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Introduction
The prevalence of idiopathic Parkinson’s disease (IPD) is 84-

164 per 100,000 for Caucasians, whereas the annual incidence is
8.7-20 per 100,000.1 Both figures increase with age. These figu-
res show that IPD is and will be one of the major neurological
causes of morbidity, especially with an increasing mean age of
the population. The development of possible pharmacological
treatments to retard the progression of IPD, such as selegiline
and dopamine (DA) agonists rather than L-DOPA, has increased
the need for a reliable outcome measure to assess progressive
loss of the dopaminergic (DAergic) system, to monitor the
efficacy of treatment and to diagnose the disease during the
preclinical phase so that treatments can be implemented before
irreversible loss of DAergic neurons occurs.2 The preclinical
phase in IPD may be as long as 20-40 years. Neuroimaging
techniques such as positron emission tomography (PET) and
single photon emission computed tomography (SPECT) provide
such objective outcome measures.3-5 The presynaptic site can
be labeled with probes for the DA transporter (DAT) or the
synthetic enzyme aromatic l-amino acid decarboxylase (“DOPA
decarboxylase”).

[123I]ßCIT SPECT as marker for IPD
With [ 123I]2ß-carbomethoxy-3ß-(4–iodophenyl)tropane

([123I]ßCIT or [123I]RTI-55) SPECT, acceptable clinical-
epidemiologic characteristics of a preclinical marker of later
onset of IPD, showing clinical-pathological relevance to the
process, have been met.3,4,6,7 [123I]ßCIT SPECT imaging of DAT
may be useful for: (1) diagnosing early or pre-symptomatic
stages of IPD, (2) monitoring progression severity in IPD over
time, (3) assessing the efficacy of putative neuroprotective
agents, (4) revealing the extent of striatal involvement in IPD
and other parkinsonian syndromes, and (5) following growth
or rejection of fetal tissue transplanted into IPD patients (see
below).

Correlation with neuronal cell counts or dopamine levels
As mentioned above, decreased DAT densities have been

observed in putamen and caudate nucleus in IPD patients,

closely paralelling losses of DA.8,9 Both the decrease of tissue
DA levels and [3H]2ß-carbomethoxy-3ß-(4–fluorophenyl)
tropane ([3H]ßCFT or [3H]WIN-35,428) binding to the DAT
showed similar medial to lateral gradients in the striatum and
more severe losses in the putamen compared to the caudate
(Kaufman and Madras 1991; Kish et al. 1988). [123I]ßCIT SPECT
studies performed in IPD patients have confirmed the relative
selective loss of DAT in the putamen.11-14

Sensitivity and specificity, and positive and negative predictive
values for IPD

Hemiparkinson patients demonstrate reduced striatal uptake
contralateral and ipsilateral to motor symptoms suggesting
[123I]ßCIT may be sensitive to preclinical changes in
DAT.11,12,15,16 The V3" (e.g. the ratio of {striatum-occipital
cortex} over occipital cortex during a state of equilibrium), the
putamen/caudate ratio and the contralateral/ipsilateral ratio
for putamen and caudate were significantly reduced in 28 IPD
patients compared with 27 healthy controls.14 Discriminant
function analysis using V3" for ipsilateral and contralateral
caudate and putamen correctly classified 54 of the 55 cases;
when age-correction of the data was performed, all cases were
correctly identified. Age-corrected V3" in the putamen
contralateral to the side of sign onset provided a particularly
good group separation with only 18% unaccounted variance.
Similar analyses for the putamen/caudate ratio and the
contralateral/ipsilateral ratio for putamen and caudate correctly
classified 96% and 80% of the subjects, respectively.

Correlation with onset of symptomatic IPD and with severity of
symptoms

[123I]ßCIT SPECT in five IPD patients showed greater losses
in the striatum contralateral to the side of the body with initial
symptoms.12 In eight early IPD patients with exclusively hemi-
parkinsonism, [123I]ßCIT striatal uptake was reduced by about
53% contralateral and by 38% ipsilateral to the clinically
symptomatic side, when compared with eight age and sex
matched healthy subjects (Marek et al. 1996). The reduction
in [123I]ßCIT uptake was greater in the putamen than in the
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caudate. These data were confirmed independently in 15 early
untreated IPD patients17 and in 16 early untreated IPD
patients,18 and indicate that [123I]ßCIT SPECT may be useful
in identifying individuals with developing DAergic pathology
prior to the onset of motor signs.

In 28 L-DOPA-responsive IPD patients, the degree of
abnormal striatal uptake of  [123I]ßCIT, expressed as both
ipsilateral and contralateral V

3
" in both putamen and caudate,

was significantly correlated with the total Unified Parkinson’s
Disease Rating Scale (UPDRS) score and with the Hoehn-
Yahr stage.14 Both UPDRS motor subscores and bradykinesia
were strongly correlated with the V

3
" measures. The uptake in

the putamen was relatively more reduced than in the caudate.
Also, the asymmetry (based on the side where the
parkinsonian signs started) was larger in the putamen than in
the caudate. These findings have been repoduced in small
groups of IPD patients discriminated as early (Hoehn and Yahr
scores 1-2) and late IPD patients (Hoehn and Yahr scores 2.5-
4; disease history > 10 years),19 1995), in 34 previously untreated
IPD patients (Hoehn and Yahr scores 1-3),20 and in a large
group of 113 IPD patients (Hoehn and Yahr scores 1-5).21

Differential diagnosis
It has been suggested that the elevation of the caudate/

putamen ratio and marked asymmetry of [123I]ßCIT activity
may be useful in distinguishing IPD from atypical parkinsonian
syndromes such as multiple system atrophy (MSA)6,13,22 as
these would usually show a more uniform and symmetrical
loss of DAergic activity both involving the caudate and
putamen, reflected in reduced 6-[18F]fluoro-L-DOPA
([18F]FDOPA) uptake in both nuclei.23 This was observed to
some extent with [123I]ßCIT SPECT in nine MSA patients and
four progressive supranuclear palsy (PSP) patients compared
to 113 IPD patients, but not sufficiently to differentiate IPD
from MSA or PSP.21 Also, posterior putamen/caudate ratios
by [11C]ßCFT PET allowed discrimination of six PSP patients
from six IPD patients.24 The differential diagnosis between
IPD on the one hand and MSA on the other hand can be
further improved by adding imaging with  presynaptic markers
such as [18F]FDOPA PET25 [123I]ßCIT SPECT26 to DA D

2
 recep-

tor (D
2
R) imaging. With both [123I]ßCIT and [123I]IBZM SPECT

in 50 unselected patients with parkinsonian syndromes, both
sensitivity and specificity were 86%.

Other markers for IPD
Similar findings as for [123I]ßCIT SPECT were observed with

[11C] ßCIT PET in nine IPD patients when compared with three
healthy controls.27 However, because of the short half-life of
11C, only the first part of a prolonged accumulation process
could be visualised. Therefore, ßCIT may be better suited for
SPECT studies than for PET.

With SPECT using the N-fluoropropyl, methyl ester of ßCIT,
i.e. [123I]FPCIT, the loss of striatal DAT was measured in five
non-medicated IPD patients versus five healthy controls.28

Assayed at 3 hours after the intravenous injection of [123I]FPCIT,
the patients showed reduced signal in both caudate nucleus

and putamen. The ratios of specific to nonspecific uptake were
consistently 2.5-fold lower than for [123I]ßCIT. However, when
expressed as a percentage of the uptake ratio found in healthy
controls the decrease in the IPD patients was similar for both
tracers. An elaboration of the [123I]FPCIT SPECT study in six
early IPD patients (Hoehn and Yahr score 1-2), 12 patients with
advanced IPD (Hoehn and Yahr score 2.5-4; disease history >
10 years), and six healthy age-matched controls revealed that
the specific to non-specific striatal uptake ratios correlated with
the Hoehn and Yahr stage.29 Progression of IPD evolved
apparently more rapidly in the putamen than in the caudate
nucleus based on the relatively higher uptake of the latter area
in early IPD. For all 21 early-stage and drug-naive IPD patients,
striatal [123I]FPCIT ratios were lower than those in 14 healthy
controls with more reductions in the putamen than in the
caudate nucleus and more reductions contralateral than
ipsilateral to the side with the most severe symptoms; the
subgroup with hemi-IPD showed DAT loss even on the
ipsilateral side.30,31 However, in this early IPD group no
significant correlations were found between striatal [123I]FPCIT
ratios and disease severity. One can conclude that (1) [123I]FPCIT
allows a significant discrimination between IPD patients and
age-matched controls, (2) [123I]FPCIT seems as good as
[123I]ßCIT for this purpose, and (3) the faster kinetics of
[123I]FPCIT allow a one day protocol, which is a clear advantage
over [123I]ßCIT. One caveat is that with [123I]FPCIT only a
transient or peudo-equilibrium is reached versus a prolonged
equilibrium with [123I]ßCIT.

This caveat was addressed in another recent study which
also compared [123I]ßCIT versus [123I]FPCIT SPECT in six IPD
patients versus five healthy controls.32 The major conclusions
were the following. (1) The nonspecific uptake of [123I]FPCIT
was greater than [123I]ßCIT. (2) Whereas the striatal and occipital
activity of [123I]ßCIT was very stable over 18-27 h p.i. (less than
1%/h washout), the striatal and occipital activity of [123I]FPCIT
showed significant washout over 3-6 h p.i.(5%-8%/h). This was
corroborated by plasma analysis showing elimination rates of
13%-20%/h for [123I]FPCIT. (3) The striatal V

3
" values of

[123I]FPCIT gradually increased and became stable 3-6 h p.i.,
and the differences between the IPD patients and controls were
greater with [123I]FPCIT than with [123I]ßCIT, consistent with
the faster brain washout of [123I]FPCIT and the resultant
transient equilibrium state, which resulted in an overestimation
of DAT density by [123I]FPCIT in the controls. (4) The primary
metabilite of [123I]FPCIT is the carboxylic acid, similar to that of
[123I]ßCIT. (5) [123I]FPCIT SPECT is sensitive to striatal DAT
reductions in IPD patients and may provide useful data for
clinical purposes. (6) [123I]FPCIT may not provide the accurate
DAT quantitation required for some clinical studies, as in the
evaluation of IPD progression. However, the last point
contradicts another study in 12 mildly affected IPD patients,
concluding that [123I]FPCIT SPECT can provide quantitative
descriptors of presynaptic DAergic function comparable to
those obtained with [18F]FDOPA PET.33 In 10 IPD patients with
decreased striatal uptake compared to the controls, age-
corrected striatal distrubution volume ratios correlated
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negatively with the UPDRS composite motor ratings.34

A profound reduction of uptake was shown with SPECT using
[123I]2ß-carbomethoxy-3ß-(4-fluorophenyl)-n-(1-iodoprop-1-en
-3-yl)nortropane ([123I]altropane or [123I]IACFT) in the posterior
putamen with relative sparing of the caudate nuclei in eight IPD
patients compared to seven controls.35 These results are
congruent with [125I]altropane data in normal versus IPD human
brain post mortem.36 The high selectivity and rapid striatal
accumulation of [123I]altropane may allow for accurate DAT
quantification in less than 2 h and [123I]altropane SPECT may be
an additional effective clinical marker for IPD.35

The question remains which marker would be more important
to establish the status quo in vivo of the nigrostriatal pathway:
one that assays the surviving neurons, like the markers
discussed above, or a DA analogue, like [18F]FDOPA, that might
be a better measure for the functional status of the surviving
neurons.37 However, DA turnover is increased in animals with
nigrostriatal lesions and in postmortem parkinsonian brain. As
a result of this enhanced turnover, an increased proportion of
radiometabolites may leave the brain of parkinsonian patients,
exaggerating the deficits in these patients when measured with
[18F]FDOPA.6 The assumption at present is that the number of
DAT per nerve terminal remains constant in IPD, so that a ligand
for the DAT can directly visualise the number of remaining
nerve terminals. However, at present it cannot be excluded that
as the loss of DAergic neurons reaches a critical threshold, the
remaining neurons may compensate by decreasing the amount
of DAT per terminal in order to maintain synaptic DA at a certain
level.38 A PET study demonstrated that apomorphine decreased
the striatal [11C]L-DOPA influx rate in early IPD but not in
advanced IPD patients.39 This suggests that the DAergic
presynaptic inhibitory feedback regulation is intact in early IPD
but diminished in advanced IPD patients.

Aging
Another question remains regarding the optimum age

correction for comparison of striatal DAT in IPD patients versus
controls. Aging is associated with a gradual degeneration of
DAergic neurons and an accompanying loss of transmitter and
transporter. A decrease of about 10%/decade has been
described for DAT in postmortem samples.40,41 SPECT with
[123I]ßCIT, [123I]FPCIT and [123I]altropane in healthy volunteers
showed comparable age-related striatal DAT declines of 7.6-
9.6%/decade, 30,35,42 whereas PET with [11C]ßCFT, [18F]FPCIT
and [11C]d-threo-methylphenydate showed declines of 4.6-7.7%/
decade.34,43,44 However, the age-related DAT decline may be
more rapid during young adulthood and less rapid throughout
middle age so that nonlinear functions may be more optimal
than linear functions to descibe this.45 In addition, early IPD
patients did not show any age-associated DAT decline with
[123I]FPCIT SPECT, in contrast to healthy controls.30,46 These
issues pose additional challenges for age correction in striatal
DAT imaging.

Cortical dopamine transporters in IPD
In nine non-demented, non-depressed IPD patients, with

mild marked side-to-side asymmetry in motor impairment, the
clinical motor asymmetries significantly correlated in the
clinically expected direction to asymmetries in neocortical
(especially frontal) [11C]nomifensine uptake.47 This suggests
that monoamine neocortical denervation might play a direct
role in motor impairment in IPD.

Experimental therapies
Firstly DAT and secondly D

2
R PET or SPECT can be used

in future to create homogeneous patient groups for clinical
trials exploring both medical and surgical experimental
therapies. In parkinsonian patients, possible additional
damage in the connections forming the striato-thalamo-
cortical circuit might occur.48 This is the clinical basis for
therapies with NMDA receptor NR

2B
 subunit antagonists,49

AMPA receptor antagonists such as NBQX, alpha
2
–

adrenergic receptor agonists such as clonidine, and
muscarinic receptor antagonists such as dexetimide, either
alone or in combination, with or without apomorphine or
other DA (D

1
R) agonists.48 In a rat model, 6-OHDA was used

to lesion the median forebrain bundle, resulting in a comple-
te and irreversible destruction of the nogrostriatal pathway.
When glial cell-line-derived neurotrophic factor (GDNF) was
injected ipsilaterally above the substantia nigra and
immediately before the unilateral 6-OHDA injection, it
prevented both the 6-OHDA-induced reduction of DAT,
measured by [11C]IPCIT PET in the ipsilateral striatum, and
the development of amphetamine-induced rotations.50

Therefore, GDNF may be useful for the treatment of IPD.
One PET study was done in a unilateral IPD rat
neurotransplantation model.51 In the lesioned striatum, the
[11C]ßCFT binding ratio was reduced to 15-30% of the intact
side. After DA neuronal transplantation, behavioral recovery
occurred only after the [11C]ßCFT binding ratio had increased
to 75-85% of the intact side. Therefore, DAT imaging could
be a useful addition to placebo-controlled clinical trials
evaluating the effect of fetal nigral transplantation in IPD.52

Conclusion
Imaging of the presynaptic DAergic nigrostriatal neurons

with SPECT or PET has been shown to be of value in detecting
IPD at a very early (probably even presymptomatic) stage, in
monitoring the severity of IPD and, combined with D

2
R imaging,

in differentiating parkinsonian syndromes. These techniques
are being used in clinical trials to evaluate neuroprotective
properties of medications that may inhibit the rate of
progression of IPD and could also be used for such studies in
other parkinsonian syndromes.
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