review. Mem. Inst. Oswaldo Cruz 108 (1), 11–17. https://doi.org/10.1590/0074-0276130395
    » https://doi.org/10.1590/0074-0276130395
  • Raŝić, G., Filipovic, I., Callahan, A.G., Stanford, D., Chan, A., Lam-Phua, S.G., Tan, C.H., Hoffman, A.A., 2016. The queenslandensis and the type form of the dengue fever mosquito (Aedes aegypti L.) are genomically indistinguishable. PLoS Negl. Trop. Dis. 10 (11), e0005096. https://doi.org/10.1371/journal.pntd.0005096
    » https://doi.org/10.1371/journal.pntd.0005096
  • Scarpassa, V.M., Cardoza, T.B., Cardoso Junior, R.P., 2008. Population genetics and phylogeography of Aedes aegypti (Diptera: Culicidae) from Brazil. Am. J. Trop. Med. Hyg. 78 (6), 895–903. https://doi.org/10.4269/ajtmh.2008.78.895
    » https://doi.org/10.4269/ajtmh.2008.78.895
  • Schneider, J.R., Chadeeb, D.D., Moria, A., Romero-Seversona, J., Severson, D.W., 2011. Heritability and adaptive phenotypic plasticity of adult body size in the mosquito Aedes aegypti with implications for dengue vector competence. Infect. Genet. Evol. 11 (1), 11–16. https://doi.org/10.1016/j.meegid.2010.10.019
    » https://doi.org/10.1016/j.meegid.2010.10.019
  • Soghigian, J., Andreadis, T.G., Livdahl, T.P., 2017. From ground pools to treeholes: convergent evolution of habitat and phenotype in Aedes mosquitoes. BMC Evol. Biol. 17 (1), 262. https://doi.org/10.1186/s12862-017-1092-y
    » https://doi.org/10.1186/s12862-017-1092-y
  • Soghigian, J., Gloria-Soria, A., Robert, V., Le Goff, G., Failloux, A.B., Powell, J.R., 2020. Genetic evidence for the origin of Aedes aegypti, the yellow fever mosquito, in the southwestern Indian Ocean. Mol. Ecol. 29, 3593–3606. https://doi.org/10.1111/mec.15590
    » https://doi.org/10.1111/mec.15590
  • Souza-Santos, R., Carvalho, M.S., 2000. Análise da distribuição espacial de larvas de Aedes aegypti na Ilha do Governador, Rio de Janeiro, Brazil. Cad. Saude Publica 16, 31–42.
  • Teixeira, M.G., Barreto, M.L., Guerra, Z., 1999. Epidemiologia e Medidas de Prevenção do Dengue. Inf. Epidemiologico SUS. 8, 5–33.
  • Thongrungkiat, S., Maneekan, P., Wasinpiyamongko, L., Prummongkol, S., 2011. Prospective field study of transovarial dengue-virus transmission by two different forms of Aedes aegypti in an urban area of Bangkok, Thailand. J. Vector Ecol. 36 (1), 147–152.
  • Thongrungkiat, S., Wasinpiyamongkol, L., Maneekan, P., Prummongkol, S., Samung, Y., 2012. Natural transovarial dengue virus infection rate in both sexes of dark and pale forms of Aedes aegypti from an urban area in Bangkok, Thailand. Southeast Asian J. Trop. Med. Public Health 43 (5), 1146–1152.
  • Trari, B., Dakki, M., Harbach, R.E., 2017. An updated checklist of the Culicidae (Diptera) of Morocco, with notes on species of historical and current medical importance. J. Vector Ecol. 42 (1), 94–104. https://doi.org/10.1111/jvec.12243
    » https://doi.org/10.1111/jvec.12243
  • Tsuda, Y., Yotopranoto, S., Bendryman, S.S., Rosmanida, R., Dachlan, Y.P., Takagi, M., 2003. Seasonal changes in variation of dorsal scale pattern of Aedes aegypti (L.) (Diptera: Culicidae) in Surabaya, Indonesia. Jpn Soc Med Entomol Zool. 54, 73–80. https://doi.org/10.7601/mez.54.73
    » https://doi.org/10.7601/mez.54.73
  • Walter Reed Biosystematics Unit, 2021. Aedes aegypti species page. Walter Reed Biosystematics Unit, Available in: http://wrbu.si.edu/vectorspecies/mosquitoes/aegypti (accessed 22 December 2021).
    » http://wrbu.si.edu/vectorspecies/mosquitoes/aegypti
  • Wasinpiyamongkol, L., Thongrungkiat, S., Jirakanjanakit, N., Apiwathnasorn, C., 2003. Susceptibility and transovarial transmission of dengue virus in Aedes aegypti: a preliminary study of morphological variations. Southeast Asian J. Trop. Med. Public Health 34 (Suppl 2), 131–135.
  • Zayed, A., Awash, A.A., Esmail, M.A., Al-Mohamadi, H.A., Al-Salwai, M., Al-Jasari, A., Medhat, I., Morales-Betoulle, M.E., Mnzava, A., 2012. Detection of Chikungunya virus in Aedes aegypti during 2011 outbreak in Al Hodayda, Yemen. Acta Trop. 123 (1), 62–66. https://doi.org/10.1016/j.actatropica.2012.03.004
    » https://doi.org/10.1016/j.actatropica.2012.03.004

Edited by

Associate Editor: Leonardo Chaves

Publication Dates

  • Publication in this collection
    30 Mar 2022
  • Date of issue
    2022

History

  • Received
    12 Nov 2021
  • Accepted
    05 Mar 2022
Sociedade Brasileira De Entomologia Caixa Postal 19030, 81531-980 Curitiba PR Brasil , Tel./Fax: +55 41 3266-0502 - São Paulo - SP - Brazil
E-mail: sbe@ufpr.br