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ABSTRACT
This article attempts to quantify the spatial uncertainties associated with extreme temperature’s 
response, by assessing data derived from climate model. This is undertaken by a comparison of the 
spatial pattern of a long-term time-series aggregation (1960/61–1989/90) for extreme temperatures 
simulated by a particular GCM (the UK Met Offi ce - Hadley Centre climate model, HadCM3) to that 
of the USA NCAR NCEP Reanalyses, which are considered as ‘truth’, over the MICE (Modelling the 
Impacts of Climate Extremes - EU Project) spatial domain. Since evaluation of models is crucial to 
assessing future scenarios, the aim of this study is to investigate whether the extreme values predicted 
by the HadCM3 climate model can simulate those produced by NCEP Reanalyses, assuming that the 
extremes of both models are realizations of the same spatial stochastic process. To get more useful 
information about the uncertainties surrounding spatial climate projection, one also has to analyze 
the pattern of temperature extremes in terms of their anomalies. A common technical issue in the 
assessment of numerical spatial models is based on the Principal Components Analysis and Bayesian 
Classifi cation for spatial pattern recognition. These methodologies are very important and useful for 
guiding an evolutionary statistical model-building process. This study leads to the conclusion that 
the HadCM3 Simulations do not realistically reproduce the NCEP Reanalyses, despite the fact that 
the climatology of extremes has demonstrated very similar spatial patterns. It is likely therefore that 
such instability may persist in the future.
Keywords: anomaly, empirical Bayesian classification; compositing; principal components 
loading.

RESUMO: ANÁLISE DO PADRÃO ESPACIAL DA CLIMATOLOGIA DE TEMPERATURAS 
EXTREMAS: AVALIANDO SIMULAÇÕES DO HADCM3 VIA REANÁLISES DO NCEP PARA 
A EUROPA.
Este artigo é um ensaio na quantifi cação de incertezas espaciais associadas à resposta de temperaturas 
extremas, avaliando dados derivados de um determinado modelo de clima. Isto é empreendido por uma 
comparação entre o padrão espacial de séries temporais agregadas de longo termo (1960/61–1989/90) 
para temperaturas extremas simuladas de um particular MCG, o “UK Met Offi ce - Hadley Centre” 
modelo de clima, HadCM3, e das reanálises do “USA NCAR NCEP”, que são considerados como 
‘verdade’, no domínio espacial do projeto MICE (“Modelling the Impacts of Climate Extremes” - 
Projeto Europeu). Posto que a avaliação de modelos é crucial na determinação de cenários futuros, 
a meta deste estudo é investigar se os valores extremos obtidos através do HadCM3 são hábeis 
para reproduzir as reanálises do NCEP, assumindo que os extremos de ambos os modelos sejam 
realizações do mesmo processo estocástico no espaço. Para adquirir informações mais úteis sobre as 



1. INTRODUCTION

The purpose of this manuscript is to evaluate the spatial 
ability of a GCM output to reproduce the present-day occurrence 
of temperature extremes over the European geographical domain. 
Basically, one would like to confi rm whether, stochastically and 
visually, the spatiotemporal aggregated extreme patterns (long-
term climate signal) obtained from the HadCM3 Simulations 
can be considered as realizations of the NCEP Reanalyses. 
To evaluate the hypothesis of model performance one uses a 
straightforward interpolation rescaling followed by Principal 
Components Analysis and Bayesian Classification – two 
alternative methods to corroborate the results in Lucio, 2004a 
and Lucio, 2004b).

Since the high risk of getting the wrong strategy decision 
concerning future scenarios and impacts has costly economic and 
social consequences. Hypothesis on climate change concerning 
global climate models can be rejected through comparison with 
observations or reanalyses database, but improbably confi rmed. 
Assessments (Fuentes et al., 2003) of GCM simulation models 
by statistical techniques have been historically concentrated 
mainly on monthly and seasonal means. Considering extreme 
measures of climate models and reanalyses studies, the spatial 
prognostic of large-scale is an important component. The failure 
to neglecting this spatial information (Lucio, 2004a; Lucio, 
2004b) can lead to errors in decision-make.

Hence, basically, one would like to confi rm whether 
stochastically the long-time aggregated extreme values obtained 
from the HadCM3 Simulations can be considered realisations of 
the NCEP Reanalyses over the MICE (Modelling the Impacts 
of Climate Extremes: MICE EVK2-CT-2001-00118 - European 
Research Project) geographical domain. For this reason, the 
climatology and the anomaly spatial patterns from the HadCM3 
Simulations are compared with the corresponding ones from the 
NCEP Reanalyses, in the same spatial domain.

 

2. EXPERIMENTAL DATASET

Climate scenarios are defi ned by particular climate 
forcing in the dynamical simulations of climate models. The 
general circulation models (GCM) are the most complex of these 
models and such the most powerful tools available for making 
realistic estimates of climate change. However, they involve 
much uncertainty, especially in terms of estimating regional or 
local change essentially with reference to the extremes. In this 
work, the spatial pattern of extreme temperature climatology 
and anomaly over the MICE spatial domain (Figure 1) are 
analysed to assess the output of the HadCM3 Simulations and 
the NCEP Reanalyses.

Figure 1  – The geographical domain to assess HadCM3 
Simulations from NCEP Reanalyses. HadCM3 (GCM Model): 
16long × 19lat = 304pts, 15◦W - 41.25◦E, 30◦N - 75◦N; NCEP 
(Reanalyses) :  31long ×  25la t  =  775pts ,  15 ◦W -  41 .25 ◦E, 
29.52◦N - 75.24◦N.

The HadCM3 Simulation is performed with a coupled 
atmosphere-ocean general circulation model (AOGCM) 
developed at the Hadley Centre - UK and described by 

incertezas acerca da projeção espacial de clima, deve-se também analisar o padrão de extremos de 
temperatura em termos de suas anomalias. Uma técnica comum na avaliação de modelos numéricos 
está baseada na Análise de Componentes Principais ou na Classifi cação Bayesiana Empírica para o 
reconhecimento do padrão espacial. Estas metodologias são muito importante e úteis para guiar o 
processo de estatístico evolutivo na construção de modelos. Este estudo conduz à conclusão que as 
simulações do HadCM3 não reproduzem realisticamente as reanálises do NCEP, apesar da climatologia 
de extremos ter demonstrado padrões espaciais semelhantes. É provável, então, que tal instabilidade 
possa persistir no futuro.
Palavras-chave: anomalia, classifi cação Bayesiana empírica; “compositing”; “loadings” das 
componentes principais.
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Gordon et al. (2000) and Pope et al. (2000). The HadCM3 model 
produces values for grid squares over a temporal window. The 
NCEP/NCAR Reanalyses (National Center for Environmental 
Prediction/National Center of Atmospheric Research - USA), 
which are currently available back to 1948, contain several 
meteorological parameters in a global spatial resolution of 
2.5° x 2.5° (latitude x longitude) and in a vertical extent from 
the surface up to 10 hPa level, c.f. Kalnay et al. (1996). The 
spatial window for HadCM3 covering the MICE domain is a 
regular grid with 2.5° latitude by 3.75° longitude (16 long x 19 
lat = 304 points) and for the NCEP Reanalyses is represented 
with a Gaussian grid, which preserves equal areas, spaced of 
1.875° longitude by 1.903801° latitude (31 long x 25 lat = 775 
points). 

The elementary dataset under study consists on the 
temporal aggregated coldest and warmest temperatures from 
winter (December, January and February - DJF) and summer 
(June, July and August - JJA) assembled. The climatology was 
calculated separately for each grid point as the average value 
(calculated over the period of record: 1960/61–1989/90).  Hence, 
the climatology for nocturnal and diurnal extreme temperatures 
were calculated based on the 30 recorded years subdivided into 
the four following work-ensembles:
1. Spatial climatology of the winter coldest minimum 

temperature (TMIN.W);
2. Spatial climatology of the winter warmest maximum 

temperature (TMAX.W);
3. Spatial climatology of the summer coldest minimum 

temperature (TMIN.S);
4. Spatial climatology of the summer warmest maximum 

temperature (TMAX.S).

These marks were chosen because they represent the 
warmest and coldest days/nights, related to the winter and 
summer seasons. Furthermore, the dependence of temperature 
extremes on geographical attributes was considered, since the 
extreme temperature depends on the latitude (solar forcing), 
altitude, and contrasts land-water and land-topography - both 
spatial patterns are expected to be very similar, which can be 
predictable by a simple spatial autoregression moving average 
interpolation. 

In practice, to get large-scale comprehensible information, 
it is more useful to analyse meteorological extremes considering 
their anomalies (δ): the deviation of the absolute extreme 
measure from the long-term average value (i.e., the deviation 
of the coldest or the warmest temperature for a year from the 
long-term average value of the coldest or the warmest daily 
temperature). The reason for using anomalies is to attempt to 
remove the infl uence of latitude, longitude, and land/ocean 
differences. Hence, the anomalies were calculated separately for 

each grid point as the difference between the largest maximum 
(smallest minimum) temperature for a particular season and year 
and the average value (calculated over the period of record) of 
the largest maximum (smallest minimum) temperature at that 
grid point.  Hence, the anomalies for minimum and maximum 
extreme temperature events were calculated based on the 
30 recorded years subdivided into the four following work-
ensembles:
1. Spatial anomalies of the winter minimum temperature 

(δTMIN.W);
2. Spatial anomalies of the winter maximum temperature 

(δTMAX.W);
3. Spatial anomalies of the summer minimum temperature 

(δTMIN.S);
4. Spatial anomalies of the winter maximum temperature 

(δTMAX.S).

The NCEP Reanalyses are obtained at individual centred-
grid points and have different spatial resolution from the HadCM3 
Model output. Consequently, it is not straightforward to compare 
NCEP Reanalyses to the HadCM3 Model output directly. Rather, 
some “regriding” or rescaling of the data, by means a spatial 
interpolation is needed for comparability. This requires a statistical 
procedure with adequate precision, such as the compositing 
interpolation onto a common grid (Kysely, 2002a; Kysely, 2002b). 
The basic idea of the statistical rescaling (compositing or changing 
of support) to assess spatial information is to project an empirical 
large-scale spatial variable on a different space-domain (Cressie, 
1996). This technique is based on the assumption that all small-
scale variability can be explained or recovered from large-scale 
variability (von Storch, 1999).

3. DATA REGRIDING

A two-dimensional spatial process can be characterized 
by a simple realisation of a stochastic model {δT(s) : s ∈ ℜ2} 
where s ∈ ℜ2 represent a generic data location. The trend surface 
model is a polynomial based on data location, which summarizes 
the dependence of the response variable {δT(s) : s ∈ ℜ2} on the 
explanatory factors {s = (x, y) ∈ ℜ2} and occasionally some 
factors that has distinct levels, in the vein of {ocean/sea, land} 
dummy variables (Draper and Smith, 1998), in order to take into 
account that this information may have separate deterministic 
effects on the extreme temperature anomalies, by the trend 
surface stochastic equation (Cressie, 1996; Bailey and Gatrell, 
1996). 

If the primary interest is to understand and describe the 
nature of the variation in the observed attribute values, by isolating 
any systematic large-scale trend, the knowledge of the trends in 
models are important to be diagnosed. One method that may be 
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used to identify, explore and characterize the effect of potential 
large-scale factors on an outcome variable is the compositing 
(compositing refers to creating solutions by combining objects 
from different sources). The main advantage of this method is 
its simplicity in both implementation and understanding. It is 
extremely fl exible, able to capture both localized and moving 
features and to quantify non-linearity in the behavior (by 
comparing opposite phases of the extreme events).

In this work one interpolates through the data points by 
polynomials cubic splines to determine the predicted extreme 
anomalies ({δT(s) : s ∈ ℜ2}) - For n given points there exists a 
unique polynomial of degree n-1 or less which passes through 
these points. A cubic spline is a piecewise cubic polynomial 
such that the function, its derivative and its second derivative 
are continuous at the interpolation nodes. The natural cubic 
spline has zero second derivatives at the endpoints. It is the 
smoothest of all possible interpolating curves in the sense that 
it minimizes the integral of the square of the second derivative 
(de Boor, 1978).

The spatial similarities between both models are 
illustrated in Figure 2a-b and Figure 3a-b, where signifi cant 
spatial misfi ts are locally detected essentially vis-à-vis of the 
minimum temperature systems (Figure 2a and Figure 3a). The 

differences are largely infl uenced by topography, latitudinal 
heat and energy balances. The compositing method involves 
constructing an indicator which correlates with the variability of 
the phenomenon of interest. Making a regression of the “index” 
onto the data yields composite spatial patterns of variability.

A potential problem with climate data is that they 
undoubtedly present a spatial-dependence component; it 
can result in spatial autocorrelation which causes nuisances 
for statistical methods that make assumptions about the 
independence of residuals. Tests to detect spatial autocorrelation 
can be performed as an exploratory technique to decide whether 
results from spatial regression modeling could be used. If spatial 
residual autocorrelation exists it will violate the assumption about 
the independence of residuals and the validity of hypothesis 
testing in model fi t is questioned. The main effect of such 
violations is that the residual squared sum is underestimated, 
infl ating the value of test statistic that increases the chance of 
a Type I error - incorrect rejection of the null hypothesis, H0: 
no spatial autocorrelation. Hence, in attributes motivating the 
spatial pattern of the residual analyses, the level, the nature and 
strength of the interdependence intrinsic to each temperature 
extreme ensemble were defi ned by a measure of residuals spatial 
association, the Moran’s indices (Moran, 1948). 

Figure 2 – Spatial bivariate interpolation of the (a, b) winter and (c, d) summer maximum TMIN extreme temperatures. 
The isotherms designed from the 30-years climatology for both models the (a, c) HadCM3 Simulations and the (b, d) NCEP 
Reanalyses.
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Taking the spatial regression residuals into account, 
reasonable low interdependence can be detected for the HadCM3 
Simulations in contrast to a sensible dependence for the NCEP 
Reanalyses. Observe that the use of simple interpolation to 
produce a common grid for both NCEP and HadCM3 models 
can give the impression to be inappropriate to validate extreme 
temperatures simulated by both models. Effectively, this fact 
can add another source of uncertainty into the analyses.

4. SPATIAL PATTERN PCA RECOGNITION

A method to fi nd a spatial pattern, which explains the 
maximal variance of the data fi elds, must be considered to 
confi rm the author’s desire to assess the models interpolating 
onto a common grid (spatial confi rmatory analyses). Hence, to 
quantify spatially how well the interpolated HadCM3 climate 
model reproduces the current extreme events climate the author 
make use of alternative methods to capture local suspicions of 
lack- information, as it identifi es the strengths and weaknesses 
of GCM to regional-scale differences in model performance 
via Principal Components Analysis and Bayesian Classifi cation 
designed for spatial pattern recognition.

The Principal Components Analysis (PCA) is widely 
used in climate data analysis. The use of the PCA intends to 
facilitate the understanding of the underlying spatial data 
structure. Let k spatial stochastic process {Z(s) : s ∈ ℜ2}1, ...k 
where s represent a generic data location in a common two-
dimensional Euclidean space (Bailey and Gatrell, 1996). The 
result of the PCA is a set of indices describing the spatial 
variations in the original data set, called principal components. 
Each principal component is a linear combination of the 
original variables. The amount of information suggested 
by a principal component is its variance and the principal 
components are derived in decreasing order of variance. In 
PCA the set of all observations at aggregated time is treated 
as a vector whose coordinates represents points in space, and 
then decomposed into orthogonal components.

The principal components are obtained from an 
orthogonal projection of the spatial ensemble {Z(s)}j=1, ... k 
on discretized eigenfunctions (Johnson and Wichern, 1998). 
Regularly most of the variance in {Zj=1, ... k (s)} can be described 
by few principal components. The PCA identifi es a small number 
of linear combinations that account for a large proportion of the 
spatial variability. This methodology is very useful to describe 

Figure 3 – Spatial bivariate interpolation of the summer maximum TMAX extreme temperatures. The isotherms designed 
from the 30-years climatology for both models the (a, c) HadCM3 Simulations and the (b, d) NCEP Reanalyses.
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a) b)

HadCM3 Simulations
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NCEP Reanalyses
Long-Term Extreme Temperature - TMAX.W

c) d)
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the spatial variation of the temperature extremes climatology 
and long-term anomaly. 

The spatial pattern, which maximizes the variance, 
is the eigenvector of the covariance/correlation matrix. 
This direction is the one in which most of the variance lies. 
Subsequent spatial patterns can be found in order of decreasing 
importance, corresponding to decreasing eigenvalues. The 
λth eigenvector is the direction that explains the maximum 
of the residual variance in the data and is orthogonal to all 
previous eigenvectors. This eigenvector is called the λth EOF 
(Empirical Orthogonal Function). Associated amplitude or 
component loading is called the λth Principal Component 
(PC) of the fi eld. A PC is simply the data projected onto the 
λth EOF. There is no rule-of-thumb to know a priori how many 
PCs or EOFs should be retained. Commonly, a “low number” 
of PC’s capture most of the variance and the PC/EOF pairs 
form an effi cient low dimensional description of the fi eld. In 
this case, projection of the fi eld onto these PC’s is a useful 
spatial fi lter. The EOF’s may combine independent spatial 
patterns of variability, since higher EOF’s are forced to be 
orthogonal to their predecessors, they may not be physically 
feasible. In North et al. (1982) a rule for the identifi cation of 

degenerated EOF modes is described in which the statistical 
uncertainties of the EOFs are related to a signifi cance test – the 
test, also used by Kim and North (1993), was slightly modifi ed 
considering analogies between classic tests of independence: 
chi-square, likelihood ratio, Fisher’s exact, Cramer’s V and 
Yule’s Q and implemented in MathSoft, 2000 for the purpose 
of this research. 

The rotated PCA separates distinct physical modes of 
behaviour or quantify coupling between different modes in the 
system (ocean/land or longitude/latitude). First the spatial data 
is fi ltered through PCA. Then look at the linear combinations of 
the EOF’s to enforce certain spatial localization of the variability 
patterns. In this way, the EOF’s found may have a simpler 
physical interpretation. As expected the quite trivial land-sea 
contrast dominates the resulting loading plots, which insert a 
negligible uncertainty source. A linear method based on the 
Singular Value Decomposition (SVD) on the covariance matrix, 
was used to isolate patterns of coupled variability between the 
different fi elds of data. This fi nds optimally coupled spatial 
structures by maximizing the covariance between various 
possible patterns. Spatial patterns of the singular vectors of the 
SVD are orthonormal.

Figure 4 – Spatial PCA for the minimum extreme temperature climatology defi ned by the (a, c) HadCM3 Simulations and 
the (b, d) NCEP Reanalyses.
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Figure 5 – Spatial PCA for the maximum extreme temperature climatology defi ned by the (a, c) HadCM3 Simulations and 
the (b, d) NCEP Reanalyses.

Figure 4 and Figure 5 show the minimum and the 
maximum spatial PC distribution for the extremes’ mean 
climatology (coldest and warmest), respectively, where the 
spatial similarity (statistically signifi cant regions) between 
both models can be easily detected. Remark that in the 
fi gures’ label one also gives the Standard Deviation for each 
eigenvalue associated to each eigenvector component. Figure 6 
and Figure 7 show the minimum and the maximum spatial 
distribution of the PC for the extremes anomaly, where a 
strong contrast between both models can be without diffi culty 
visualized; essentially with respect to the maximum system, 
which could be explained by model uncertainties outstanding 
the energy balance. There is a very high variability of the 
minimum extremes climatology.

The plot of the fi rst component (Figure 4) basically 
shows a north-south (i.e., latitudinal) gradient, and the isolines 
for the second component outline the European and North 
African land mass. The main spatial structure information can 
be identifi ed by the two fi rst PC’s, based upon the covariance 
matrix (these PCs capture most of the variance and the PC/

EOF pairs form an effi cient two-dimensional description of 
the fi eld). These two components, for the minimum, account 
about 98.9% of the total variation for the HadCM3 Simulations 
and 98.5% of the total variation for the NCEP Reanalyses. 
The highest positive loadings on the fi rst component are 
related to the winter’s climatology (Figure 4). This component 
describes the main characteristic of latitudinal, longitudinal 
and ocean/land variation in extreme temperatures, from the 
warmest environment of the south-west to the coldest of the 
north-east zones. The Mediterranean region and the south part 
of the Atlantic give high scores, while through the north and 
the north-east there is a preponderance of negative scores. 
The variable with highest positive loadings on the second 
component is related to the summer’s maximum climatology 
in opposition to the winter’s minimum climatology. This 
component separates contrasted warmest summer zones from 
coldest winter ones describing the characteristic on latitudinal 
variation and land/ocean balance in extreme temperature 
determination. The fi rst two components, for the maximum, 
explain about 97.8% (Figure 5) of the total variation for the 
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HadCM3 Simulations - Climatology 1st PCA NCEP Reanalyses - Climatology 1st PCA
a) b)

Standard Deviation: 20.081
Proportion of the explained variance: 0.714

Standard Deviation: 17.216 
Proportion of the explained variance: 0.731

HadCM3 Simulations - Climatology 2nd PCA NCEP Reanalyses - Climatology 2nd PCA
c) d)

Standard Deviation: 12.203
Proportion of the explained variance: 0.264

Standard Deviation: 10.049
Proportion of the explained variance: 0.249
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HadCM3 Simulations and 98% of the total variation for 
the NCEP Reanalyses. The variable with highest positive 
loadings on the fi rst component is the winter’s minimum 
climatology for the HadCM3 Simulations as well as a mixed 
contrast between the winter’s minimum climatology and the 
summer’s maximum climatology for the NCEP Reanalyses 
(Figure 5). This component describes the main characteristic of 
latitudinal variation in extreme temperatures, from the warmest 
environment of the south to the coldest of the north zones. 
The variable with highest positive loadings on the second 
component is related to the summer’s maximum climatology 
in opposition to the winter’s minimum climatology. This 
component describes the main characteristic of latitudinal, 
longitudinal and ocean/land variation in extreme temperatures, 
from the warmest environment of the south-west to the coldest 
of the north-east zones; 

Concerning the PCA constructed for the anomaly of 
long-term extreme seasonal temperature regimes, the elementary 
spatial structure information can be identifi ed by the fi rst two 
PC’s, based upon the covariance matrix (Figure 6). These two 

components, for the minimum, account about 95.3% of the total 
variation for the HadCM3 Simulations and 98.2% of the total 
variation for the NCEP Reanalyses. The highest positive loadings 
on the fi rst component are related to the winter’s climatology 
(Figure 6). This component describes the main characteristic 
of ocean/land variation in extreme temperature anomalies. 
The variable with highest positive loadings on the second 
component is related to the winter’s minimum in opposition to 
the summer’s maximum. This component separates contrasted 
largest summer anomalies from prevalent winter ones describing 
the characteristic on latitudinal variation and land/ocean balance 
in extreme temperature anomalies determination. The fi rst two 
components, for the maximum, explain about 89.3% of the total 
variation for the HadCM3 Simulations and 98.6% of the total 
variation for the NCEP Reanalyses (Figure 7). The variable 
with highest negative loadings on the fi rst component is the 
winter’s minimum climatology for the HadCM3 Simulations 
in opposition with the summer’s maximum anomaly for the 
NCEP Reanalyses (Figure 7). This component describes the 
main characteristic of latitudinal variation, mainly for the 

Figure 6 – Spatial PCA for the minimum extreme temperature anomaly defi ned by the (a, c) HadCM3 Simulations and the 
(b, d) NCEP Reanalyses.

HadCM3 Simulations - Anomaly 1st PCA NCEP Reanalyses - Anomaly 1st PCA
a) b)

Standard Deviation: 10.275
Proportion of the explained variance: 0.674

Standard Deviation: 27.519
Proportion of the explained variance: 0.908

HadCM3 Simulations - Anomaly 2nd PCA NCEP Reanalyses - Anomaly 2nd PCA
c) d)

Standard Deviation: 6.613
Proportion of the explained variance: 0.279

Standard Deviation: 7.847
Proportion of the explained variance: 0.074
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Figure 7 – Spatial PCA for the maximum extreme temperature anomaly defi ned by the (a, c) HadCM3 Simulations and the 
(b, d) NCEP Reanalyses.

NCEP Reanalyses, in extreme anomalies. The variable with 
highest negative loadings on the second component is related 
to the summer’s maximum for the HadCM3 Simulations in 
opposition to the summer’s maximum for the NCEP Reanalyses. 
This component describes the main characteristic of latitudinal, 
longitudinal and ocean/land variation in extreme anomalies. 
Based on the PCA one concludes that for extreme anomalies 
there is no realistic spatial agreement between the HadCM3 
Simulations and the NCEP Reanalysis throughout the entire 
target window, local discrepancies could be explained by 
model uncertainties outstanding the orography, the latitudinal 
heat and energy balances. Although, the spatial pattern of the 
NCEP Reanalyses climatology is strongly recognized by the 
HadCM3 Simulations.

The PCA do not use external information about the 
phenomenon such as underlying measurements.  This prior 
information can be extracted to quantify spatially how well 
the general circulation climate model reproduces the current 

extreme events given by the reanalyses. Compositing all the 
events, reduce the number of spatial degrees of freedom by 
cluster (“where the system spends most of its time”) analysis, 
from such a region gives the corresponding spatial pattern and 
some additional information can be obtained by observing the 
spatial character of categorized events. 

The naive Bayesian classifi cation or clustering is a 
simple probabilistic classifi cation method. The term naive 
Bayes refers to the fact that the probability model can be 
derived using Bayes’ Theorem and that it incorporates strong 
independence assumptions that often have no bearing in 
reality, hence are deliberately naive. Depending on the precise 
nature of the probability model, naive Bayes classifi ers 
can be trained very effi ciently in a supervised learning 
setting. Abstractly, the probability model for a classifi er is 
a conditional model over a dependent class variable with a 
small number of outcomes or classes, conditional on several 
feature variables through.
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HadCM3 Simulations - Anomaly 1st PCA NCEP Reanalyses - Anomaly 1st PCA
a) b)

Standard Deviation: 6.516
Proportion of the explained variance: 0.673

Standard Deviation: 35.14
Proportion of the explained variance: 0.876

HadCM3 Simulations - Anomaly 2nd PCA NCEP Reanalyses - Anomaly 2nd PCA
c) d)

Standard Deviation: 3.723
Proportion of the explained variance: 0.220

Standard Deviation: 12.447
Proportion of the explained variance: 0.109
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5. SPATIAL PATTERN BAYESIAN 
CLASSIFICATION

The procedure of Bayesian Classifi cation (BC) is based 
on the estimation of the prior distribution upon certain global 
aspects of the data set (Domingos and Pazzani, 1997). It is an 
alternative approach to Discriminant Analysis via probability 
models (Ripley, 1996). The BC summarizes the evidence 
provided by a data set in favour of one model classifi cation, 
represented by a statistical model, where the prior knowledge 
is constructed based on the overall attribute across the spatial 
data (i.e., make available a measure to quantify how the 
HadCM3 Simulations react to a specifi c NCEP Reanalyses 
classifi cation). This methodology can be used for description 
as well as for prediction. One has developed the following 
exercise just to exemplify and attempt to elucidate for 
what kind of interpretation is expected to come out of this 
scheme.

Let πC = P(C) the prior spatial probabilities of the 
classes, assumed to have arisen under the classification 
according to a climate signal conditional probability 
function from the NCEP Reanalyses P(NCEP|C). Given the 
prior probabilities functions, the data C produce posterior 
probabilities P(C|NCEP). Since any prior information gets 
transformed to posterior information through consideration 
of the spatial ensemble C, the transformation itself represents 
the evidence provided by C. In fact, the same transformation 
is used to obtain the posterior probability, regardless of the 
prior probability and this transformation takes a simple form, 
from the Bayes’ theorem (Kass and Raftery, 1995; Carlin and 
Louis, 2002). 

In practice consider the Boolean classification 
problem concerning the multinomial climate signal domain 
presupposing the stochastic function {Z(s), s ∈ ℜ2} taking 
values 1, 2, 3 or 4. Consequently, the HadCM3 Simulations 
can be represented by a realization of {Z(s), s ∈ ℜ2} 
given by {z(si) ,  i  = 1, . . . ,  n} Z = 1, 2, 3, 4,  by means of 
the inter-quartile subdivision of the NCEP Reanalyses 
πCj

 = P(Cj(s)), ∀j = 1,2,3,4 representing the spatial target-
classifier (Figure 8). According to the Bayes’ theorem, 
the probability of the {Z(s)} = {z(si), i = 1, ..., n}  being 
class Cj is:

P C s z s
P z s z s C
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n j
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The probability ratios also called discriminant 

functions can be expressed in terms of a series of likelihood 
ratios:
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The probabilities on the prediction are crucial for optimal 
decision making. The cost of predicting for z(si) class Ck when 
the true class is Cj, k ≠ j, is designated by χ(k, j, z). The Bayes 
optimal prediction for z(si) is the class Ck that minimizes the 
expected loss (i.e., the expected cost of predicting z(si) belongs 
to a given class Ck):

� k z s P C z s k j zi j i
j

| ( ) | ( ) ( , , )( )= ( )⋅∑ χ   (3)

In fact, one is interested on the spatial true rate of a 
classifi er; it means the empirical frequency of locations correctly 
classifi ed. In real life, this naive Bayes approach is more 
powerful than might be expected from the extreme simplicity of 
its model; in particular, it is fairly robust in the presence of non-
independent attributes (Zhang et al. 2000). Recent theoretical 
analysis has shown why the naive Bayes classifi er is so robust 
(Rish et al. 2001).

There is a slight visual inconsistency between the 
HadCM3 Simulations (isotherms) and the NCEP Reanalyses 
inter-quartile classifi cation of extreme temperature climatology 
over the target domain. This unpredictability can be established 
by the reciprocal classifi cation. The HadCM3 Simulations 
produce unrealistically extreme temperature events for the 
winter ensemble with misclassifi cation of about 5% and a 
signifi cant divergence regarding the summer of about 25%, 
there is a signifi cant divergence regarding the summer time as 
well, the misfi t is about 25% (Figure 8 and Figure 9).

Model Calibration by Relative Risk Assessment: The 
risk is a measure of the probability that “damages” will occur as 
a result of a given hazard. The risk assessment was employed to 
quantify the “evaluation” of the risk posed to the HadCM3 by 
the potential presence or use the Simulations NCEP Reanalyses. 
The relative risks associated (Figure 10) are reasonable. The 
biggest sources of uncertainties are due the displacement from 
north-east bias to the south-west temperature classifi cation. The 
Mediterranean region and the south part of the Atlantic give small 
uncertainties, while though the north, mid latitudes and through 
north-east there is a preponderance of high risks. These relative 
risk maps separate contrasted hot summer zones from cold winter 
ones describing the characteristic of latitudinal variation in extreme 
of temperature. The HadCM3 Simulations produce unrealistically 
extreme temperature climatology for the winter in the North-eastern 
Europe and for the summer in the North-western Europe, where 
the cost of a false diagnostic seems to be very high.
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Figure 8 – Spatial Interquartile (IQ thresholds) climate signal by the NCEP Reanalyses classifi cation with the 
interpolated isotherms from the HadCM3 Simulations (a) minimum, (b) maximum. 

HadCM3 Climatology by NCEP IQ Climate Signal - TMIN.W
a)

IQ: (-42.86, -20.61, -7.37, 1.02, 14.84) °C IQ: (-35.13, -10.13, -0.50, 8.13, 16.35) °C

HadCM3 Climatology by NCEP IQ Climate Signal - TMAX.S
b)

IQ: (1.36, 16.12, 18.90, 23.22, 30.18) °C IQ: (2.76, 21.34, 28.98, 34.24, 53.32) °C

NCEP Climatology by HadCM3 IQ Climate Signal - TMIN.W
a)

IQ: (-55.68, -21.83, -7.72, 1.23, 16.45) °C IQ: (-50.74, -13.82, -2.21, 6.69, 17.35) °C

NCEP Climatology by HadCM3 IQ Climate Signal - TMAX.S
b)

IQ: (2.02, 14.85, 19.12, 22.48, 30.43) °C IQ: (2.82, 18.98, 26.71, 34.11, 51.04) °C

Figure 9 – Spatial Interquartile (IQ thresholds) climate signal by the HadCM3 Simulations classifi cation with the 
interpolated isotherms from the NCEP Reanalyses (a) minimum, (b) maximum).
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6. SUMMARY

This manuscript is an attempt to compare patterns 
of extreme temperature anomalies simulated by the GCM 
(HadCM3) with NCEP/NCAR Reanalyses over a sector in 
Europe. The spatial patterns of extreme anomalies in the NCEP 
Reanalyses are not recognized from the HadCM3 model. Such 
instability may persist in the future. In all variables the same 
spatial climatology pattern is detected, suggesting that the 
ensemble describes the main characteristic of spatial variation 
in temperature extremes, from the temperate climates of the 
southwest zones to the extreme cold of the northeast ones. The 
HadCM3 Simulations are not able to fi t reasonably the regimes 
defi ned by the NCEP Reanalyses. This is evidenced by the 
analyses carried out in this paper. 

The procedures described here are useful for two 
reasons. First, they help to prevent model misspecifi cation, 
which can lead to incorrect conclusions regarding accuracy 
and effi cacy. Second, they provide information about the 
relationship between prognostic factors (predictive location-
based) and extreme risk. As a matter of fact, all diagnostic 
based on PCA and BC reject the hypothesis that the HadCM3 
Simulations are adequate for modeling present-days scenarios 
of extremes based on the NCEP Reanalyses. Nevertheless, 
the HadCM3 Simulations fi t quite well the spatial climate 

regimes defined by the NCEP Reanalyses. Climatic risk 
analyses and forecasting, concern among others topics, assess 
and interpretation changes in the intensity and frequency of 
recurrence of long duration extreme values (heat/cold waves). 
So, information and incorporation of other extreme indices into 
the analysis are strongly advisable. 

Though uncertainties are inherent in any statistical model, 
they can be reduced by judicious choices of other methods. In the 
context of the extreme value analysis, possibilities include the 
use of alternative models that confi rm the information obtained 
in this exploratory analysis. Additionally, only the prognostic 
factors (predictive location-based) and not the extreme hazard 
(vulnerability severe-extreme-based) were considered in this 
study. The objective of this basic analysis was just to present a 
way to assess spatial extremes of a particular GCM, analyzing 
the uncertainty introduced by the inability of HadCM3 
Simulations to adequately reproduce the current climate by 
statistical modeling. 

PCA and BC are very powerful tools to model extreme 
hazards and future uncertainties by means of location-based 
prediction. It is an alternative method to capture local suspicions 
of lack of information. This exploratory work is essential, as 
it identifi es the strengths and weaknesses of GCM to regional-
scale differences in model performance, providing insights on 
regional-scale climate interactions and processes.

Figure 10 – The spatial Relative Risk via Discriminant Analysis of the Bayesian Classifi cation based on the NCEP 
Reanalyses IQ climate signal (a) minimum, (b) maximum designed for the HadCM3 Simulations.

Expected Cost of Predicting HadCM3 from NCEP Classifi er - TMIN.W
a)

Expected Cost of Predicting HadCM3 from NCEP Classifi er - TMAX.S
b)
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