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Abstract
Objective: There is accumulating evidence that the limbic system is pathologically involved 
in cases of psychiatric comorbidities in temporal lobe epilepsy (TLE) patients. Our objective 
was to develop a conceptual framework describing how neuropathological, neurochemical and 
electrophysiological aspects might contribute to the development of psychiatric symptoms in 
TLE and the putative neurobiological mechanisms that cause mood disorders in this patient 
subgroup. Methods: In this review, clinical, experimental and neuropathological findings, as 
well as neurochemical features of the limbic system were examined together to enhance our 
understanding of the association between TLE and psychiatric comorbidities. Finally, the value 
of animal models in epilepsy and mood disorders was discussed. Conclusions: TLE and psychiatric 
symptoms coexist more frequently than chance would predict. Alterations and neurotransmission 
disturbance among critical anatomical networks, and impaired or aberrant plastic changes might 
predispose patients with TLE to mood disorders. Clinical and experimental studies of the effects 
of seizures on behavior and electrophysiological patterns may offer a model of how limbic seizures 
increase the vulnerability of TLE patients to precipitants of psychiatric symptoms.
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Early observations and clinical aspects 
Association between epilepsy and depression has been 
observed for over 2,400 years. As reviewed by Kanner,1 
Hippocrates stated that “Melancholics ordinarily become 
epileptics, and epileptics, melancholics: what determines 
the preference is the direction the malady takes; if it bears 
upon the body, epilepsy, if upon the intelligence, melan-
choly”. Studies published during the second half of the XIX 
century also recognized that patients with epilepsy often 
presented with depressed mood, languidness, misanthropy 
and suicidal tendency.2 Depression is generally defined by the 
presence of certain behaviors and thought patterns. Some 
of the major symptoms include low mood, reduced interest 
or pleasure in all activities, appetite changes, insomnia or 
hypersomnia, psychomotor agitation or retardation, fatigue 
or loss of energy, worthlessness or excessive guilt, reduced 
ability to think or concentrate and frequent morbid thought 
of death or suicidal ideation.3 Depressive symptoms are often 
poorly recognized, and inadequate treatment might lead to 
a significantly impaired quality of life.4

In present numbers, the prevalence of depression in 
patients with recurrent seizures ranges from 20% to 80%.5,6 
The phenomenology of depression in epilepsy is a matter 
of debate. The most frequent symptoms include feelings 
of anhedonia, guilt and suicidal ideation. Other authors 
also report high anxiety, neuroticism, hostility, feelings of 
depersonalization, and rare manic and depressive-psychotic 
manifestations.2 Presentation of depressive symptoms in epi-
lepsy is often milder than in major depression,7,8 but they are 
source of significant disruption in patients’ daily activities, 
social relations, quality of life and require pharmacologic 
therapy to remit.5 Depressive symptoms in epilepsy can be 
classified in 3 categories: (I) major depressive disorder, meet-
ing Diagnostic and Statistical Manual, 4th edition (DSM-IV) 
diagnostic criteria; (II) atypical depression or dysthymia; or 
(III) a dysthymic-like disorder with intermittent symptoms 
that can be milder than those of major depression.6 According 
to their temporal relationship with seizures, depressive 
symptoms can be ictal, peri-ictal or interictal, the latest 
being the most frequent.5

Until mid-XX century, depression in epilepsy was thought 
to be mostly of the “reactive” type,9-11 in which depressive 
symptoms may be a reaction to stresses in life, including the 
effect of any underlying conditions. Indeed, as emphasized 
by Robertson and Trimble,2 influential events such as “(…) 
repeated distressing episodes of loss of consciousness lead-
ing to morbidity, loss of self-esteem, and, often, personal 
embarrassment. The difficulty of getting a job, the social 
stigmatization, and the recurrent loss of dignity that the epi-
leptic patient faces must be important provoking factors for 
the ensuing depression”. However, studies from the last two 
decades have demonstrated biochemical, neuropathological 
and neurophysiologic changes mediating the development of 
mood disorders,10 meaning that it is more usual for depression 
in epilepsy to be of the “endogenous” type.12,13 As noted by 
Kanner et al.,14 depression in epilepsy is often a combination 
of intrinsic and extrinsic processes that act synergistically.

In the late 1970’s, Rodin et al. reported that patients 
with temporal lobe epilepsy (TLE) showed higher depres-
sion scores than patients with other types of epilepsy.15 
A few years later, a similar study suggested that patients 

with complex partial seizures that secondarily generalized 
had worse scores when compared with those with primarily 
generalized convulsive seizures.16 Regarding seizure type, 
other studies have shown that depression is more frequent 
in patients with non-epileptic seizures than in those with 
epileptic seizures.17 In pediatric patients, depression is also 
more frequent in cases with focal complex partial seizures 
than in patients with primarily generalized seizures.18 
Although seizure frequency or intractability19 might not be 
related to the severity of depression, it is known that seizure 
type,8,18 duration of epilepsy and antiepileptic drugs8 are 
related to different levels of depressive symptomatology. By 
the same token, it has been recently found that the pres-
ence of secondarily generalized seizures is more frequent 
in adult mesial TLE patients with psychiatric comorbidities 
than in mesial TLE patients without psychiatric symptoms.20 
In fact, patients with mesial TLE seem particularly prone to 
comorbid depression.21

Atypical features may affect 20%22 to 70%23 of patients 
with depressive symptoms. In 1923, Kraepelin described a 
pleomorphic affective disorder in epilepsy, coined by Blumer 
et al.24 “interictal dysphoric disorder”, characterized by la-
bile depressive symptoms (depressive mood, lack of energy, 
pain, insomnia), labile affective symptoms (fear, anxiety), 
and the presence of irritability and outbursts of aggressive/
euphoric behavior as key symptoms. The prevalence of 
interictal dysphoria in TLE is about 17%.25 Dysphoria is con-
sidered a psychopathological entity closer related to bipolar 
rather than unipolar mood disorders. In fact, one of the most 
famous historic figures presenting six of the seven cardinal 
symptoms of interictal dysphoric disorder was Vincent van 
Gogh,26 who also exhibited signs of interictal personality.27 
Dysphoric symptoms may also occur in patients with chronic 
diseases other than TLE - such as migraine and different focal 
epilepsies25,28 - as well as in premenstrual dysphoria.29 Despite 
the high frequency of interictal dysphoria in epilepsy cases, 
classic bipolar disorder (type I) is rare,8 ranging up to 1.4%.30 
Bipolar symptoms tend to be milder in patients with epilepsy 
than in pure bipolar patients, which often present fluctuating 
mood disturbances, rapid cycling of mood episodes and more 
frequent hallucinations.31

In addition to mood disorders, personality disorders 
other than the commonest interictal type27 are also frequent 
in patients with epilepsy. In a series of TLE patients with 
hippocampal sclerosis from our epilepsy surgery center, 
41.4% presented at least one Axis I diagnosis, according 
to DSM-IV criteria.32 The majority (19.4%) had depression, 
10.7% psychosis, 5.9% interictal dysphoric disorder, and 5.4% 
anxiety disorders. Personality disorders (Axis II) occurred 
in 12.4% of the patients, and, in some cases, overlapped 
with Axis I diagnosis. Most frequent traits were border-
line, histrionic, epileptic personality disorder, antisocial, 
narcissistic, schizoid, and passive-aggressive personality.32 
Predominance of DSM-IV cluster A (paranoid, schizotypal, 
schizoid) and B (borderline, histrionic, antisocial, narcis-
sistic), over cluster C personality disorders (avoidant, de-
pendent, obsessive-compulsive) may indicate presence of 
non-epileptic seizures.33 Other authors also reported high 
incidence of dependent-childish behavior31 and deficits in 
social cognition.34 Considering the type of epilepsy, patients 
with juvenile myoclonic epilepsy are more impulsive than 
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non-epileptic controls,35 and adult patients with epileptic 
seizures present higher scores of schizoid, antisocial, 
histrionic, avoidant, dependent, passive aggressive and 
depressive traits compared to controls.36 Also, a higher pro-
portion of patients with epileptic seizures and personality 
disorders fits within DSM-IV cluster C when compared to pa-
tients with non-epileptic seizures.33 Interestingly, schizoid, 
obsessive-compulsive and avoidance traits are correlated 
with epilepsy duration, but not with anxiety or depression 
presence.36 Depersonalization and derealization traits are 
more frequent in patients with non-epileptic seizures than 
on those with epileptic seizures.37 Several data suggest that 
epilepsy is not a primary pathophysiologic mechanism for 
developing dissociative symptoms38,39 and that the pres-
ence of anxiety and depression is an important factor.40 On 
the other hand, several data since Hughlings Jackson’s in 
the late XIX century have found similarities between the 
so-called dreamy states or experiential phenomena41 and 
behaviors redolent of depersonalization.42

Suicide is more common in people with epilepsy than in 
the general population, and the mortality ratio is further 
raised in those with TLE and those treated surgically.43 Risk 
factors for suicide include: presence of mood disorders 
(depression and bipolar disorder) and other psychiatric 
disorders (for example schizophrenia-like psychosis), 
personality disorders (specially borderline personality 
disorder), substance abuse, self-destructive behavior, 
previous suicide attempts, chronic illness, stigmatization 
of epilepsy, periictal suicidal impulses and pharmacological 
treatment.44 In a large study of more than ten thousand 
patients with epilepsy, five suicides were registered during 
a 12-year period and all occurred in patients with long-
standing complex partial seizures and dysphoric disorder 
a short time after achieving full control of seizures.45 In 
electroconvulsive treatment (ECT), controlled seizures 
can be elicited by a bifronto-temporal stimulus above 
the threshold for a generalized tonic-clonic seizure. 
Furthermore, most patients with endogenous depression 
who receive ECT recover completely or improve consider-
ably.46 Could chronic seizures also have a protective effect 
in comorbid endogenous depression cases, similar to what 
is seen in forced normalization? Landolt’s early observa-
tions included dysphoric disorders on normalization of the 
electroencephalogram,47 and the emergence or worsening 
of psychopathology on suppression of seizure activity has 
been widely reported.45 As summarized by Blumer et al.,45 
when seizures are decreased or controlled, dysphoric 
symptoms, depressive mood and psychosis tend to be exac-
erbated, but the precise nature of the seizure-suppressing 
mechanisms is insufficiently understood.

Comorbidity does not necessarily imply causality; quot-
ing Gabb et al.,48 “(…) epilepsy begets depression, but does 
depression beget epilepsy?” Supporting the idea, a history 
of depression preceding the onset of epilepsy is up to six 
times more frequent in patients than in controls.49,50 Such 
cases would fit within the endogenous depression type, and 
suggest the possibility of common pathogenic mechanisms 
operant in both disorders.14 Possible neuropathological, 
neurochemical and electrophysiological mechanisms will be 
explored in the next sections.

Neuropathological aspects 
In a series of one hundred patients with temporal lobe lesions 
(tumors, atrophy or cryptogenic), ninety-five had paroxysmal 
psychiatric manifestations such as hallucinations, perceptual 
illusions, disturbances of emotion or mood, personality disor-
ders (mostly schizoid traits) and automatisms.11 The predomi-
nant mood disorders were depression and anxiety, the latter 
resembling dysphoric features. Indeed, presence of mesial 
temporal sclerosis has been considered a predisposing factor 
for the development of mood disorders in focal epilepsy.21 
Although temporal lobe involvement seems unequivocal in 
depression manifestation,51 paralimbic structures such as 
temporal and prefrontal cortex are also compromised.52,53 
Focal hypometabolism in ipsilateral orbitofrontal cortex is 
usually found in TLE patients with depression when compared 
with TLE patients without depression; after epilepsy surgery, 
patients in whom depression developed only postoperatively 
also show hypometabolism in the ipsilateral orbitofrontal 
region.52 Interestingly, Rajkowska et  al.54 have previously 
demonstrated significant decrease in cortical thickness, 
neuronal sizes and neuronal and glial densities within the 
orbitofrontal cortex of pure depressed patients.

Monoaminergic neurotransmission is classically related 
with major depression, mostly because the mechanism of ac-
tion of antidepressant drugs that augments these neurotrans-
mitters in the synapses.55 Positron-emission tomography (PET) 
imaging studies have shown reduced binding of serotonin 
(5-HT) receptor 1A in frontal, temporal and limbic cortex56 
and in the raphe57 in depressive patients when compared with 
controls. A deficit in the density of postsynaptic serotonergic 
receptors also has been identified in the hippocampus and 
amygdala of patients who committed suicide.58 Furthermore, 
impaired serotonin transmission, consisting of an excessive 
density of serotonergic somatodendritic 5-HT1A autoreceptors 
in the dorsal raphe has been found in suicide victims with 
major depression.59 Similar 5-HT alterations are found in 
TLE patients. A PET study using a 5-HT1A receptor antagonist 
showed reduced affinity in mesial temporal structures ipsi-
lateral to the seizure focus in TLE patients with and without 
hippocampal atrophy.60 Reduction in 5-HT1A binding was 
also found in the raphe nucleus and in ipsilateral thalamic 
regions.60 Another study investigating TLE patients found de-
creased affinity of 5-HT1A in the epileptogenic hippocampus, 
amygdala, anterior cingulate, and lateral temporal neocortex 
ipsilateral to the seizure focus, as well as in the contralateral 
hippocampus.61 Studies conducted in TLE patients with co-
morbid depression also indicate abnormalities in serotonergic 
neurotransmission. 5-HT1A receptor binding in TLE patients 
with major depression show decreased signal when compared 
with TLE patients without depression, independent of the 
side of the lesion and the degree of hippocampal sclerosis.62 
Another PET study found an inverse correlation between the 
severity of depressive symptoms and the affinity of 5-HT1A 
binding in the ipsilateral hippocampus, and a positive cor-
relation between the severity of depressive symptoms and 
the magnitude of hippocampal abnormalities.63

Brain regions involved in both TLE and depression include 
the temporal lobes with hippocampus, amygdala, entorhinal 
and temporal cortex, the frontal lobes, subcortical structures 
such as basal ganglia and thalamus, and the connecting 
pathways.64 Neuropathological data on TLE and comorbid 
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depression are scant. Recent data suggest that there is a 
structural basis for psychiatric symptoms in patients with TLE. 
There is evidence of N-Methyl-D-aspartate (NMDA) receptor 
subunit NR1 up-regulation in the dentate gyrus molecular 
layer in unmedicated TLE patients with depressed mood when 
compared to TLE patients without psychiatric comorbidities.65 
In addition to that, in our series of hippocampi from mesial 
TLE patients with depression we found CA4 neuronal density 
as high as in non-epileptic controls, and increased mossy fiber 
sprouting when compared with mesial TLE patients without 
psychiatric history.20 Although antidepressant treatment does 
not cause mossy fiber sprouting, chronic administration of 
fluoxetine causes robust changes in the serotonergic modu-
lation of the mossy fiber synaptic transmission in mice.66 
Serotonin is able to potentiate the mossy fiber synaptic 
transmission, and chronic fluoxetine reduces the synaptic 
potentiation induced by higher concentrations of serotonin; 
meanwhile, low concentrations of serotonin might enhance 
synaptic potentiation, which represent the stabilization of 
the serotonergic modulation.67 In mesial TLE with depression, 
enhanced mossy fiber sprouting might act as a protection 
against depressive symptoms, or conversely, the increased 
sprouting could represent an insufficient compensatory 
response to the chronic or subsequent stress provoked by 
depressive episodes.20 Further cellular physiological studies 
in animal models would be important in order to clarify the 
involvement of the dentate gyrus and mossy fibers in psy-
chiatric disorders, since the clinical significance of sprouting 
remains to be elucidated.67

In the last two decades, several neuropathological stud-
ies have been done with post-mortem brain samples from 
patients with major depression, especially in fronto-limbic 
regions. Gross morphological changes such as focal lesions are 
not present in depression (as usually found in TLE – for review 
see 68), but cytomorphological differences between depressed 
and control subjects can be demonstrated at the microscopic 
level.69 Reduced glial density in depressive disorder is found 
in prefrontal cortex,54 entorhinal cortex and amygdale.70 In 
fact, amygdalar glial reduction seems pathognomonic, and 
mostly related to astrocytes71 or oligodendrocytes.72 The 
cortical regions where neuronal pathology has been detected 
include the hippocampus, orbitofrontal, prefrontal and cin-
gulate cortex, without clear definition whether a true loss 
of cells underlies reductions in cell density and size.69 Other 
evidences of neuronal pathology comprise reductions in the 
precursor form of brain-derived neurotrophic factor (BDNF) 
in the hippocampus of specimens with major depression,73 
although treatment with antidepressants may increase hip-
pocampal BDNF protein expression.74 In the prefrontal cortex, 
reduced glutamic acid decarboxylase (GAD) expression is 
seen in unmedicated patients with major depression, but 
not in antidepressant medicated patients.75 There is similar 
gamma-aminobutyric acid (GABA) depletion assessed through 
calcium-binding proteins staining in prefrontal interneu-
rons,76 and possible diminished local serotonin release in 
subjects with major depression.59 In agreement with those 
findings, the use of GABA agonists and antagonists is able to 
modulate depressive symptoms, and chronic administration 
of antidepressant drugs induce marked changes in GABAergic 
function.77 Furthermore, several anticonvulsant and GABA-
mimetic agents possess mood stabilizing and antidepressant 

properties.77,78 Patients with TLE show decreased expression 
of glutamate transporters in the dentate gyrus,79 as well as 
patients with major depressive disorder in the frontal brain 
regions, striatum and hippocampus, leading to increased glu-
tamatergic neurotransmission.80,81 Hasler et al. showed that 
levels of glutamate/glutamine and GABA were decreased in 
prefrontal dorsomedial and ventromedial regions of patients 
with major depression.82 Imaging studies have also shown 
a decrease in glutamate in the anterior cingulate cortex 
of adults83 and children84 with depression. In unmedicated 
adults with depressive disorder, decreased GABA levels and 
synthesis in dorsomedial, dorsalanterolateral prefrontal, and 
ventromedial prefrontal regions and occipital regions were 
found.78,85 In addition, treatment with the NMDA antagonist 
ketamine has shown improvement of depressive symptoms 
in patients with major depression, and in patients with 
treatment-resistant major depression.86,87

Imaging studies in bipolar disorder have shown increased 
amygdala, hippocampus and temporal lobe volume in bi-
polar patients when compared to schizophrenics, and the 
amygdala in bipolar cases is actually larger than in normal 
subjects.88 Such increase in volume is controversial, since no 
changes in neuronal or glial densities are seen in amygdala 
specimens of patients with bipolar disorder.71 In the hip-
pocampus, nonpyramidal neuronal density is significantly 
decreased in CA2 of bipolar patients compared to control 
subjects, with no other differences in the pyramidal or non-
pyramidal neurons throughout the Ammon’s horn between 
any groups.89 In the entorhinal cortex, decreased vesicular 
glutamate transporter 1 mRNA expression is found, but not 
in the hippocampus or temporal cortex.90 Other studies 
have also reported decreased neuronal and glial density in 
the prefrontal cortex of bipolar specimens, as well as en-
largement of layer III interneuronal neuropil.91 In interictal 
dysphoric disorder, normal magnetic resonance imaging and 
normal electroencephalogram is found in the majority of 
cases.28 Based on what is known about bipolar cases and on 
TLE with psychiatric comorbidities, it would be expected 
neuropathological changes underlying interictal dysphoria, 
whereas no answer to this hypothesis is available up to now.

Evidences from animal models 
One of the first described TLE models was electrical kin-
dling, which is characterized by the sustained increase in 
seizure susceptibility and the absence or minimal extent 
of neuronal injury, as well as the absence of spontaneous 
recurrent seizures when the number of kindled seizures is 
low.92,93 However, spontaneous motor seizures may appear 
after sufficient electrical stimulation (e.g. ranging from 
88 to 293 stimuli in amygdala kindling).94,95 Systemic96 or 
intracerebral97 administration of pilocarpine or kainate in 
rodents leads to a pattern of repetitive limbic seizures and 
status epilepticus (SE), which can last for several hours.98 
Neuropathological changes - such as neuron loss - in several 
hippocampal subfields and reorganization of mossy fibers 
into the molecular layer of the fascia dentata are observed 
in both models and are similar to hippocampi from patients 
with hippocampal sclerosis.98

One of the challenges associated with understanding 
mechanisms of depression in epilepsy has been the lack of 
validated animal models of this condition.99 So far, studies 
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that attempted to develop valuable animal models of comor-
bidity between epilepsy and depression focused on behavioral 
alterations in animal models of epilepsy classically linked to 
depression. As already mentioned, two of the major symp-
toms in depression are despair and anhedonia. In rodents, 
the behavioral equivalents to these emotional states are 
accessed by two classical tests: the forced swim test and 
the saccharin or sucrose taste preference test. The forced 
swim test relies in the adaptive behavior of rodents when 
confronting a stressful situation. Basically, rodents exhibit 
two patterns of behavior: active escaping and/or exploring 
behavior or immobility, when their movements are limited 
to those necessary to keep their heads above the water. 
An increase in immobility time is regarded and related to 
the degree of despair. The taste preference evaluates the 
hedonic state measuring rodent’s natural preference for 
sweets: when given access to tap water and sweet solution 
they strongly prefer the latter. However, animals submitted 
to experimental stress have a decrease in consumption of 
the sweet solution, indicating an alteration of underlying 
reward mechanisms.100

Several studies have shown that rats submitted to SE 
induced by lithium-pilocarpine, kainate or electrical kindling 
spent a significantly longer time immobile in the forced swim 
test and exhibited loss of preference for saccharin solution 
when compared to non-epileptic animals,101-105 indicating that 
rats submitted to seizures show an increase in depressive be-
havior. Although immobility time is increased in post-SE rats, 
severity of behavioral, endocrine and biochemical hallmarks 
of depression seem independent of seizure frequency,105 simi-
larly to what occurs in humans.19 However, there is a positive 
correlation between severity of depression and hippocampal 
hyperexcitability, suggesting that depressive symptoms may 
be a net result of limbic dysfunction.106

Nevertheless, other studies using pharmacological mod-
els of epilepsy were unable to replicate these data. Recent 
experimental studies have shown that mice submitted to SE 
induced by pilocarpine, lithium-pilocarpine, focal kainate 
administration or kindling showed decrease in depression-like 
behavior.107-110 Results from our laboratory also indicate that 
rats submitted to SE induced by lithium-pilocarpine do not 
present depressive behavior in the forced swim test and in 
the learned helplessness paradigm during the silent phase of 
epileptogenesis (unpublished results). These discrepancies 
can be the result of differences in the protocol used, mainly, 
(1) rodent’s age at the time of the SE induction; (2) time 
after SE and frequency of recurrent spontaneous seizures; 
(3) used species and gender.

Although there are still controversies if animal models 
of epilepsy can present with behavioral alterations related 
to depressive symptoms, there is evidence about shared 
mechanisms. The genetic absence of epilepsy in rats from 
Strasbourg (GAERS) show depressive and anxiety-like be-
havior before the onset of seizures, indicating that common 
biological alterations could be underlying the two neuro-
logical conditions.111 Ferrero et al.112 showed that chronic 
treatment with fluoxetine enhances seizure threshold and 
the basal glutamate release. Interestingly, when rats are 
submitted to the learned helplessness paradigm, there is 
no effect of fluoxetine in seizure threshold or glutamate re-
lease.112 In fact, rats bred for susceptibility to depression-like 

phenotypes present higher mortality than non-depressive rats 
after SE induction by kainate.113 Also, rats that spent more 
time immobile in the forced swim test show faster and more 
intense hippocampal kindling.114 Evidences also link stress 
with seizure susceptibility. Rats treated with corticosterone 
supplementation are more sensitive to epileptogenesis in the 
amygdala kindling model of TLE.115 Also, the genetic model of 
epilepsy Wistar audiogenic rats (WAR)116 has increased adrenal 
gland hyperplasia associated with enhanced pituitary and 
adrenal responsiveness after hypothalamic-pituitary-adrenal 
(HPA) axis stimulation.117 Besides HPA hyperactivity, WARs also 
display hypertension, tachycardia and increased sympathetic 
tone118 as well as a pattern of endogenous anxiety revealed by 
decreased exploration in both the open arms of the elevated 
plus maze and in the open field.119 Thus, the WARs are cur-
rently being explored as a genetically developed strain with 
epilepsy and a variety of neuropsychiatric comorbidities.

Neurotransmitter systems altered in epilepsy 
and mood disorders 
Several experimental cues from the common neurobiologi-
cal alterations between epilepsy and comorbid depression 
came from the genetic epilepsy prone rat (GEPR). GRPR-3 
and GEPR-9 strains have predisposition to sound-induced 
generalized seizures and marked kindling acceleration. They 
also present depressive behavior manifested by decreased 
sucrose consumption and increased immobility time in the 
forced swim test.120 Moreover, GEPR exhibit endocrine al-
terations - such as increased corticosterone serum levels, 
deficient secretion of growth hormone, and hypothyroidism121 
- in accordance to what is found in depressive patients, such 
as elevated concentrations of circulating cortisol and corti-
cotrophin.122 In addition to that, GRPR-3 and GEPR-9 strains 
are marked by noradrenaline and 5-HT neurotransmission 
deficits, resulting from impaired arborization of noradren-
ergic and serotonergic neurons arising in the locus coeruleus 
and raphe nuclei.123 Likewise, substances that interfere with 
synthesis or release of noradrenaline or 5-HT have been found 
to accentuate seizures,121 and an increase in noradrenergic or 
serotonergic neurotransmission might prevent seizures.124-128

Disturbances in glutamate and GABA 
The excitatory and inhibitory misbalance in epilepsy is known 
for a long time.64 However, only recently the involvement 
of GABA and glutamate was recognized in depressive disor-
ders.129 There is evident relation between glutamatergic and 
monoaminergic neurotransmission. Glutamatergic neurons 
projects from the cortex to monoaminergic subcortical nuclei 
like locus coeruleus, raphe nucleus, and substantia nigra.129 
Also, drugs that augment noradrenaline and 5-HT usually 
decreases glutamate response.130,131 

In a recent review, Kanner proposes three lines of 
evidence that support a pathogenic role of glutamate and 
GABA in depression: (1) dysfunction of glutamate transporter 
proteins; (2) abnormal concentrations of cortical glutamate 
and GABA; and (3) antidepressant effects of glutamate re-
ceptor antagonists.129 Glutamate transporters are important 
to maintain low excitatory extracellular glutamate’s levels 
and consequently regulate the synaptic concentration. 
Experimental studies have shown reduced expression of 
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glutamate transporters excitatory amino acid transporters in 
animal models of depression.132,133 Also, decreased function of 
glutamate transporters are related to elevated extracellular 
glutamate levels, neuronal death, and epilepsy.134 

The role of the excitatory/inhibitory neurotransmission 
in mood disorders is strengthened by the antidepressant 
effects of several glutamate antagonists. NMDA and metabo-
tropic glutamate receptor antagonists (including MK-801, 
ketamine, mGluR5 antagonist 2-methyl-6-(phenylethynyl)-
pyridine (MPEP), and the mGluR2/3 antagonists LY341495 and 
MGS0039) have antidepressant activity in the forced swim 
test, tail suspension test and learned helplessness models 
of depression.132,135

Deregulation of Hypothalamus-Pituitary-
Adrenal (HPA) 
Deregulation of the HPA system is a central feature of 
depressive disorders. Briefly, hypothalamus secretion of 
corticotropin-releasing factor (CRF) stimulates synthesis 
and release of pituitary gland adrenocorticotropin. In turn, 
the latter stimulates adrenal cortex to secrete glucocorti-
coids. These hormones are central to successfully coping 
with a major physical stressor, as they mobilize stored 
energy, increase cardiovascular tone, and suppress costly 
anabolism. HPA deregulation occurs when failures in the 
negative-feedback that controls the level of circulating glu-
cocorticoid are present.136 Several brain structures regulate 
this activity, including the hippocampus, which has inhibitory 
influence on hypothalamic CRF-containing neurons, while the 
amygdala exert excitatory control.137 A neurotoxic role for 
augmented glucocorticoids has been extensively described 
in experimental data. High levels of glucocorticoids leads to 
injury of synapses,138,139 particularly involving CA3 pyramidal 
neurons, reduction of dendritic branching and spines that are 
part of glutamatergic synaptic inputs,136 decrease in BDNF 
levels, and interference with neurogenesis of granule cells in 
the adult hippocampal dentate gyrus.140 All of these effects 
result in structural changes in the dentate gyrus, pyramidal 
cell layer of hippocampus, amygdala, and temporal neocor-
tex.70,140,141 In the frontal lobes, high corticosteroid secretion 
has been associated with a decrease in glial cell numbers 
in subgenual, cingulated, and dorsolateral sections of the 
prefrontal cortex.54,142-146 

Neuronal alterations are also associated with the develop-
ment of mood and anxiety disorders.147 Patients with major 
depressive disorder exhibit alterations that are linked with 
hyperactive HPA such as atrophy of hippocampi, and frontal 
lobes, including cingulate gyrus and orbitofrontal and dorso-
lateral cortex demonstrated by multiple investigators.148-150 In 
fact, neuropathologic consequences attributed to excessive 
cortisol include: (1) decreased glial densities and neuronal 
size in the cingulate gyrus; (2) decreased neuronal sizes 
and neuronal densities in layers II, III, and IV in the rostral 
orbitofrontal cortex resulting in a decrease of cortical thick-
ness; (3) a significant decrease of glial densities in cortical 
layers V and VI associated with decreases in neuronal sizes 
in the caudal orbitofrontal cortex; and (4) a decrease of 
neuronal and glial density and size in all cortical layers of 
the dorsolateral prefrontal cortex.54,142-146

Furthermore, enhanced glucocorticoids levels can be 
involved in the disruption of raphe-hippocampal serotonergic 

transmission found in depressive patients. It’s proposed 
that a mechanism involved in the regulation of 5-HT neu-
rotransmission from raphe, involves somatodendritic 5-HT1A 
autoreceptors.99 The activation of raphe 5-HT1A autoreceptors 
by locally released serotonin inhibits firing of serotonergic 
neurons and further neurotransmitter release.151 Clinical and 
experimental data have suggested that glucocorticoids can 
cause an up-regulation of 5-HT1A in raphe, therefore, leading 
to an enhanced autoinhibition of 5-HT.59,152 So in chronic stress 
conditions like depression or after SE it is possible that the 
elevated corticosteroid levels could lead to reduced 5-HT 
neurotransmission.99

Recently, abnormal functioning of HPA comparable to 
those found in depressive patients has been demonstrated 
in humans with TLE without depressive disorders149 as well 
as in animal models of epilepsy.104 Again, using the lithium-
pilocarpine model, Mazaratti group showed an increase in 
corticosteroid serum levels in SE rats that is correlated with 
depressive-like behavior and raphe-hippocampal serotonergic 
deficit. Furthermore, local raphe treatment with glucocor-
ticoid receptor blocker reversed both enhanced immobility 
time in the forced swim test and raphe-hippocampal sero-
tonin deficit hallmarks of depression.104 As cited before, cor-
ticosteroid treatment can accelerate amygdala kindling and 
this process is inhibited by corticosteroid antagonists.111,153 
This mechanism may also be involved in depression associated 
with epilepsy: in TLE patients with concurrent depression, 
binding affinity of raphe 5-HT1A receptors is increased, and 
positively correlated with the severity of clinical symptoms 
of depression.154

Exacerbated HPA function promoted by chronic stress is 
related with decrease in 5-HT1A mRNA expression and binding 
in the hippocampus, an effect prevented by tricyclic anti-
depressants.155 5HT1A receptor binding and its mRNA expres-
sion are under tonic inhibition by glucocorticoid receptor 
stimulation. Accordingly, high levels of corticosteroid could 
underlie the reduced 5-HT1A receptor binding seen in patients 
with depression.129 

Furthermore, increased corticosteroid concentrations are 
associated with decreased levels of BDNF. BDNF is related 
with plasticity and survival of adult neurons and glia;156 and 
reduced BDNF levels might contribute to hippocampal injury. 
This deficiency is ameliorated by antidepressant treatment 
and is related to treatment efficacy. Administration of 
antidepressant drugs increases BDNF expression in several 
brain structures.74,157,158 Also, BDNF administration produces 
anti-depressant effects in rats.141,159 However, TLE patients 
have an increased BDNF expression that might either act 
as a neuroprotector factor promoting cell survival or con-
tribute to modifications in neuronal circuitries related to 
epileptogenesis.160

Hippocampal neuroinflammation is another possible 
common pathological mechanism in TLE and depression. 
Interleukin-1 beta (IL-1β) signaling could be underlying these 
alterations.99 Clinical and experimental studies have linked 
increased IL-1β and its receptor activation as a feature of 
TLE.161 Also, IL-1β can induce activation of HPA axis and 
facilitate depressive symptoms.162 In fact, 2-week intrahip-
pocampal administration of an IL-1β antagonist reduced the 
biochemical, endocrine and behavioral features of depression 
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but had no effect in frequency of spontaneous seizures in 
lithium-pilocarpine SE model.106

Synaptic plasticity 
Neural plasticity is a key feature in a mammal’s brain that 
could sustain changes in organization and functional dynam-
ics of nervous tissue allowing adaptive behavior to different 
ecological demands.163 In accordance, experience can modify 
brain activity including maladaptive plasticity in response 
to brain injury. A number of studies have connected neural 
plasticity with the pathophysiology of mental disorders like 
epilepsy, mood disorders and schizophrenia. Current theories 
hypothesize that neuroplastic alterations during develop-
ment may contribute to structural and functional changes 
in important circuits, which can have long-lasting effects on 
adult brain function.164

A decrease in plasticity is related to an increase of the 
threshold for adaptation165 making the individual more 
vulnerable to negative input166. Reduced spine and synapse 
density have been shown in post-mortem studies of depressed 
patients167 and in animal models;168 also, such features may 
be restored with antidepressant treatment.169 In addition to 
morphological rearrangement, activity-dependent changes in 
synaptic efficacy (i.e. synaptic plasticity) are also affected 
in depression.170 This kind of plasticity affects neurotrans-
mission efficiency and might regulate information flow and 
behavior.163 Reduction of long-term potentiation (LTP) and 
enhancement of CA1 long-term depression (LTD) is observed 
in animal models of depression.171,172 Illustrating the severity 
of these plastic modifications caused by stress events, Ryan 
et  al.173 showed that acute inescapable foot-shock stress 
- used to study learned helplessness - inhibited LTP in the 
dorsal hippocampus for at least 4 weeks.

Also, antidepressant drugs as well as electroconvulsive 
therapy (ECT) effectively modulate synaptic plasticity in the 
hippocampus and other brain structures.169,174-176 For example, 
escitalopram restored CA1-LTP and monoamine levels in neo-
natal clomipramine-exposed rats.177 Additionally, tianeptine, 
a selective serotonin reuptake enhancer, counteracted the 
negative effects of acute stress on synaptic plasticity.178 
Lithium, a well-known drug used in bipolar disorder related 
to cell survival and neurogenesis, enhances LTP induction in 
the hippocampus’ dentate gyrus.179,180 

The existence of a continuum between plasticity and 
pathology is an appealing hypothesis sustained by some 
authors.181 Synaptic efficiency is constantly regulated on 
a dynamic equilibrium, maintaining the balance between 
excitation and inhibition. In a pathological situation this 
normal process could be deregulated, which might result in 
an increase in excitation and a decrease in inhibition. This 
unbalanced condition could lead to an epileptic focus and 
subsequent seizure activity. The mechanisms underlying 
these types of changes would presumably be very long-lasting 
forms of plasticity resistant to reversal and/or LTD.181,182 In 
addition, morphological changes independent of LTP could 
be responsible for the development of pathology.183 However, 
LTP itself is associated with morphological changes similar 
to those seen as a result of kindling.184 In fact, LTP and kin-
dling share similar mechanisms such as the requirement of 
high-frequency stimulation, glutamatergic transmission and 
an increase in the intracellular calcium. Moreover, LTP and 

kindling involve changes in gene expression, protein synthe-
sis, morphology and the activity of metabotropic glutamate 
receptors.181,182

It is proposed that seizure activity causes an indiscrimi-
nate and widespread induction of long-term potentiation, 
consuming and thereby reducing overall hippocampal plas-
ticity available for information processing. In fact, repeated 
seizures reduce the ability to induce LTP and impair spatial 
learning in animals.185 The amount of learning deficits seen 
in animals is similar in time course as the transitory cogni-
tive impairment seen following ECT in humans treated for 
severe affective disorder.185 Further, the effects of ECT in 
humans or electroconvulsive seizures in animal models on 
LTP can be blocked by the NMDA antagonist ketamine.185 This 
suggests that seizures “saturate” the synapses with long-
term facilitation that decreases the capacity for plasticity 
including LTP and memory. Kindling also suppresses LTP,186 and 
lithium-pilocarpine induced SE promotes a severe reduction 
of LTP in the hippocampus, which is related to impaired fear 
memory formation.187 Neonatal seizures in animals can induce 
long-term loss of LTP, impair spatial learning, and alter NMDA 
protein expression.188 Also, LTP is markedly reduced in the 
epileptogenic hippocampus of humans with TLE, but LTP is 
quite normal in the hippocampus, which is not the primary 
seizure focus.189

Most of the works have investigated changes in synaptic 
plasticity in the pathological hippocampus. Studies that 
investigate changes in more expanded circuitry including 
thalamus, prefrontal cortex and amygdala, for instance, are 
of great importance to better understand the pathophysiol-
ogy of the disease and the genesis of a comorbid condition. 
For example, a recent work by Sloan and Bertram190 shows 
that epileptic rats present a significant reduction in the 
thalamically-induced responses in the prefrontal cortex, 
reducing thalamo-cortical communication. Importantly, 
some studies have shown that the effects of depression on 
LTP impairment and cognitive deficits may be mediated 
via profound alterations in neural information flow in the 
thalamus-cortical pathway.191 In addition, thalamocortical 
dysrhythmia is found in a series of pathological conditions 
such as neurogenic pain, tinnitus, Parkinson’s disease and 
depression.192

Conclusions 
As summarized in the Flowchart, emerging results from a 
variety of clinical and experimental paradigms suggest that 
epilepsy and mood disorders have shared and also antago-
nistic mechanisms. Cytoarchitectural and neuropil disarray 
are seen in these conditions, and such changes are indicative 
of robust circuitry dysfunction. Both mood disorders and 
epilepsy present marked changes in hippocampal synaptic 
plasticity. The most evident is a reduction in the ability of LTP 
induction, which is reflected in the cognitive deficits shown 
in both conditions, since LTP represents a cellular mechanism 
underlying memory and learning. Defining whether these 
plastic changes are possible causes or simply a consequence 
is still a matter of debate. Studies conducted in TLE experi-
mental models such as amygdala kindling, SE (pilocarpine, 
kainate), as well as research with genetically developed 
strains (GAERS, GEPRs, WARs) indicate that changes in 
the dynamics of information processing caused by genetic 



S240 L. Kandratavicius et al.

susceptibility and the experience of repeated seizures can 
produce behavioral alterations related to depressive states. 
However, to better understand these complex interactions, it 
will be necessary to investigate possible changes in synaptic 
plasticity (electrophysiology, gene and protein expression) 
in models of TLE and comorbid depression.
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