Acessibilidade / Reportar erro

Aerosols, clouds and climate: results from LBA on aerosols and cloud microphysics studies

Atmospheric aerosols account for some of the largest uncertainties regarding climate change scenarios. The uncertainties associated to the estimates of the aerosol contributions in the global energy budget is still very high, particularly concerning the so-called "indirect effect". Hence, although the level of scientific understanding on the role of aerosols in climate have advanced significantly in the last few years, it is still very low in comparison to the well established knowledge concerning the effect of greenhouse gases. Particularly in Brazil, the measurements taken during the LBA-SMOCC-EMfiN! (Large-Scale Biosphere-Atmosphere Experiment inAmazonia - SmokeAerosols, Clouds, Rainfall and Climate - Experimento de Microfísica de Nuvens) provided a comprehensive data base on aerosols and cloud microphysics. In this work, we review some of the major results related to such data base, via both analysis of experimental data and numerical modeling. We conclude that significant changes in precipitation development may occur in association with the large amount of aerosols launched into the atmosphere by forest fires but that several questions, especially those ones concerning giant cloud condensation nuclei and ice nuclei, have to be clarified.

Aerosols; cloud microphysics; LBA


Sociedade Brasileira de Meteorologia Rua. Do México - Centro - Rio de Janeiro - RJ - Brasil, +55(83)981340757 - São Paulo - SP - Brazil
E-mail: sbmet@sbmet.org.br