Acessibilidade / Reportar erro

Patient-specific instrumentation in total knee arthroplasty. Should we adopt it? Work performed in the Universidade do Porto, Faculdade de Medicina, Porto, Portugal.

ABSTRACT

Total knee arthroplasty (TKA) is a surgical procedure of paramount relevance that restores a substantial degree of function in arthritic knees. Increased consideration has been given to the influence of limb alignment on longevity after TKA, as errors in component placement can be associated with inferior function and compromised long-term performance. Consequently, numerous studies comparing patient-specific instrumentation (PSI) to standard instruments (SI) have been published. Patient-specific approaches use preoperative imaging to create specific materials for each patient's anatomy and were designed to achieve a higher rate of success in TKA, causing the entire procedure to be more efficient and cost-effective. However, it is not clear to what degree these studies support the potential advantages of PSI. Thus, the present study aimed to review the current evidence comparing PSI to SI, concerning alignment, cost-effectiveness, and postoperative functional evaluation.

Keywords:
Arthroplasty; Replacement; Knee/instrumentation; Patient-specific modeling; Knee prosthesis; Prosthesis design

RESUMO

A artroplastia total do joelho (ATJ) é um procedimento cirúrgico de fundamental relevância que restaura boa parte da função de joelhos artríticos. Maior atenção tem sido dada à influência do alinhamento do membro na longevidade após a ATJ, uma vez que erros no posicionamento dos componentes podem estar associados a uma menor função e comprometimento do desempenho em longo prazo. Consequentemente, vários estudos compararam a instrumentação personalizada para cada paciente (IPP) com a instrumentação padrão (IP). As abordagens personalizadas usam imagens pré-operatórias para criar materiais específicos para a anatomia de cada paciente e foram projetados para atingir uma maior taxa de sucesso na ATJ e tornar todo o processo mais eficiente e rentável. No entanto, não está claro até que ponto tais estudos respaldam as vantagens potenciais da IPP. Assim, o presente estudo teve como objetivo avaliar as evidências atuais e comparar IPP e IP com respeito ao alinhamento, à relação custo-benefício e à avaliação funcional pós-operatória.

Palavras-chave:
Artroplastia; Substituição; Joelho/instrumentação; Modelagem personalizada; Prótese do joelho; Desenho de prótese

Introduction

Total knee arthroplasty (TKA) is considered a successful orthopedic procedure in the management of degenerative joint disease based on the rate of revision. It represents one of the most regularly performed musculoskeletal procedures, restoring, in most cases, a substantial degree of function in arthritic knees. One can anticipate an increase in TKA in the future, given estimated enlargement in population size and longevity. Therefore, perfecting surgical technique is of paramount relevance, as errors in component placement can be associated with inferior function and compromised long-term performance.11 Victor J, Dujardin J, Vandenneucker H, Arnout N, Bellemans J. Patient-specific guides do not improve accuracy in total knee arthroplasty: a prospective randomized controlled trial. Clin Orthop Relat Res. 2014;472(1):263-71.,22 Ng VY, DeClaire JH, Berend KR, Gulick BC, Lombardi AV Jr. Improved accuracy of alignment with patient-specific positioning guides compared with manual instrumentation in TKA. Clin Orthop Relat Res. 2012;470(1):99-107.

For the past few years, increased consideration has been placed on the influence of limb alignment and component position on longevity and outcomes after TKA, reviewing the survivorship and postoperative performance of the procedure.33 Vundelinckx BJ, Bruckers L, De Mulder K, De Schepper J, Van Esbroeck G. Functional and radiographic short-term outcome evaluation of the Visionaire system, a patient-matched instrumentation system for total knee arthroplasty. J Arthroplasty. 2013;28(6):964-70.

4 Abdel MP, Parratte S, Blanc G, Ollivier M, Pomero V, Viehweger E, et al. No benefit of patient-specific instrumentation in TKA on functional and gait outcomes: a randomized clinical trial. Clin Orthop Relat Res. 2014;472(8):2468-76.
-55 Yaffe M, Luo M, Goyal N, Chan P, Patel A, Cayo M, et al. Clinical, functional, and radiographic outcomes following total knee arthroplasty with patient-specific instrumentation, computer- assisted surgery, and manual instrumentation: a short-term follow-up study. Int J Comput Assist Radiol Surg. 2014;9(5):837-44. It has been established that neutral mechanical alignment is critical in the overall success of the surgical technique.22 Ng VY, DeClaire JH, Berend KR, Gulick BC, Lombardi AV Jr. Improved accuracy of alignment with patient-specific positioning guides compared with manual instrumentation in TKA. Clin Orthop Relat Res. 2012;470(1):99-107.,66 Daniilidis K, Tibesku CO. A comparison of conventional and patient-specific instruments in total knee arthroplasty. Int Orthop. 2014;38(3):503-8. Consequently, tibial and femoral component malalignment remains a significant concern, as deviations exceeding 3° of varus/valgus in the mechanical axis have been related with poor survivorship due to the accelerated wear resultant of abnormal stresses at the bearing surfaces. Accordingly, tibial and femoral components are needed to be placed as precisely as possible and preventing malalignment may prove to be cost-effective.

That being said, two technological advancements, aiming at improving the likelihood of achieving neutral TKA alignment, have emerged: computer-assisted navigation and patient-specific instrumentation (PSI).77 Heyse TJ, Tibesku CO. Improved femoral component rotation in TKA using patient-specific instrumentation. Knee. 2014;21(1):268-71. Recently, numerous comparative studies and randomized controlled trials that compare patient-specific cutting blocks to conventional instruments have been published. However, it is not clear to what degree these studies support the potential advantages of PSI.88 Woolson ST, Harris AH, Wagner DW, Giori NJ. Component alignment during total knee arthroplasty with use of standard or custom instrumentation: a randomized clinical trial using computed tomography for postoperative alignment measurement. J Bone Joint Surg Am. 2014;96(5):366-72.

9 Roh YW, Kim TW, Lee S, Seong SC, Lee MC. Is TKA using patient-specific instruments comparable to conventional TKA? A randomized controlled study of one system. Clin Orthop Relat Res. 2013;471(12):3988-95.
-1010 Marimuthu K, Chen DB, Harris IA, Wheatley E, Bryant CJ, MacDessi SJ. A multi-planar CT-based comparative analysis of patient-specific cutting guides with conventional instrumentation in total knee arthroplasty. J Arthroplasty. 2014;29(6):1138-42. For that reason, the purpose of the present study is to perform a review of the current evidence comparing PSI to SI, concerning alignment, cost-effectiveness and postoperative functional evaluation. Existing information concerning computer-assisted navigation will not be assessed in this review.

Patient-specific instrumentation

Aiming at enhancing the outcomes of the surgery, the manufacturing process for knee implants has improved over the years, involving, lately, patient-specific approaches. The purpose was to get the most accurate positioning for the tibial and femoral components.33 Vundelinckx BJ, Bruckers L, De Mulder K, De Schepper J, Van Esbroeck G. Functional and radiographic short-term outcome evaluation of the Visionaire system, a patient-matched instrumentation system for total knee arthroplasty. J Arthroplasty. 2013;28(6):964-70.,1111 Chareancholvanich K, Narkbunnam R, Pornrattanamaneewong C. A prospective randomised controlled study of patient-specific cutting guides compared with conventional instrumentation in total knee replacement. Bone Joint J. 2013;95-B(3):354-9. This technology employs the generation of a preoperative image of the knee, along with hip and ankle images for the evaluation of the overall alignment of the limb, most commonly computed tomography (CT) or magnetic resonance imaging (MRI). Computer software is used to generate an ideal three-dimensional (3D) model of the patient's lower limb anatomy, allowing the anatomical landmarks of the knee to be easily identified, and to create the 3D models of the femoral and tibial components with optimal size, position and alignment. A preoperative plan proposed with bony resections is generated and provided to the operating surgeon, who is then able to assess the 3D planning of the knee implant with the proposed bony resections and with the final implants in place. At this point, the surgeon is expected to approve or review the preoperative plan, adjusting as required bony resection. When approved, generally within 3 weeks, the manufacturer fabricates a corresponding set of custom cutting blocks individualized to the patient's native anatomy.11 Victor J, Dujardin J, Vandenneucker H, Arnout N, Bellemans J. Patient-specific guides do not improve accuracy in total knee arthroplasty: a prospective randomized controlled trial. Clin Orthop Relat Res. 2014;472(1):263-71.,33 Vundelinckx BJ, Bruckers L, De Mulder K, De Schepper J, Van Esbroeck G. Functional and radiographic short-term outcome evaluation of the Visionaire system, a patient-matched instrumentation system for total knee arthroplasty. J Arthroplasty. 2013;28(6):964-70. These cutting jigs are expected to not only determine the proper coronal orientation, but also set the depth of femoral and tibial resection, anteroposterior position, rotation, and slope based on the preoperative prototype. Alterations in preoperative scheduling are inevitable with the implementation of PSI: first, the planning process has to be anticipated, since, as mentioned above, at least 3 weeks are necessary to fabricate the cutting blocks; second, the 3D imaging studies mandatory preoperatively were not typically performed previously for conventional TKA. At last, manufacturer and surgeon must cooperate for the elaboration and approval of the preoperative plan, ensuring that the guides are available by the time of the procedure.77 Heyse TJ, Tibesku CO. Improved femoral component rotation in TKA using patient-specific instrumentation. Knee. 2014;21(1):268-71.,1212 Noble JW Jr, Moore CA, Liu N. The value of patient-matched instrumentation in total knee arthroplasty. J Arthroplasty. 2012;27(1):153-5.

Patient-specific instrumentation was designed to achieve a higher rate of success in TKA, decreasing the odds of revision. The anticipated benefits of this technology are numerous, causing the entire procedure to be more efficient and cost-effective.77 Heyse TJ, Tibesku CO. Improved femoral component rotation in TKA using patient-specific instrumentation. Knee. 2014;21(1):268-71.,1313 Tibesku CO, Hofer P, Portegies W, Ruys CJ, Fennema P. Benefits of using customized instrumentation in total knee arthroplasty: results from an activity-based costing model. Arch Orthop Trauma Surg. 2013;133(3):405-11.,1414 Boonen B, Schotanus MG, Kerens B, van der Weegen W, van Drumpt RA, Kort NP. Intra- operative results and radiological outcome of conventional and patient-specific surgery in total knee arthroplasty: a multicentre, randomized controlled trial. Knee Surg Sports Traumatol Arthrosc. 2013;21(10):2206-12.

First, being the patient-matched technology potentially more precise and accurate, with a reduction in the number of outliers expected to be significant, neutral postoperative alignment would be more reproducible with the use of patient-specific jigs when compared to standard alignment techniques.1212 Noble JW Jr, Moore CA, Liu N. The value of patient-matched instrumentation in total knee arthroplasty. J Arthroplasty. 2012;27(1):153-5. Second, the surgeon has preoperative data regarding the size and location of the bony resections, along with implant sizing and rotation information. This way, it is possible to intraoperatively determine if the surgery is proceeding as expected. Third, as fewer instruments trays are required per procedure, the sterilization costs would be reduced.1212 Noble JW Jr, Moore CA, Liu N. The value of patient-matched instrumentation in total knee arthroplasty. J Arthroplasty. 2012;27(1):153-5.,1515 Hamilton WG, Parks NL. Patient-specific instrumentation does not shorten surgical time: a prospective, randomized trial. J Arthroplasty. 2014;29(7):1508-9. Fourth, a more efficient surgery is predicted with reduction of the time of the procedure, once different steps have already been performed, also minimizing intraoperative decision making.1111 Chareancholvanich K, Narkbunnam R, Pornrattanamaneewong C. A prospective randomised controlled study of patient-specific cutting guides compared with conventional instrumentation in total knee replacement. Bone Joint J. 2013;95-B(3):354-9.,1212 Noble JW Jr, Moore CA, Liu N. The value of patient-matched instrumentation in total knee arthroplasty. J Arthroplasty. 2012;27(1):153-5.,1616 Nunley RM, Ellison BS, Ruh EL, Williams BM, Foreman K, Ford AD, et al. Are patient-specific cutting blocks cost- effective for total knee arthroplasty? Clin Orthop Relat Res. 2012;470(3):889-94. Finally, by not requiring the use of intramedullary rods to determine alignment, PSI avoids violation of the intramedullary canal, potentially enabling to the incidence of fat embolism and perioperative blood loss.1414 Boonen B, Schotanus MG, Kerens B, van der Weegen W, van Drumpt RA, Kort NP. Intra- operative results and radiological outcome of conventional and patient-specific surgery in total knee arthroplasty: a multicentre, randomized controlled trial. Knee Surg Sports Traumatol Arthrosc. 2013;21(10):2206-12.,1717 Barrack RL, Ruh EL, Williams BM, Ford AD, Foreman K, Nunley RM. Patient specific cutting blocks are currently of no proven value. J Bone Joint Surg Br. 2012;94 11 (Suppl. A):95-9.

Despite several potential surgical benefits of using patient-specific cutting blocks, there are no long-term implant survival data to support its use. It remains controversial whether advantages overcome weaknesses.33 Vundelinckx BJ, Bruckers L, De Mulder K, De Schepper J, Van Esbroeck G. Functional and radiographic short-term outcome evaluation of the Visionaire system, a patient-matched instrumentation system for total knee arthroplasty. J Arthroplasty. 2013;28(6):964-70.,1616 Nunley RM, Ellison BS, Ruh EL, Williams BM, Foreman K, Ford AD, et al. Are patient-specific cutting blocks cost- effective for total knee arthroplasty? Clin Orthop Relat Res. 2012;470(3):889-94.,1717 Barrack RL, Ruh EL, Williams BM, Ford AD, Foreman K, Nunley RM. Patient specific cutting blocks are currently of no proven value. J Bone Joint Surg Br. 2012;94 11 (Suppl. A):95-9. With the necessity of a preoperative CT scan, the radiation exposure increases. Additionally, it is unclear if the anticipated costs reduction offset those of the preoperative studies and manufacturing to fabricate the materials.1515 Hamilton WG, Parks NL. Patient-specific instrumentation does not shorten surgical time: a prospective, randomized trial. J Arthroplasty. 2014;29(7):1508-9.,1717 Barrack RL, Ruh EL, Williams BM, Ford AD, Foreman K, Nunley RM. Patient specific cutting blocks are currently of no proven value. J Bone Joint Surg Br. 2012;94 11 (Suppl. A):95-9. Moreover, surgeries may need to be delayed due to the substantial amount of time required to obtain the suitable preoperative imaging, formulate the intraoperative plan, and to fabricate the cutting blocks. Lastly, the precision of anatomic landmarking has been found to be crucial to the final accuracy of the technique. Deformities that may misrepresent the exactness of the CT scan or MRI, possibly will lead to a compromised 3D model.

Methods

A literature review was conducted related to the use of PSI in TKA using Pubmed database, on September 25, 2015, using the query “total knee arthroplasty/instrumentation” AND (“patient specific” OR “patient matched”). The literature search identified 100 studies, which were then limited to 31 published based on the following inclusion criteria: (1) comparison of patients who underwent TKA with PSI to those who underwent TKA with conventional instrumentation; (2) performed in vivo; (3) assessment of postoperative coronal, sagittal or rotational component alignment, operative time, cost and/or function scores. Review articles, editorials and technique descriptions were excluded. Studies that did not meet the criteria or did not address the purpose of the present review were excluded, as were studies published in another language than English and before 2010. The bibliographies of the selected studies were not searched additionally.

Results

The main results are summarized in Table 1.

Table 1
Summary of the data regarding the results of PSI studies.

Alignment

Achieving the most possible accurate alignment at the completion of TKA has been the upmost surgical goal for the procedure, with numerous publications demonstrating improved survivorship with this result. At least theoretically, patient-specific cutting blocks are believed to improve the accuracy of limb alignment by guiding the critical bone cuts toward the hypothetically ideal position for each patient. Despite much debate on the usefulness of the instruments, there are studies comparing the value of the new mechanically aligned PSI system to that of standard procedure that validate the surgical accuracy of the technique to date.

Four randomized clinical trials (RTC) reported results supporting PSI. With respect to achieving mechanical alignment closer to neutral, Noble et al.1212 Noble JW Jr, Moore CA, Liu N. The value of patient-matched instrumentation in total knee arthroplasty. J Arthroplasty. 2012;27(1):153-5. favored PSI over SI (1.7° vs 2.8°; p = 0.03). Chareancholvanich et al.1111 Chareancholvanich K, Narkbunnam R, Pornrattanamaneewong C. A prospective randomised controlled study of patient-specific cutting guides compared with conventional instrumentation in total knee replacement. Bone Joint J. 2013;95-B(3):354-9. and Vundelinckx et al.33 Vundelinckx BJ, Bruckers L, De Mulder K, De Schepper J, Van Esbroeck G. Functional and radiographic short-term outcome evaluation of the Visionaire system, a patient-matched instrumentation system for total knee arthroplasty. J Arthroplasty. 2013;28(6):964-70. reported no difference in mechanical alignment but the first one did note an improvement in frontal tibial component alignment with PSI being closer to neutral (89.8° versus 90.5°; p = 0.03), while the second one found that PSI was more accurate in reproducing the desired tibia posterior slope (2.9° versus 5.0°; p = 0.0008). Silva et al.1818 Silva A, Sampaio R, Pinto E. Patient-specific instrumentation improves tibial component rotation in TKA. Knee Surg Sports Traumatol Arthrosc. 2014;22(3):636-42. aimed at studying the rotational alignment and the authors assumed that there is a smaller chance of internal malrotation of the tibial component with PSI, having the traditional instrumentation higher dispersion and amplitude of the tibial component rotation around the neutral position. Numerous retrospective studies noted similar results, with significant improvement in extremity mechanical alignment after PSI.22 Ng VY, DeClaire JH, Berend KR, Gulick BC, Lombardi AV Jr. Improved accuracy of alignment with patient-specific positioning guides compared with manual instrumentation in TKA. Clin Orthop Relat Res. 2012;470(1):99-107.,66 Daniilidis K, Tibesku CO. A comparison of conventional and patient-specific instruments in total knee arthroplasty. Int Orthop. 2014;38(3):503-8.,77 Heyse TJ, Tibesku CO. Improved femoral component rotation in TKA using patient-specific instrumentation. Knee. 2014;21(1):268-71.,1919 Ivie CB, Probst PJ, Bal AK, Stannard JT, Crist BD, Sonny Bal B. Improved radiographic outcomes with patient-specific total knee arthroplasty. J Arthroplasty. 2014;29(11):2100-3. Also Renson et al.2020 Renson L, Poilvache P, Van den Wyngaert H. Improved alignment and operating room efficiency with patient-specific instrumentation for TKA. Knee. 2014;21(6):1216-20. prospectively reported more outliers with respect to mechanical axis with SI (p = 0.043). Additionally, femoral component frontal plane position1919 Ivie CB, Probst PJ, Bal AK, Stannard JT, Crist BD, Sonny Bal B. Improved radiographic outcomes with patient-specific total knee arthroplasty. J Arthroplasty. 2014;29(11):2100-3. and rotational alignment of the femoral component77 Heyse TJ, Tibesku CO. Improved femoral component rotation in TKA using patient-specific instrumentation. Knee. 2014;21(1):268-71. were also reported to be enhanced with PSI.

Although proponents of patient-matched instrumentation contend that it improves alignment, other well-designed comparative trials have revealed no improvement in alignment. These authors were not able to show improvement with PSI, but the customized technique did not end up being worse than traditional instrumentation. The accuracy between TKAs performed with PSI and those done with SI was considered comparable. A randomized controlled trial conducted by Roh et al.99 Roh YW, Kim TW, Lee S, Seong SC, Lee MC. Is TKA using patient-specific instruments comparable to conventional TKA? A randomized controlled study of one system. Clin Orthop Relat Res. 2013;471(12):3988-95. showed no significant difference neither in the mean alignment in all parameters evaluated (mechanical axis, sagittal and coronal alignment of each component and femoral component rotation) nor in the percentage of outliers. For Nunley et al.,1616 Nunley RM, Ellison BS, Ruh EL, Williams BM, Foreman K, Ford AD, et al. Are patient-specific cutting blocks cost- effective for total knee arthroplasty? Clin Orthop Relat Res. 2012;470(3):889-94.,2121 Nunley RM, Ellison BS, Zhu J, Ruh EL, Howell SM, Barrack RL. Do patient-specific guides improve coronal alignment in total knee arthroplasty? Clin Orthop Relat Res. 2012;470(3):895-902. in a retrospective study, both groups had the mean coronal alignment measurements falling within the accepted ranges and the mean HKA and equivalent the number of outliers. The same results are shared by other authors.55 Yaffe M, Luo M, Goyal N, Chan P, Patel A, Cayo M, et al. Clinical, functional, and radiographic outcomes following total knee arthroplasty with patient-specific instrumentation, computer- assisted surgery, and manual instrumentation: a short-term follow-up study. Int J Comput Assist Radiol Surg. 2014;9(5):837-44.,1010 Marimuthu K, Chen DB, Harris IA, Wheatley E, Bryant CJ, MacDessi SJ. A multi-planar CT-based comparative analysis of patient-specific cutting guides with conventional instrumentation in total knee arthroplasty. J Arthroplasty. 2014;29(6):1138-42.,1717 Barrack RL, Ruh EL, Williams BM, Ford AD, Foreman K, Nunley RM. Patient specific cutting blocks are currently of no proven value. J Bone Joint Surg Br. 2012;94 11 (Suppl. A):95-9.,2222 Barke S, Musanhu E, Busch C, Stafford G, Field R. Patient- matched total knee arthroplasty: does it offer any clinical advantages? Acta Orthop Belg. 2013;79(3):307-11.,2323 Barrett W, Hoeffel D, Dalury D, Mason JBB, Murphy J, Himden S. In- vivo alignment comparing patient specific instrumentation with both conventional and computer assisted surgery (CAS) instrumentation in total knee arthroplasty. J Arthroplasty. 2014;29(2):343-7.

At last, some authors not only concluded that no improvement in alignment was achieved with the use of PSI, but also reported decreased alignment accuracy. In a recent randomized controlled trial, Victor el al.11 Victor J, Dujardin J, Vandenneucker H, Arnout N, Bellemans J. Patient-specific guides do not improve accuracy in total knee arthroplasty: a prospective randomized controlled trial. Clin Orthop Relat Res. 2014;472(1):263-71. compared conventional instrumentation with patient-specific guides from four different implant suppliers: Signature® (Biomet Inc, Warsaw, IN, USA), TruMatch® (DePuy Inc, Warsaw, IN, USA), Visionaire® (Smith & Nephew Inc, Memphis, TN, USA) and Patient-Specific Instruments® (Zimmer Inc, Warsaw, IN, USA). The use of PSI did not reduce the number of outliers. Actually, the authors found more outliers in the sagittal and coronal alignment of the tibial component (23% vs 17%; p = 0.002 and 15% vs 3%; p = 0.03, respectively) with the use of PSI. Deviations from target alignment among PSI subgroups were similar, except for sagittal alignment of the femoral component, which was significantly better for the PSI subgroup using Visionaire® system (p = 0.02) and had fewer outliers (p = 0.001). Yet, the same system revealed more overall coronal alignment outliers (p = 0.04). In another recent RCTs, both evaluating TruMatch® (DePuy Inc, Warsaw, IN, USA) system, Hamilton e Parks.1515 Hamilton WG, Parks NL. Patient-specific instrumentation does not shorten surgical time: a prospective, randomized trial. J Arthroplasty. 2014;29(7):1508-9. showed improved posterior tibial slope in SI cases (p = 0.001), whereas Woolson et al.88 Woolson ST, Harris AH, Wagner DW, Giori NJ. Component alignment during total knee arthroplasty with use of standard or custom instrumentation: a randomized clinical trial using computed tomography for postoperative alignment measurement. J Bone Joint Surg Am. 2014;96(5):366-72. reported a significant increase in the number of outliers for the same parameter in the PSI group. Additionally, Kotela et al.2424 Kotela A, Kotela I. Patient-specific computed tomography based instrumentation in total knee arthroplasty: a prospective randomized controlled study. Int Orthop. 2014;38(10):2099-107. found an increase in the number of outliers for coronal tibial component after with PSI having conducted a RCT. Similarly, Stronach et al.2525 Stronach BM, Pelt CE, Erickson JA, Peters CL. Patient-specific instrumentation in total knee arthroplasty provides no improvement in component alignment. J Arthroplasty. 2014;29(9):1705-8. retrospectively reviewed data that revealed decreased accuracy with the use of PSI for tibial slope (38% PSI vs. 61% SI, p = 0.01). On the basis of these results, the authors did not endorse the use of this new technology for TKA.

Cost-effectiveness

Another source of conflict associated with the implementation of PSI is whether this technique will reveal itself cost-effective or not. Considering it was consensual that PSI is comparable to SI, equivalent outcomes with more expensive technology do not fit into the current cost-effectiveness paradigm. Multiple factors play a substantial role in the overall efficiency and economics of TKA. The advantages claimed by supporters of PSI in the surgery time, the number of instrument trays used and the need for applying changes may support a cumulative decrease in resource use. Currently, TKA represents a large expense in the health budget and any reduction in the expenses it carries is of particular interest in respect to the present health economic climate.

Operative time

Decreased surgical time with PSI has been described, allowing increased overall procedure efficiency and cost-effectiveness of TKA. Still, it was not unanimously observed.

There are available data from RCTs supporting a reduction of the operating time using PSI system. Chareancholvanich et al.1111 Chareancholvanich K, Narkbunnam R, Pornrattanamaneewong C. A prospective randomised controlled study of patient-specific cutting guides compared with conventional instrumentation in total knee replacement. Bone Joint J. 2013;95-B(3):354-9. randomized 80 patients to undergo TKA with PSI or SI and reported that this new technology reduced skin-to-skin operative time by a mean 5.1 min (p = 0.019). Additionally, comparable results were reported by Boonen et al.,1414 Boonen B, Schotanus MG, Kerens B, van der Weegen W, van Drumpt RA, Kort NP. Intra- operative results and radiological outcome of conventional and patient-specific surgery in total knee arthroplasty: a multicentre, randomized controlled trial. Knee Surg Sports Traumatol Arthrosc. 2013;21(10):2206-12. having the PSI surgery taken 5 min less than the procedure with SI (p < 0.001) and Noble et al.1212 Noble JW Jr, Moore CA, Liu N. The value of patient-matched instrumentation in total knee arthroplasty. J Arthroplasty. 2012;27(1):153-5. (PSI took 6.7 min less; p = 0.048). Also Renson et al.,2020 Renson L, Poilvache P, Van den Wyngaert H. Improved alignment and operating room efficiency with patient-specific instrumentation for TKA. Knee. 2014;21(6):1216-20. in a prospective study, showed the time of surgery would decrease with PSI.

Using an activity-based cost model, Tibesku et al.1313 Tibesku CO, Hofer P, Portegies W, Ruys CJ, Fennema P. Benefits of using customized instrumentation in total knee arthroplasty: results from an activity-based costing model. Arch Orthop Trauma Surg. 2013;133(3):405-11. found that PSI cutting blocks allowed a more efficient use of time in the operating room, leading to increased revenues for the hospital. The authors observed a decrease of 10 min in cutting time and 20 min in the preparation of the operating room, per procedure. The explanation is given by the use of the implant guide as a way to reduce time for determination of the size of the implant during a procedure. By allowing the surgeries to end earlier, the authors assume it would enable the hospital to carry out additional procedures. Moreover, the cost savings was matched with the additional cost associated with the new technology. The overall costs were almost identical, with PSI costing just 59€ more, indicating how the theoretical increased efficiency of the procedure conducted with PSI may offset its extra costs, especially after surgeons gain more experience.

On the contrary, after having performed a financial analysis incorporating the cost of preoperative imaging and the cutting guide, as well as spared operating room time and instrument processing, Barrack et al.1717 Barrack RL, Ruh EL, Williams BM, Ford AD, Foreman K, Nunley RM. Patient specific cutting blocks are currently of no proven value. J Bone Joint Surg Br. 2012;94 11 (Suppl. A):95-9. showed that PSI was actually more expensive than SI. As a result of diminished surgery time and sterilization costs, a total saving of $322 per case was reported with the use of PSI. Nonetheless, the custom cutting guide was estimated to cost $950 and preoperative MRI was predicted to vary from $400 to $1250, based on insurance. It was concluded that any savings borne by operating room time gained and instrument processing were overwhelmed by the overhead costs demanded by PSI. Also three RCTs failed to show decreased operative time with PSI. The primary outcome measured by Hamilton e Parks1515 Hamilton WG, Parks NL. Patient-specific instrumentation does not shorten surgical time: a prospective, randomized trial. J Arthroplasty. 2014;29(7):1508-9. was total surgical time calculated from initial skin incision to end of closure. 52 patients were randomized to either PSI or conventional TKA. While the PSI group took an average of 61:47 min, the mean time for SI group was 57:27 min (p = 0.006), with the most of the time difference occurring during femoral preparation. Similarly, Roh et al.99 Roh YW, Kim TW, Lee S, Seong SC, Lee MC. Is TKA using patient-specific instruments comparable to conventional TKA? A randomized controlled study of one system. Clin Orthop Relat Res. 2013;471(12):3988-95. counted 59.4 min for PSI compared to 46.6 min for SI (p < 0.001). At last, Woolson et al.88 Woolson ST, Harris AH, Wagner DW, Giori NJ. Component alignment during total knee arthroplasty with use of standard or custom instrumentation: a randomized clinical trial using computed tomography for postoperative alignment measurement. J Bone Joint Surg Am. 2014;96(5):366-72. also failed to show any difference between groups. Comparable results were also observed by other authors.2222 Barke S, Musanhu E, Busch C, Stafford G, Field R. Patient- matched total knee arthroplasty: does it offer any clinical advantages? Acta Orthop Belg. 2013;79(3):307-11.,2525 Stronach BM, Pelt CE, Erickson JA, Peters CL. Patient-specific instrumentation in total knee arthroplasty provides no improvement in component alignment. J Arthroplasty. 2014;29(9):1705-8.,2626 Stronach BM, Pelt CE, Erickson J, Peters CL. Patient-specific total knee arthroplasty required frequent surgeon- directed changes knee. Clin Orthop Relat Res. 2013;471(1):169-74.

Number of instrument trays

PSI is also expected to decrease the number of instrumentation trays used, given the abolition of steps such as IM alignment guide placement. The costs associated with maintenance, storage and sterilization could potentially decrease after fewer trays are needed to be opened. Noble et al.1212 Noble JW Jr, Moore CA, Liu N. The value of patient-matched instrumentation in total knee arthroplasty. J Arthroplasty. 2012;27(1):153-5. recorded the number of instrument trays opened for each case and demonstrated a significant reduction in the number of instrument trays used (mean 4.3 vs mean 7.5; p < 0.0001). Similarly, Hamilton e Parks.1515 Hamilton WG, Parks NL. Patient-specific instrumentation does not shorten surgical time: a prospective, randomized trial. J Arthroplasty. 2014;29(7):1508-9. reported a significantly higher number of surgical instrument trays used in the SI cases, compared with the trays required for the PSI (mean 7.3 vs mean 2.5; p < 0.001). Additional authors analyzed this same variable and unanimously supported the claim that PSI does result in a decreased number of instrument trays.1616 Nunley RM, Ellison BS, Ruh EL, Williams BM, Foreman K, Ford AD, et al. Are patient-specific cutting blocks cost- effective for total knee arthroplasty? Clin Orthop Relat Res. 2012;470(3):889-94.,1717 Barrack RL, Ruh EL, Williams BM, Ford AD, Foreman K, Nunley RM. Patient specific cutting blocks are currently of no proven value. J Bone Joint Surg Br. 2012;94 11 (Suppl. A):95-9.,2020 Renson L, Poilvache P, Van den Wyngaert H. Improved alignment and operating room efficiency with patient-specific instrumentation for TKA. Knee. 2014;21(6):1216-20. Tibesku et al.1313 Tibesku CO, Hofer P, Portegies W, Ruys CJ, Fennema P. Benefits of using customized instrumentation in total knee arthroplasty: results from an activity-based costing model. Arch Orthop Trauma Surg. 2013;133(3):405-11. in their activity-based costing analysis, observed that PSI led to utilization of 4 trays less, which was estimated to correspond to 1400 trays less annually, compared to SI. This decrease was anticipated to result in potential cost savings of 160€ per procedure.

Need for applying changes

One of the theoretical advantages of PSI is decreased operative time through minimization of intraoperative decision making and instrument handling. Numerous preoperative steps must be completed meticulously for the resultant guides to be precise. The accuracy of the preoperative plan accompanying the PSI was also called into question by different authors.

Recently, Ivie et al.,1919 Ivie CB, Probst PJ, Bal AK, Stannard JT, Crist BD, Sonny Bal B. Improved radiographic outcomes with patient-specific total knee arthroplasty. J Arthroplasty. 2014;29(11):2100-3. in a retrospective study, reported all the surgeries to have proceeded without requiring additional surgeon intervention or a change from the preoperative surgical plan, not being necessary any conversion to conventional TKA. This is in contrast to other investigations that have shown frequent surgeon-directed changes during PSI TKA. According to Victor et al.,11 Victor J, Dujardin J, Vandenneucker H, Arnout N, Bellemans J. Patient-specific guides do not improve accuracy in total knee arthroplasty: a prospective randomized controlled trial. Clin Orthop Relat Res. 2014;472(1):263-71. in a randomized study with the inclusion of four different PSI systems, the custom instruments procedure had to be modified in 28% of the patients and abandoned in more than 20%. The most common reason for modifying the use of the PSI was the necessity to change the size. Also Roh et al.99 Roh YW, Kim TW, Lee S, Seong SC, Lee MC. Is TKA using patient-specific instruments comparable to conventional TKA? A randomized controlled study of one system. Clin Orthop Relat Res. 2013;471(12):3988-95. sought to evaluate the reliability of PSI by intraoperatively investigating whether the surgery could be completed with PSI alone. Actually, in 8 knees (16%), the procedure could not accurately be completed and the technique was abandoned and converted to SI. Finally, Stronach et al.2626 Stronach BM, Pelt CE, Erickson J, Peters CL. Patient-specific total knee arthroplasty required frequent surgeon- directed changes knee. Clin Orthop Relat Res. 2013;471(1):169-74. showed that only 23% of the femoral and 47% of the tibial implanted component size was properly predicted by PSI.

Postoperative functional evaluation

It is noticeable a lack of published studies on the functional results and gait parameters of patients that have undergone PSI TKA. Especially after the popularization of minimally invasive surgical techniques, even though long-term survivorship is pertinent, early pain relief and improved functional outcomes have become increasingly important to patients and surgeons. It remains unknown whether PSI improves function and pain-related outcomes and gait. For that reason, some authors decided to appropriately measure these parameters, in order to determine whether they could potentially be improved with PSI.

Four of the selected studies addressed these questions, resulting in conclusions substantially consensual. Vundelinckx et al.33 Vundelinckx BJ, Bruckers L, De Mulder K, De Schepper J, Van Esbroeck G. Functional and radiographic short-term outcome evaluation of the Visionaire system, a patient-matched instrumentation system for total knee arthroplasty. J Arthroplasty. 2013;28(6):964-70. conducted a study with a mean follow-up of little more than 6 months, randomizing 62 patients, and reported that PSI do not confer any function gains compared to the traditional TKA. The PSI did not show itself of greater value with respect to postoperative pain (measured using the visual analog scale), patient satisfaction, functional outcome, based on Lysholm score and Knee injury and Osteoarthritis Outcome Score (KOOS), and gait parameters.

Similarly, Abdel et al.44 Abdel MP, Parratte S, Blanc G, Ollivier M, Pomero V, Viehweger E, et al. No benefit of patient-specific instrumentation in TKA on functional and gait outcomes: a randomized clinical trial. Clin Orthop Relat Res. 2014;472(8):2468-76. performed a randomized clinical trial with 40 patients, evaluating subjective and objectively functional and gait outcomes, preoperatively and 3 months postoperatively, using patient-reported outcome scores (new Knee Society Score (KSS), KOOS and SF-12) and gait parameters. At 3 months postoperatively, almost all functional scores were increased in both groups compared with preoperatively. However, there were no statistical significant differences in postoperative functional scores between groups and the same occurred concerning the analyzed gait parameters. Hence, the authors agreed that no benefit in pain or early function and no comparative improvement in gait parameters were conferred by PSI when compared with conventional TKA, as assessed by the KSS, KOOS and SF-12 and comprehensive gait analysis.

Yaffe et al.55 Yaffe M, Luo M, Goyal N, Chan P, Patel A, Cayo M, et al. Clinical, functional, and radiographic outcomes following total knee arthroplasty with patient-specific instrumentation, computer- assisted surgery, and manual instrumentation: a short-term follow-up study. Int J Comput Assist Radiol Surg. 2014;9(5):837-44. also failed to show a difference in KSS or pain score improvement between PSI and conventional jigs, after a 6 month follow-up of 122 patients. Still, PSI did show a significantly higher Knee Society function subscore improvement from the preoperative period to the 6-month postoperative period, when compared to conventional instrumentation. Enhanced component rotation and positioning and improved component size accuracy may be the explanation for the results. However, as this is a retrospective case-control study, there was not randomization of the patients, introducing potential bias. In fact, PSI group had higher preoperatively knee scores, function scores and pain scores than manual instrumentation group. Consequently, firm conclusions from this finding remain elusive due to the affected ability of the authors to draw definitive conclusions from the raw postoperatively scores, even though the groups are similar in body mass index, gender, age and preoperative diagnosis.

More recently, Woolson et al.,88 Woolson ST, Harris AH, Wagner DW, Giori NJ. Component alignment during total knee arthroplasty with use of standard or custom instrumentation: a randomized clinical trial using computed tomography for postoperative alignment measurement. J Bone Joint Surg Am. 2014;96(5):366-72. in a RCT, reported no significant difference with regard to Knee Society rating or function score.

Discussion

In order to gain acceptance into modern practice, new technology must demonstrate either (1) increased efficacy compared to existing technology or (2) equivalent outcomes with reduced cost.

On the basis of their data, some authors showed results that sustain of the value of customized cutting blocks.22 Ng VY, DeClaire JH, Berend KR, Gulick BC, Lombardi AV Jr. Improved accuracy of alignment with patient-specific positioning guides compared with manual instrumentation in TKA. Clin Orthop Relat Res. 2012;470(1):99-107.,77 Heyse TJ, Tibesku CO. Improved femoral component rotation in TKA using patient-specific instrumentation. Knee. 2014;21(1):268-71.,1212 Noble JW Jr, Moore CA, Liu N. The value of patient-matched instrumentation in total knee arthroplasty. J Arthroplasty. 2012;27(1):153-5.,1313 Tibesku CO, Hofer P, Portegies W, Ruys CJ, Fennema P. Benefits of using customized instrumentation in total knee arthroplasty: results from an activity-based costing model. Arch Orthop Trauma Surg. 2013;133(3):405-11.,1919 Ivie CB, Probst PJ, Bal AK, Stannard JT, Crist BD, Sonny Bal B. Improved radiographic outcomes with patient-specific total knee arthroplasty. J Arthroplasty. 2014;29(11):2100-3.,2020 Renson L, Poilvache P, Van den Wyngaert H. Improved alignment and operating room efficiency with patient-specific instrumentation for TKA. Knee. 2014;21(6):1216-20. One can expect that this technology will assist in restoring the mechanical axis with accuracy potentially better than conventional instrumentation. In fact, all the selected studies showed no inferior mechanical and femoral component alignment with PSI. Only the tibial component revealed controversial results.

However, different examples have shown deficient guide fit intraoperatively in which conventional instrumentation was preferred rather than accepting the potential risk of an undesirable resection.11 Victor J, Dujardin J, Vandenneucker H, Arnout N, Bellemans J. Patient-specific guides do not improve accuracy in total knee arthroplasty: a prospective randomized controlled trial. Clin Orthop Relat Res. 2014;472(1):263-71.,99 Roh YW, Kim TW, Lee S, Seong SC, Lee MC. Is TKA using patient-specific instruments comparable to conventional TKA? A randomized controlled study of one system. Clin Orthop Relat Res. 2013;471(12):3988-95.,2626 Stronach BM, Pelt CE, Erickson J, Peters CL. Patient-specific total knee arthroplasty required frequent surgeon- directed changes knee. Clin Orthop Relat Res. 2013;471(1):169-74. This pre surgical process adds complexity, time, expense, and multiple steps to the TKA process. An error made in the initial steps of the process will lead to continued reproduction of that error. This raises a concern that the preoperatively proposed implant size and alignment from PSI may not be an accurate reflection of patient anatomy and, therefore, unreliable. Surgeons must be cautious against blind approval of PSI technology without supportive data. Additionally, some authors claim that more intraoperative decision-making was required by PSI, preventing it to reduce operative time.99 Roh YW, Kim TW, Lee S, Seong SC, Lee MC. Is TKA using patient-specific instruments comparable to conventional TKA? A randomized controlled study of one system. Clin Orthop Relat Res. 2013;471(12):3988-95.,1515 Hamilton WG, Parks NL. Patient-specific instrumentation does not shorten surgical time: a prospective, randomized trial. J Arthroplasty. 2014;29(7):1508-9. Accordingly, no difference in surgery time between the groups was established. This may result from additional time taken to evaluate each step, regularly repeated resections and rejected blind acceptance of the proposed cuts, preventing the authors from immediately make the cuts after placing the surgical guides, which could compromise the accuracy of the components size and position. Nonetheless several authors believe the PSI cutting jigs to achieve larger progresses in surgery time with more experience, as the studies were led during the early learning curve for high-volume surgeons who have performed several thousand TKAs using SI.11 Victor J, Dujardin J, Vandenneucker H, Arnout N, Bellemans J. Patient-specific guides do not improve accuracy in total knee arthroplasty: a prospective randomized controlled trial. Clin Orthop Relat Res. 2014;472(1):263-71.,22 Ng VY, DeClaire JH, Berend KR, Gulick BC, Lombardi AV Jr. Improved accuracy of alignment with patient-specific positioning guides compared with manual instrumentation in TKA. Clin Orthop Relat Res. 2012;470(1):99-107.,1616 Nunley RM, Ellison BS, Ruh EL, Williams BM, Foreman K, Ford AD, et al. Are patient-specific cutting blocks cost- effective for total knee arthroplasty? Clin Orthop Relat Res. 2012;470(3):889-94. Lack of expertise with the PSI may be enough to bias the results. Surgeons are expected to improve the technique and be able to make fewer adjustments, reducing the surgical time with PSI, as the volume of performances increases.

Final remarks

The value of any medical technology depends on whether or not it improves clinical outcomes and PSI offers numerous theoretical advantages that make it an attractive alternative for TKA. As this technology still remains a relatively new concept, it is not surprising that, despite its increase, the body of literature remains limited. Regardless of whether this technology is found to be acceptable in the future, the truth is that different studies assumed both techniques are able to restore limb alignment and place the components with equivalent accuracy. However, although there is decisive evidence to support this innovative technique, PSI has not consistently been shown to be cost-effective or to offer any clinical benefit with regard to functional scores assessed. The extensive number of angles that can be measured to evaluate the efficacy of PSI also makes the comparison between different studies difficult. Additionally, is possible that a six-month follow-up period may not be sensitive enough to detect PSI's effect on functional outcomes and component survivorship.

PSI may have a small and specific role in certain cases, such as when the use of an IM or extra-medullary rod with mounted cutting block is impossible, for example after severe post-traumatic sequels of distal femoral or proximal tibial fractures or for patients with IM hardware or extra-articular deformities, but additional justifying data is vital prior its routine use.

It is possible that more precise conclusions may emerge. That being said, additional RCTs should be conducted comparing the clinical outcomes of PSI to the traditional technique with a longer postoperative follow-up period and a larger sample before definitive conclusions are made, concerning functional efficacy of this technology and the potential applicability of PSI to special situations.

References

  • 1
    Victor J, Dujardin J, Vandenneucker H, Arnout N, Bellemans J. Patient-specific guides do not improve accuracy in total knee arthroplasty: a prospective randomized controlled trial. Clin Orthop Relat Res. 2014;472(1):263-71.
  • 2
    Ng VY, DeClaire JH, Berend KR, Gulick BC, Lombardi AV Jr. Improved accuracy of alignment with patient-specific positioning guides compared with manual instrumentation in TKA. Clin Orthop Relat Res. 2012;470(1):99-107.
  • 3
    Vundelinckx BJ, Bruckers L, De Mulder K, De Schepper J, Van Esbroeck G. Functional and radiographic short-term outcome evaluation of the Visionaire system, a patient-matched instrumentation system for total knee arthroplasty. J Arthroplasty. 2013;28(6):964-70.
  • 4
    Abdel MP, Parratte S, Blanc G, Ollivier M, Pomero V, Viehweger E, et al. No benefit of patient-specific instrumentation in TKA on functional and gait outcomes: a randomized clinical trial. Clin Orthop Relat Res. 2014;472(8):2468-76.
  • 5
    Yaffe M, Luo M, Goyal N, Chan P, Patel A, Cayo M, et al. Clinical, functional, and radiographic outcomes following total knee arthroplasty with patient-specific instrumentation, computer- assisted surgery, and manual instrumentation: a short-term follow-up study. Int J Comput Assist Radiol Surg. 2014;9(5):837-44.
  • 6
    Daniilidis K, Tibesku CO. A comparison of conventional and patient-specific instruments in total knee arthroplasty. Int Orthop. 2014;38(3):503-8.
  • 7
    Heyse TJ, Tibesku CO. Improved femoral component rotation in TKA using patient-specific instrumentation. Knee. 2014;21(1):268-71.
  • 8
    Woolson ST, Harris AH, Wagner DW, Giori NJ. Component alignment during total knee arthroplasty with use of standard or custom instrumentation: a randomized clinical trial using computed tomography for postoperative alignment measurement. J Bone Joint Surg Am. 2014;96(5):366-72.
  • 9
    Roh YW, Kim TW, Lee S, Seong SC, Lee MC. Is TKA using patient-specific instruments comparable to conventional TKA? A randomized controlled study of one system. Clin Orthop Relat Res. 2013;471(12):3988-95.
  • 10
    Marimuthu K, Chen DB, Harris IA, Wheatley E, Bryant CJ, MacDessi SJ. A multi-planar CT-based comparative analysis of patient-specific cutting guides with conventional instrumentation in total knee arthroplasty. J Arthroplasty. 2014;29(6):1138-42.
  • 11
    Chareancholvanich K, Narkbunnam R, Pornrattanamaneewong C. A prospective randomised controlled study of patient-specific cutting guides compared with conventional instrumentation in total knee replacement. Bone Joint J. 2013;95-B(3):354-9.
  • 12
    Noble JW Jr, Moore CA, Liu N. The value of patient-matched instrumentation in total knee arthroplasty. J Arthroplasty. 2012;27(1):153-5.
  • 13
    Tibesku CO, Hofer P, Portegies W, Ruys CJ, Fennema P. Benefits of using customized instrumentation in total knee arthroplasty: results from an activity-based costing model. Arch Orthop Trauma Surg. 2013;133(3):405-11.
  • 14
    Boonen B, Schotanus MG, Kerens B, van der Weegen W, van Drumpt RA, Kort NP. Intra- operative results and radiological outcome of conventional and patient-specific surgery in total knee arthroplasty: a multicentre, randomized controlled trial. Knee Surg Sports Traumatol Arthrosc. 2013;21(10):2206-12.
  • 15
    Hamilton WG, Parks NL. Patient-specific instrumentation does not shorten surgical time: a prospective, randomized trial. J Arthroplasty. 2014;29(7):1508-9.
  • 16
    Nunley RM, Ellison BS, Ruh EL, Williams BM, Foreman K, Ford AD, et al. Are patient-specific cutting blocks cost- effective for total knee arthroplasty? Clin Orthop Relat Res. 2012;470(3):889-94.
  • 17
    Barrack RL, Ruh EL, Williams BM, Ford AD, Foreman K, Nunley RM. Patient specific cutting blocks are currently of no proven value. J Bone Joint Surg Br. 2012;94 11 (Suppl. A):95-9.
  • 18
    Silva A, Sampaio R, Pinto E. Patient-specific instrumentation improves tibial component rotation in TKA. Knee Surg Sports Traumatol Arthrosc. 2014;22(3):636-42.
  • 19
    Ivie CB, Probst PJ, Bal AK, Stannard JT, Crist BD, Sonny Bal B. Improved radiographic outcomes with patient-specific total knee arthroplasty. J Arthroplasty. 2014;29(11):2100-3.
  • 20
    Renson L, Poilvache P, Van den Wyngaert H. Improved alignment and operating room efficiency with patient-specific instrumentation for TKA. Knee. 2014;21(6):1216-20.
  • 21
    Nunley RM, Ellison BS, Zhu J, Ruh EL, Howell SM, Barrack RL. Do patient-specific guides improve coronal alignment in total knee arthroplasty? Clin Orthop Relat Res. 2012;470(3):895-902.
  • 22
    Barke S, Musanhu E, Busch C, Stafford G, Field R. Patient- matched total knee arthroplasty: does it offer any clinical advantages? Acta Orthop Belg. 2013;79(3):307-11.
  • 23
    Barrett W, Hoeffel D, Dalury D, Mason JBB, Murphy J, Himden S. In- vivo alignment comparing patient specific instrumentation with both conventional and computer assisted surgery (CAS) instrumentation in total knee arthroplasty. J Arthroplasty. 2014;29(2):343-7.
  • 24
    Kotela A, Kotela I. Patient-specific computed tomography based instrumentation in total knee arthroplasty: a prospective randomized controlled study. Int Orthop. 2014;38(10):2099-107.
  • 25
    Stronach BM, Pelt CE, Erickson JA, Peters CL. Patient-specific instrumentation in total knee arthroplasty provides no improvement in component alignment. J Arthroplasty. 2014;29(9):1705-8.
  • 26
    Stronach BM, Pelt CE, Erickson J, Peters CL. Patient-specific total knee arthroplasty required frequent surgeon- directed changes knee. Clin Orthop Relat Res. 2013;471(1):169-74.
  • Work performed in the Universidade do Porto, Faculdade de Medicina, Porto, Portugal.

Publication Dates

  • Publication in this collection
    May-Jun 2017

History

  • Received
    09 Mar 2016
  • Accepted
    13 June 2016
Sociedade Brasileira de Ortopedia e Traumatologia Al. Lorena, 427 14º andar, 01424-000 São Paulo - SP - Brasil, Tel.: 55 11 2137-5400 - São Paulo - SP - Brazil
E-mail: rbo@sbot.org.br