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Abstract

An approach is suggested in this paper that
has successfully been applied in physics,

ecology, and the biomedical sciences. This

is called fractal-complex-adaptive-system
(FCAS) modeling. The objective of this type

of analysis is to reconstruct the dynamics

of the pathological process that has been
leading to the disease. Diabetes, a

complexdisease, has been used to test the

methodology. Biometrical analyses were
undertaken on subjects diagnosed with

overt diabetes (hereafter called IDDM),

chemical diabetes (NIDDM), and a group
of normal subjects. The studied variables

were plasma glucose, insulin concentration,

and insulin sensitivity. FCAS modeling con-
sists in fitting a power-law function to the

bivariate lognormal distribution of the vari-

ables. The power-law exponent is estimated
by principal component analysis (PCA).

Analyses have shown that glucose disposal

can be considered a fractal process, thereby
implying a complex hierarchy of interact-

ing scales and mechanisms in glucose han-
dling. The first principal component repre-

sents quantitative glucose disposal, and the

second component is compatible with in-
sulin efficiency. PCA further retrieved dis-

tinct ongoing pathological processes within

clinical groups of subjects. The IDDM in-
sulin production defect had a high (abso-

lute value) exponent of -3.5 that confirms a

crude defect scanning the whole fractal hi-
erarchy. Definite insulin resistance has

been detected in clinically normal subjects

with a low exponent of -0.5, thus suggest-
ing a subtle and complex problem possibly

due to aging or reduced physical activity.

Insulin sensitivity was definitely impaired
in the NIDDM clinical group with an expo-

nent of -2.2, thereby suggesting poorly

scheduled insulin feedback, possibly due to
peripheral insensitivity. NIDDM appeared

to result from aggravation of the subtle in-

sensitivity seen in normal subjects. On the
whole, the fractal model seemed to be ca-

pable of assessing the degree of complexity

of a disease. It is concluded that future stud-
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ies of diabetes using FCAS modeling ought

to be undertaken on the basis of multiple-

scale biological variables, thereby closely
reflecting the complexity of glucose han-

dling. It is further recommended that such

analyses be undertaken with dynamic data
to track down the precise timing of the vari-

ous homeostatic disruptions. It would also

be important to carry out this type of analy-
sis on less known but equally complex dis-

ease processes. The results might point to

important new research findings.
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Resumo

O artigo sugere uma abordagem que foi uti-
lizada com sucesso na física, ecologia e nas

ciências biomédicas. Tal abordagem rece-

be o nome de fractal-complex-adaptive-
system (FCAS) modeling, ou “modelagem

de sistema adaptativo complexo fractal”. O

objetivo desse tipo de análise é reconstruir
a dinâmica do processo patológico que le-

vou à doença. O diabetes, uma doença com-

plexa, foi utilizado para testar a
metodologia. Foram realizadas análises

biométricas em indivíduos diagnosticados

com diabetes clínico (de agora em diante
IDDM), com diabetes químico (NIDDM) e

em um grupo de indivíduos normais. As

variáveis estudadas foram glicose plas-
mática, concentração de insulina e sensi-

bilidade à insulina. A modelagem FCAS

consistia em adaptar uma função power-
law à distribuição lognormal bivariada das

variáveis. O exponente power-law é calcu-

lado através da análise do componente
principal (PCA). As análises demonstraram

que a disponibilidade de glicose pode ser

considerada um processo fractal, sugerin-
do uma complexa hierarquia de escalas e

mecanismos que interagem no proces-

samento da glicose. O primeiro componen-
te principal representa a disponibilidade

em termos quantitativos de glicose e o se-

gundo componente é compatível com a efi-
ciência da insulina. A PCA também detec-

tou processos patológicos distintos ocor-

rendo dentro dos grupos clínicos. A defici-
ência na produção de insulina no IDDM

apresentou um alto exponente de -3.5 (va-

lor absoluto), o que confirma uma defici-
ência bruta permeando toda a hierarquia

fractal. Resistência permanente a insulina

foi detectada em indivíduos clinicamente
normais com um baixo exponente de -0.5,

assim sugerindo um problema sutil e com-

plexo, possivelmente devido ao envelheci-
mento ou atividade física reduzida. A sen-

sibilidade à insulina estava permanente-

mente prejudicada no grupo clínico
NIDDM com um exponente de -2.2, desse

modo sugerindo comprometimento no
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feedback de insulina, provavelmente devi-

do a insensibilidade periférica à insulina. O

NIDDM parecia ser o resultado da piora da
sutil insensibilidade encontrada entre os

indivíduos normais. De modo geral, o mo-

delo fractal provou ser capaz de avaliar o
grau de complexidade da doença. Conclui-

se, portanto, que estudos futuros do diabe-

tes utilizando a modelagem FCAS devem
ser realizados a partir de variáveis biológi-

cas de escalas múltiplas, assim refletindo

com exatidão a complexidade do proces-
samento da glicose. Seria recomendável,

ainda, que tais análises fossem realizadas

com dados dinâmicos para investigar o
momento preciso das diferentes alterações

homeostáticas. Também seria importante

realizar esse tipo de análise em processos
patológicos menos conhecidos, mas igual-

mente complexos. Esse resultados poderi-

am levar a importantes novos achados de
pesquisa.

Palavras-chavePalavras-chavePalavras-chavePalavras-chavePalavras-chave: Modelos teóricos .
Fractais. Diabetes mellitus não insulino-

dependente. Diabetes mellitus insulino-

dependente. Dinâmica não linear. Análise
do componente principal. Modelagem de

sistema adaptativo complexo. Alometria.

Introduction

Many epidemiologists are concerned
with the current difficulty in understanding

health and disease. On the one hand, risk-

factor modeling (e.g., multivariate logistic
regression) can fail to unravel the etiology

of complex disease processes1-3. For ex-

ample, the small percentage of the total
variation in disease incidence typically ac-

counted for by regression analyses is gen-

erally taken as an indication of the failure
of structural modeleling4. On the other

hand, controversial findings are prevalent

in epidemiology5-7. It is envisioned that the
future of epidemiology will establish even

more inconsistencies. This is expected be-

cause there will be an increased reliance on
remote exposures (e.g., molecular epidemi-

ology), the effects of which have to cross

many scales of organization before produc-
ing outcomes. There are two main reasons

why causal research meets with limited suc-

cess nowadays7; either some crucial vari-
ables remain hidden to the investigator do-

ing risk-factor modeling or the underlying

disease dynamics results requires a com-
plex system approach at variance with risk-

factor modeling. Our contention is not that

risk-factor modeling should not be used,
only that new approaches based on output

of complex systems with nonlinear dynam-

ics ought to be explored. This paper looks
into systems with nonlinear dynamics.

Some investigators have already sug-

gested that recourse to nonlinear dynam-
ics can help unravel the web of causes (the

black-box) that relates exposure to disease2-

4, 8,9. A few papers have established how the
presence of nonlinear dynamics in disease

occurrence can, because of the non-inde-

pendence of outcomes, jeopardize habitual
analytical study designs2,3. Further, at-

tempts at modeling the black-box have

been made; for example, one investigator
has studied a nonlinear deterministic

model of the incubation period8, and neu-

ral-nets have been used for clinical pattern
recognition10. These methods appear to

provide new concepts and approaches for
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the early recognition of pathological pro-

cesses.

In this paper, the nonlinear dynamics
approach tested is called fractal-complex-

adaptive-system (FCAS) modeling. FCAS

models have been developed by research-
ers from the Sante Fe Institute. Later, works

related to FCAS but emphasizing their scal-

ing or fractal nature have been carried out
by a few investigators11-15. FCAS, by defini-

tion, is a hierarchy of multiple nonlinearly

interrelated subsystems. FCAS models are
useful whenever a phenomenon results from

a signal that has been propagated through a

comp lex hierarchy of scales of organization.
The strength of FCAS is that it can identify

the degree of smoothness or roughness of

signal flow through the hierarchy. A well bro-
ken-in FCAS entails a smooth mechanism

that responds in an appropriate manner to

the requirements of the outer world. A de-
fective FCAS responds selfishly, i.e., it ignores

the outer intervening systems or refrains

from responding smoothly to subsystems.
Therefore, smoothness of response involves

spread-out correlations among subsystems

and feedback. Health is equated with re-
sponse smoothness. Disease, on the other

hand, bears various degrees of roughness

(interference in signal flow). The cruder the
defect, the deeper in the hierarchy the dis-

ease origin, and the more uncontrolled the

mechanism (short-range or no correlations
at all). Also, the deeper the disease origin, the

more linear and the more obvious its rela-

tion to a putative exposure. In contradistinc-
tion, the more intricate the pathological pro-

cess, the more nonlinear and the less pre-

dictable its relation to any putative exposure.
Because FCAS is complex and its com-

ponents are interrelated by definition, the

subsystem units and their interactions must
be modeled together. Therefore, in order to

assess the degree of complexity, one needs

a global measure of the output of the hier-
archical system. The reasoning is the follow-

ing: if the output matches a given probabi-

listic model (specific to FCAS), then the
sytem is likely complex (as defined above).

This approach is in contradistinction with

that of nonlinear risk-factor models such as

multivariate regressions, that model the

structure of interrelated observations on a
nonlinear scale. The FCAS approach is not

structural; it rather models the output of a

complex system. Incidentally, the power-
law function is specific to FCAS; the func-

tion quantitatively assesses the envelope of

the system. The operational methodology
ensuing from the above viewpoint is two-

fold. First, the health/disease process can

be described by an evolving complex cova-
riance structure of biological variables. Sec-

ond, fractal geometry is useful in the study

of biomedical phenomena with multiple
scales of biological organization. The objec-

tive of this paper is to test the validity of the

FCAS approach in the study of a complex
disease, diabetes. The conceptual founda-

tions of FCAS in diabetes are reviewed in

Appendix I.

Methods

Fractal objects can be identified with the

aid of statistics. The signature of a fractal

object is a power-law function14,15. The
power law describes self-similar objects/

phenomena whose mechanisms extend

over many scales of observation. The
power-law function is therefore a scaling

law. A scaling law can be recognized in any

object that has no inherent size scale (e.g.,
the diameter of arteries, the geometry of the

lung, etc.). Self-similar hierarchical phe-

nomena may be likened to a phylogeny
with, for example, the multiple species em-

bedded in the genera, and the genera in

turn embedded in more inclusive group-
ings, and so on. Therefore, acknowledging

a phenomenon as fractal implies similarly-

organized mechanisms over a hierarchy of
scales. Such phenomena involve multiple

nonlinearities; notwithstanding, they are

described by a linear function under appro-
priate transformation of the macroscopic

variables. In this sense, the power-law

ressembles the logistic regression as both
are nonlinear models that can be linearized.

The linearization of the power-law function
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as a model for dynamics that are nonlinear

should not be viewed as a defect for it has

been shown that the envelope of experi-
mental FCAS behaves that way15. The fractal

dimension (D) is related to the power-law

exponent, ß, by the relation ß = 3-2D. More
specifically, the more complex the studied

phenomenon, the more spread out the cor-

relations among scales.
In physical phenomena the power-law

exponent of the power spectrum is often

negative (inverse power law). The power-law
exponent is an accurate assessment of the

dispersion of the distribution14,15. A small

power-law exponent, between 0 and -2, re-
fers to large dispersion and high complexity

(no characteristic scale). A smaller power-

law exponent indicates lower dispersion and
points to a more straightforward phenom-

enon. In other words, the smaller the inverse

power-law exponent, the simpler, the more
predictable, the more regular, and the more

easily boxed-in is the process. These phe-

nomena can successfully be investigated by
linear methods. Contrariwise, the larger the

value of the negative power-law exponent,

the more complex, the more intricate, and
the less easily boxed-in is the process. Lin-

ear methods are useless here. This is the do-

main of nonlinear dynamics. A power-law
exponent of zero stands for white noise pro-

cesses, i.e., chance phenomena with utter

unpredictability. The mathematical under-
pinnings of the principal component analy-

sis (PCA) and the power law are detailed in

Appendix II.

CaveatsCaveatsCaveatsCaveatsCaveats

Before embarking on the analysis per se,
four issues deserve comment. First, diabe-

tes can be considered a complex multiple-

scale phenomenon. Accordingly, a cross-
sectional sample of plasma measures of

sufficient variability will embody the vari-

ous scales of organization of the glucose
regulation process of different subjects.

Therefore, a cross-section of subjects from

the same disease stage will reflect the com-
plex dynamics of the latest pathological

event. One can hope to reconstruct the dy-

namics of the latest pathological phase

transition if it can be assumed that the mea-

surement-specific biological variability is
extended enough to cover the recent history

of the disease process. More simply put, one

uses a cross-section of various individuals
as a surrogate for the individual disease

pathway. In this context, the exponent of

the allometric law becomes the expression
for an observation of self-similarity in a se-

ries of fractally structured individuals21.

Second, structural relationships of
healthy phenomena are generally mea-

sured by a positive power-law exponent.

Accordingly, the disease state should be
probed by a qualitative change in the cova-

riance structure with respect to normalcy.

Hence, the structure of a pathological pro-
cess will translate to an “involuted” covari-

ance structure leading to the reverse pat-

terning of healthy relationships, and its
measure will be an inverse power law.

The third issue to make clear is that PCA

will break down the covariance structure
into independent variables or dimensions,

each having its own power-law exponent.

This will occur if multiple sources (two here)
of variation coexist. In the latter case, the

second principal component, orthogonal to

the first, will necessarily yield at least one
inverse power law. But, of course, nothing

prevents only one component from being

significant. Obtaining two significant prin-
cipal components will point to biological

heterogeneity.

Last, it must be stressed that the main
thrust of this paper is not to reduce the di-

mensions of the data, but to provide values

akin to the fractal dimensions of the pro-
cesses involved in the data. While the

method we use to achieve this aim is actu-

ally a PCA, the latter should be viewed sim-
ply as a mean for increasing the validity of

the measures of the computed fractal di-

mensions.

Material

This study uses Reaven and Miller’s data

set23. The publis hed data were easily acces-
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sible24 and composed of 145 subjects. The

subjects were given an oral glucose toler-

ance test (OGTT) with blood samples drawn
during the subsequent three hours for mea-

surement of plasma glucose and immu-

noreactive insulin concentrations. Only one
measurement was obtained per subject.

The variables studied were glucose area,

insulin area, and steady state plasma glu-
cose. This latter variable measures the abil-

ity of different subjects to dispose of iden-

tical glucose loads under the same insulin
stimulus and is therefore considered a

marker of insulin efficiency. Subjects were

classified into three groups according to the
OGTT results. 33 of the subjects had overt

diabetes (abnormal fasting levels), 36 had

chemical diabetes (normal fasting levels
with abnormal GTT response), and 76 were

considered normal. None of the subjects

were receiving insulin or oral hypogly-
cemics at the time of diagnosis. The sub-

jects were non-obese. Subjects’ age and

weight were not correlated with the above
three variables. The details of the protocols

and diagnostic criteria can be found in

Reaven & Miller23. For convenience reasons,
the three diagnostic groups are hereafter

called the IDDM (overt diabetes), NIDDM

(chemical diabetes), and normal group.

Results

Figure 1 displays the bivariate
scattergrams of the original values of glyce-

mia by insulin output and of insulin output

by insulin sensitivity for the 145 patients.
Only these two relationships are taken up

here. Figure 2 displays the same bivariate

relationships according to the logs of the
observations. The three clinical groups of

subjects appear well surrounded by 95%

equiprobable ellipses, thereby suggesting
bivariate lognormality. The good fit sug-

gests that the fractal model can describe

glucose disposal in all three clinical groups
of subjects. Ellipse major axes are also

drawn in Figure 2; the major axes are the

power laws of the first PCA (to be presented
below). In order not to clutter Figure 2, the

power laws of the second PCA (perpendicu-

lar to the major axes) have not been
sketched out.

Tables 1, 2, and 3 set out PCA results.

Table 4 displays power-law exponents. Only
the first two components are shown be-

cause their contribution to variability

amounts to nearly the total variance. Table
1 suggests that the group of normal subjects

is heterogeneous with 73% of the variance

explained by the first component. This

Figure 1 - Scattergram of plasma glucose (mg/100ml/hr) by insulin concentration (µU/ml/hr):
Original data
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component is dominated by insulin sensi-

tivity and concentration. It shows that a glu-

cose load does not elicit a high concentra-
tion of plasma glucose.

Insulin concentration, however, is pro-

portional to power 9 of plasma glucose
(Table 4), and sensitivity increases accord-

ing to power 2 of insulin concentration. To

fix ideas, a proportional increase of power
1 would mean equal increase over any two

variables. In the case of the glucose and in-

sulin concentration of normal subjects, the
result shows that a unit increase in glucose

entails a nonlinear reaction of insulin with

the latter increasing as power 9 of glucose.

As we shall see below, this power curve is
far less steeper than that found in NIDDM

subjects. Because these results pertain to

presumably normal subjects, the results can
be considered the gold standard against

which findings on diseased subjects ought

to be assessed. The first component there-
fore describes how normal subjects quan-

titatively dispose of a glucose load.

The second component of the normal
group is dominated by the contrast of insu-

lin concentration and sensitivity. Sensitiv-

ity decreases very slowly according to a
power of -0.5, with an increase in insulin

concentration. This component of variation

is not negligible (accounting for 24% of the
total variance). It describes how clinically

normal subjects qualitatively dispose of a

glucose load. The inverse power law indi-
cates that this is a source of pathological

variation.

The results of the analysis of the data
obtained from the subjects diagnosed with

NIDDM are presented in Table 2. The analy-

ses shown in Table 4 indicate that, in these
subjects, glucose disposal (first component)

required very high concentrations of insu-

lin (ß=82.7) and that sensitivity is low

Table 1 - PCA component loadings in
clinically normal subjects.

                                       PRINCIPAL COMPONENTS
1 2 3

Plasma glucose 0.026 0.008 -0.103
lnsulin concentration 0.239 0.281 0.005
lnsulin sensitivity 0.496 -0.136 0.003

VARIANCE EXPLAINED BY COMPONENTS

1 2 3
0.304 0.098 0.011

PERCENT OF TOTAL VARIANCE EXPLAINED

1 2 3
73.6 23.7 2.7

Figure 2 - Scattergram of plasma glucose
(mg/100ml/hr) by insulin concentration (µU/
ml/hr) in normal subjects (A), NIDDM patients
(B) and IDDM patients (C): Log data, power
laws, and 95% ellipse contours
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(ß=0.5) in comparison with normal subjects

(Table 1 first component). On the other
hand, accounting for 21% of the variance,

the second component indicates an impor-

tant decrease in sensitivity (ß=-2.1) with low
insulin output. The second component

points to a source of pathological variation

similar to but more severe than of the clini-
cally normal subjects (Table 1 second com-

ponent).

The results of the analysis of the data

obtained from the subjects diagnosed with

IDDM are presented in Table 3. This group
is more homogeneous, where the first com-

ponent accounts for 87% of the total varia-

tion. The analysis shown in Table 4 suggests
an abrupt decrease in insulin output when

plasma glucose concentration was high

(Table 3). The second component, which
represents a low source of total variation

(11%), shows low insulin output but very

high sensitivity to insulin.

Table 2 - PCA component loadings in
clinically diagnosed NIDDM subjects.

                                       PRINCIPAL COMPONENTS
1 2 3

Plasma glucose 0.006 0.017 0.108
Insulin concentration 0.496 0.126 -0.004
Insulin sensitivity 0.236 -0.264 0.005

VARIANCE EXPLAINED BY COMPONENTS

1 2 3
0.302 0.086 0.012

PERCENT OF TOTAL VARIANCE EXPLAINED

1 2 3
75.6 21.5 2.9

Table 3 - PCA component loadings in
clinicaliy diagnosed IDDM subjects.

                                       PRINCIPAL COMPONENTS
1 2 3

Plasma glucose 0.249 0.151 0.110
lnsulin concentration -0.895 0.065 0.026
Insulin sensitivity 0.071 0.292  -0.062

VARIANCE EXPLAINED BY COMPONENTS

1 2 3
0.868 0.112 0.017

PERCENT OF TOTAL VARIANCE EXPLAINED

1 2 3
87.1 11.2 1.7

Table 4 - Power law exponents estimated over the first two principal components.

Clinically normal subjects

lnsulin =* Sensitivityb** Glucose = lnsulinb

First component  2.1 9.2
Second component -0.5 35.1

Clinically diagnosed NIDDM subjects

lnsulin = Sensitivityb Giucose = lnsulinb

First component 0.5 82.7
Second component -2.1 7.4

Clinicaliy diagnosed IDDM subjects

lnsulin = Sensitivityb Glucose = Insulinb

First component -0.08  -3.5
Second component 4.5 0.4

* The parameter a of the power law has been discarded since it is not interpreted.
** b is the power law exponent.
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Discussion

The methodology used in this paper is
not new. The allometry law is often found

in biology. PCA is ubiquitous in science, and

fractals are common in physics. What is new
is the unification of fractal modeling, allo-

metric law, and the principal components

in the framework of a coherent methodol-
ogy intended to understand the nonlinear

dynamics (by FCAS) of diabetes.

These analyses suggest that glucose dis-
posal can be considered a FCAS. This con-

clusion is supported in normal, NIDDM,

and IDDM subjects. The conclusion is
based on a good log-log fit of the three bio-

logical variables (plasma glucose, insulin

concentration, and insulin efficiency) to a
power law. Identifying a system as FCAS

leads to invoking a fractal process in diabe-

tes, i.e., to stating that glucose management
is controlled by amplification12. This state-

ment means that there must be secondary

mechanisms of glucose disposal besides
insulin. These mechanisms are leverage

mechanisms. Leverage can be understood

in the following way. Suppose one wishes
to work more efficiently. What is this per-

son expected to do? He/she has two choices.

First, work more, i.e., work during the eve-
nings, the week-ends, etc. Such a regimen

eventually leads to exhaustion. If over-

whelmed by work, the person also has a sec-
ond choice, i.e., hire a team that will work

“under” him/her and according to his/her

needs. This is a leverage mechanism. Fur-
ther, nothing prevents the team members

from sharing the work with others, hired on

an irregular basis. Amplification, a charac-
teristic of fractal processes, has the virtue of

fine-tuning complex processes that need

constant and subtle adjusting to challenging
environmental conditions11,12. Studies on

diabetes confirm the presence of more than

one mechanism of glucose disposal in hu-
mans25. There are redundant glucoregulatory

factors, and a hierarchy exists among them.

Although insulin stands at the top of the hi-
erarchy, glucoregulation is not achieved by

insulin alone.

The use of PCA has identified two inde-

pendent components of variation in each

clinical group. One component is associ-
ated with quantitative glucose disposal and

the other with insulin efficiency. Subjects

with IDDM had large loadings on the first
component, and those with NIDDM corre-

lated strongly with the second component.

According to this distinction, IDDM is
clearly different from NIDDM. Whereas

IDDM is a defect of insulin output, NIDDM

is a defect of insulin efficiency. It was in-
triguing to observe that normal subjects also

loaded lightly on the second component.

The use of PCA also resulted in the iden-
tification of distinct pathological processes

within clinical groups, thereby reflecting the

involution of the covariance structure. Co-
variance structure involution was observed

when the power-law exponent turned from

a positive to a negative value. This change
is based on the assumption that healthy bio-

logical processing implies positive relation-

ships among variables. This statement is
true for glucose disposal. Other biological

processes might behave differently.

That IDDM is a defect of insulin produc-
tion was dramatically confirmed by its se-

verity in the clinically IDDM group. The very

small power-law exponent of -3.5 supports
the well-known contention of a straightfor-

ward defect in insulin production. Although

few mechanisms are expected at as high a
scale of organization, the very small expo-

nent does not rule out more than one ori-

gin to the defect. According to the covari-
ance structure, IDDM is not preceded by a

pre-diabetic state; IDDM therefore results

from an abrupt change within a very short
incubation period. This result is consistent

with the usually precocious age of onset of

the condition. Such a small exponent sug-
gests a lock-in process with no adaptabil-

ity. A likely explanation is that a potent ini-

tial condition has drastically bypassed the
nonlinear intricacies of the glucose han-

dling hierarchy. This explanation further

suggests that simple insulin therapy can
scarcely deal with hyperglycemia except as

a palliative intervention. For therapy to
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mimic the intrinsic complexity of the glu-

cose handling process of normal subjects,

a much smoother intervention would be
required. As a result, current insulin therapy

is only expected to crudely control hyperg-

lycemia. Besides, the insulin-sensitivity-to-
production ratio has a nearly null exponent

(-.08). The latter exponent suggests that in-

sulin sensitivity is left uncontrolled in IDDM
patients. The latter conclusion would be

consistent with a basic pleiotropic defect.

The NIDDM clinical group also supports
the quantitative-glucose-disposal interpre-

tation of the first principal component. This

finding suggests that NIDDM patients have
hyperinsulinemia following a glucose load.

The most popular interpretation of this re-

lates to lower than normal insulin sensitiv-
ity, i.e., insulin resistance. This hypothesis

is not contradicted by the results. A com-

peting hypothesis would be that hyper-
insulinemia leads to low efficiency; this can

occur if insulin becomes insensitive after a

threshold level of insulin secretion is ex-
ceeded. A first mechanism explaining the

latter hypothesis might be a defect in insu-

lin structure; a second mechanism would
be impaired insulin bioreactivity. The lat-

ter hypothesis is in line with the IDDM sec-

ond component according to which very
low insulin output accompanies very high

insulin sensitivity.

The second principal component relates
to insulin efficiency. Definite insulin resis-

tance is noted in the clinically normal and

NIDDM groups. The sensitivity problem is
not dramatic in clinically normal subjects

who are (and may remain) symptomless.

This might refer to a subtle aging effect. The
exponent of -0.5 points to a highly complex

mechanisms of glucose regulation. This ex-

ponent also implies that the insulin insen-
sitivity of the normal subjects is due to com-

plex interactions among several finely-

tuned mechanisms.
Insulin sensitivity is definitely impaired

in the NIDDM clinical group. The defect is

more severe than that of normal subjects.
The defect, with a power-law exponent of -

2.1 is crude, and can be located deep in the

hierarchy of insulin-sensitivity control

achievement. It suggests a well-delineated

clinical picture consistent with a potent ge-
netic initial condition that can bypass the

complex dynamics’ nonlinearities of the

pathological process. More often than not
complex nonlinearities will prevent any eas-

ily-recognized one-to-one relationship be-

tween cause and effect in disease processes.
Further, the small exponent suggests a per-

sistence effect, i.e., lack of control due to

poorly scheduled feedbacks. Such a high
exponent is in contradistinction with the

swift response of normal subjects to a glu-

cose challenge. The persistence effect might
therefore coincide with a lower-than-nor-

mal peripheral sensitivity to insulin. This

explanation is in line with a post-receptor
defect in peripheral tissues and hence with

poor negative insulin feedback26.

The NIDDM persistence effect is quite
crude, thus preventing any capacity of com-

plex and finely-tuned regulation. Further,

insulin efficiency proved to be lower-than-
optimal in normal subjects; this suggests a

lengthy pre-diabetic process to the NIDDM

clinical state. This suggestion is not at vari-
ance with a genetic hypothesis but never-

theless more in line with a long-run (con-

tinuous) environmental and/or behavioral
effect. The reducing of physical activity with

age is a likely intervening event. The latter

considerations mean that normal glucose
regulation is controlled by swift reaction

times due to fine-tuning by the glucose-

regulation control hierarchy. The latter con-
trol is lost in NIDDM. All the above results

are consistent with the most recent research

results on diabetes26, 27.
The hypothesis that both principal com-

ponents revealed two different aspects of the

organism response to a glucose load (i.e.,
insulin production and insulin efficiency)

has been discussed. Nonetheless, an alter-

native interpretation is also possible: the
principal components might represent sub-

groups’ variation, i.e., etiologic heterogene-

ity. According to this viewpoint, the first
component of the clinically normal group

clearly outlines the normal condition. The
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second component would represent undiag-

nosed but precocious cases of NIDDM.

This pre-diabetic condition would evolve to
a full-blown NIDDM dynamical process as

exemplified by the NIDDM group second-

principal-component. Similarly, the first
component of the NIDDM group would de-

scribe subjects having a normal response to

a glucose load, i.e., simple hyperinsulinemia
with lower yet normal insulin sensitivity.

These subjects would incorrectly be consid-

ered NIDDM patients. Likewise, the clinical
IDDM group would be composed of two sub-

groups. The first component would point to

the most common IDDM type with auto-
immune insulin destruction. The second

component would refer to subjects with un-

usually high glucose concentrations, very
low insulin output, but very high insulin ef-

ficiency. These normal subjects would pre-

sumably be those with incipient beta-cell de-
struction28.

This epidemiologic study of a complex

disease is the first to make use of FCAS mod-
eling. For a first study, methodological and

interpretative aspects have been empha-

sized. Further, to test the new methodology,
the analysis has been carried out on a com-

plex but well-studied disease process.

Cross-sectional data such as those used
here are easy to gather and they can yield

important clues as to the disease process.

Purely dynamical data allowing for multiple
repeated measurements would nonetheless

be the most useful approach in unravelling

the various steps of the pathological pro-
gression. Though this cross-sectional analy-

sis cannot definitely distinguish between a

disease’s natural history and subgroups’
heterogeneity, it is surmised that this type

of data reveals a dynamic viewpoint, for the

power law describes how biologic variables
change in different subjects. Our results are

in line with what is known of the biology of

diabetes, and agrees well with past appli-
cations of the method to other complex bio-

logical processes. This gives credence to the

validity of the methodology used. The FCAS
model can assess the complexity of a dis-

ease process. FCAS does not evaluate cau-

sality. In no way the computed the power-

law exponents (or FDs to be calculated

therefrom) are indices or arguments on be-
half of causality. To be specific, FCAS pro-

vides an assessment of the complexity of the

dynamics of the process. Furthermore, this
study suggests new directions of research.

Future diabetes studies using fractal mod-

eling ought to be undertaken with biologi-
cal components (e.g., glucagon) reflecting

various scales in the hierarchy of glucose

handling. It would also be important to
carry out this type of analysis on less known

but equally complex disease processes. The

results could uncover unusual findings and
provide clues to further research.
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APPENDIX I

CONCEPTUAL UNDERPINNINGS OFCONCEPTUAL UNDERPINNINGS OFCONCEPTUAL UNDERPINNINGS OFCONCEPTUAL UNDERPINNINGS OFCONCEPTUAL UNDERPINNINGS OF

FCASFCASFCASFCASFCAS

FCAS, when applied to health and dis-

ease, proposes to replace the concept of
states with that of processes. Second, the

approach considers disease as an emergent

property resulting from a late, abrupt, and
unsuccessful attempt of the organism to

maintain homeostasis16. In the context of

FCAS, precisely because complex diseases
imply emerging behaviors, “homeo-

dynamics” is a more appropriate term than

homeostasis30. The latest property of the
disease process is one among several emer-

gent properties that the organism has ex-

perienced over pathological time and
across the hierarchy of scales of organiza-

tion. This viewpoint implies that the clini-

cal disease is the result of multiple critical
threshold crossings (or phase transitions as

when, upon consistent freezing, water mol-
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ecules self-organized into ice crystals) in-

duced by far-from-equilibrium dynamics,

with irreversibility as the endpoint17. Dis-
equilibrium is conceived as a dynamic state

which includes the seeking of solutions to

environmental aggression. This definition
of disease further implies that the patho-

logical process cannot be considered sepa-

rate from the health process18. One there-
fore has to model health and disease pro-

cesses together. A remarkable expository

paper of possible FCAS in hypertension is
Weder & Schork19.

Considering health and disease as a

complex dynamic has two important con-
sequences. First, clinical disease is the lat-

est of the emergent properties of the

gradual dynamic unfolding of the subject’s
historical events. This memory-keeping but

incessantly reorganizing complex structure

is based on interrelated events. Second, in-
puts to this process are shared by several

different interacting scales of biological or-

ganization involving feedback. The overall
result of this complex parallel processing is

information translation and specificity loss.

Therefore, any clinically observable prop-
erty is a process endpoint whose causes

cannot be linearly determined. A possible

metaphor for the pathological process is a
walk in a maze, the walls of which rearrange

themselves with every step20.

APPENDIX II

MATHEMATICAL UNDERPINNINGS OFMATHEMATICAL UNDERPINNINGS OFMATHEMATICAL UNDERPINNINGS OFMATHEMATICAL UNDERPINNINGS OFMATHEMATICAL UNDERPINNINGS OF

FRACTAL MODELINGFRACTAL MODELINGFRACTAL MODELINGFRACTAL MODELINGFRACTAL MODELING

The inverse power law is a hyperbolic
function with no characteristic scale and,

therefore, infinite moments. In particular,

its theoretically infinite variance provides
space over all scales of organization for un-

expected emergent events. The positive

power law is given by: Y = a X ß where a is a
parameter, X and Y are two intercorrelated

biological variables, and ß is the power-law

exponent. In biology, this equation is known
as the allometric law21. The exponent of the

power law is usually positive. It describes

the differential rate of change of two vari-

ables from a cross-sectional survey of or-

ganisms. When fitted to the bivariate rela-
tionship of variables on log-log graph pa-

per, the function yields a straight line.

A covariance structure refers to a set of
multiple interrelated variables. To deal with

multiple variables does not detract from

using the power law. Incidentally, the fit-
ting procedure through the major axes gen-

eralizes easily to multiple variables through

principal component analysis (PCA)22.
The power-law exponent can be esti-

mated in many ways. In physics, it is usu-

ally estimated by least squares15. This poses
a unique problem for biological variables

since no dependent variable is implied by

the concept of covariance structure. Fur-
ther, the X and Y variables both involve

measurement errors. The best way to deal

with this situation is to estimate the slope
of the major axis (instead of any of the re-

gression lines). Accordingly, neither the X

nor the Y variable should be privileged by
the fitting procedure: the minimization

should then be undertaken orthogonally

with respect to the major axis instead of
vertically or horizontally with respect to re-

gression lines. Doing so, however, involves

one further difficulty: the slope of the ma-
jor axis is attracted towards the variable

with the largest measurement error or the

largest scale. One then has to take the loga-
rithm of the variables to stabilize the vari-

ance or render the slope estimate scale-in-

variant under nonlinear scale changes22,29.
Seeking the principal components of the

covariance matrix of the log variables of a

bivariate swarm of points yields a matrix of
loadings, the first vector of which represents

the direction cosines of the major axis and

the second vector, the direction cosines of
the minor axis such that:

Y1 = [cos t   sin t] [X1 - µ1]

Y2 = [-sin t   cos t] [X2 - µ2]

where Y1 and Y2 are the new coordinate axes

(the principal components), cos t and sin t
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are the direction cosines of the rotation to

the new axes, and the [Xi - µi] correspond to

the translation with respect to the original
coordinate axes undertaken by the PCA. The

µi are the means of the original Xi variables.

The above yields:

{Y/Gy} 1/cos t = {X/Gx} 1/sin t

where: Y and X are the arithmetic values;

Gy and Gx are the geometric means

of Y and X;
and cos t  and  sin t  are the direc-

tion cosines of the matrix of factor

loadings of the logarithmic covari-
ance matrix.

It results from the above that:

Y = {Gy/Gx(cos t/sin t)} X(cos t/sin t)

and therefrom: Y = a X ß

Therefore, the above transforms back to
the power law, yielding the exponent ß as

the ratio of the direction cosines of the bi-

variate swarm of points. Compared to esti-

mating through least squares, there are

three advantages to the above procedure.
First, the slope of the power law is biologi-

cally meaningful because it specifies a

structure rather than a dependence rela-
tionship. Second, one obtains not only the

value of the slope but also the estimates of

differential change in both variables. Third,
one can straightforwardly assess the com-

plexity of the dynamics from a simple as-

sessment of the power-law exponent.
Obtaining the slopes of the orthogonal

axes of a high-dimensional swarm of points

is a simple matter of performing a PCA on
the covariance matrix of the logged data.

More specifically, the matrix of factor load-

ings then yields the direction cosines of all
the axes of the hyperellipsoid. The direction

cosines can then be used to estimate the

various power-law slopes. To use principal
components on the logged data of the co-

variance matrix, one must ensure that the

swarm of points is normally distributed; this
can be assessed by a 95% equiprobable el-

lipse contour on each pair of variables29.

References

1. Krieger N. Epidemiology and the web of causation: Has
anyone seen the spider? Soc Sci Med 1994; 39: 887-903.

2. Halloran ME, Struchiner CJ. Study designs for dependent
happenings. Epidemiology 1991; 2: 331-8.

3. Koopman JS, Longini Jr, IM. The ecological effects of
individual exposures and nonlinear disease dynamics in
populations. Am J Publ Health 1994; 84: 836-42.

4. Philippe P. Chaos, population biology, and epidemio-
logy. Some research implications. Hum Biol 1993; 65:
525-46.

5. Horwitz RI, Feinstein AR. Methodologic standards and
contradictory results in FCASe-control research. Am J
Med 1979; 66: 556-84.

6. Feinstein AR. Scientific standards in epidemiologic
studies of the menace of daily life. Science 1988; 242:
1257-63.

7. Taubes G. Epidemiology faces its limits. Science 1995;
269: 164-9

8. Philippe P. Sartwell’s incubation period model revisited
in the light of dynamic modeling. J Clin Epidemiol 1994;
47: 419-33.

9. May RM. Nonlinearities and complex behavior in simple
ecological and epidemiological models. Ann NY Acad Sci
1987; 504: 1-15.

10. Baxt WG. Complexity, chaos and human physiology: The
justification for non-linear neural computational
analysis. Cancer Lett 1994; 77: 85-93.

11. Montroll EW, Shlesinger MF. On 1/f noise and other
distributions with long tails. Proc Natl Acad Sci USA
1982; 79: 3380-3.

12. West BJ, Shlesinger MF. The noise in natural
phenomena. Am Sci 1990; 78: 40-5.

13. Bak P, Chen K. Self-organized criticality. Sci Am 1991 Jan;
264: 46-53.

14. Schroeder M. Fractals, chaos, power laws. New York:
Freeman; 1991.



293 Rev. Bras. Epidemiol.
Vol. 1, Nº 3, 1998

The complex dynamics of diabetes
Philippe, P. & West, B.J.

15. West JB, Deering WD. The lure of modern science:
Fractal thinking. World Scientific Publishing; 1995.

16. Sing CF, Zerba KE, Reilly SL. Traversing the biological
complexity in the hierarchy between genome and CAD
(coronary artery disease) endpoints in the population at
large. Clin Genet 1994; 6: 6-14.

17. Yates FE. Order and complexity in dynamical systems.
Homeodynamics as a generalized mechanisms for
biology. Math Comput Modelling 1994; 19: 49-74.

18. Firth WJ. Chaos —predicting the unpredictable. Br Med J
1991; 303: 1565-8.

19. Weder AB, Schork NJ. Adaptation, allometry, and
hypertension. Hypertension 1994; 24: 145-56.

20. Baum F. Researching public health: Behind the
qualitative-quantitative methodological debate. Soc Sci
Med 1995; 40: 459-68.

21. Sernetz M, Gelleri B, Hofmann J. The organism as
bioreactor. Interpretation of the reduction law of
metabolism in terms of heterogeneous catalysis and
fractal structure. J Theoret Biol 1985; 117: 209-30.

22. Jolicoeur P. The multivariate generalization of the
allometry equation. Biometrics 1963; 19: 497-9.

23. Reaven GM, Miller RG. An attempt to define the nature of
chemical diabetes using a multidimensional analysis.
Diabetologia 1979; 16: 17-24.

24. Andrews DF, Herzberg AM. Data. A collection of
problems from many fields for the student and research
worker. New York: Springer-Verlag; 1985.

25. Cryer PE. Regulation of glucose metabolism in man.
J Intern Med Supplement 1991;735: 31-9

26. Yki-Jarvinen M. Pathogenesis of non-insulin-dependent
diabetes mellitus. Lancet 1994; 343: 91-4.

27. Stout RW. Glucose tolerance and ageing. J R Soc Med
1994; 87: 608-9.

28. Ciampi A, Schiffrin A, Thiffault J, Quintal H, Weitzner G,
Poussier P, Lalla D. Cluster analysis of an insulino-
dependent diabetic cohort towards the definition of
clinical subtypes. J Clin Epidemiol 1990; 43: 701-15.

29. Jolicoeur P, Heusner A. The allometry equation in the
analysis of the standard oxygen consumption and body
weight. Biometrics 1971; 27: 841-55.

30. West BJ. Fractal physiology: A paradigm for adaptive
response. In: Puermatikas ST, editor. Singular behavior
and nonlinear dynamics. Singapore: World Scientific;
1989. p. 643-64.


