Acessibilidade / Reportar erro

First molecular data for Lernaea cyprinacea (Copepoda: Cyclopoida) infesting Odontesthes bonariensis, a commercially important freshwater fish in Argentina

Primeiros dados moleculares para Lernaea cyprinacea (Copepoda: Cyclopoida) infestando Odontesthes bonariensis, um peixe de água doce comercialmente importante na Argentina

Abstract

Parasitic copepods of the family Lernaeidae are often found infesting freshwater fishes worldwide. They cause lernaeosis, a disease that can lead to serious pathogenic effects on their fish hosts. The most common lernaeid is the Lernaea cyprinacea, which has been widely introduced through importation of tropical fishes, e.g. cyprinids. In South America, it is one of the most common parasites both in wild and in farmed fish in the central region of Argentina. The silverside Odontesthes bonariensis is the most important fish of the sport fisheries of Argentina and one of the fish most affected by lernaeosis. Six specimens of copepods were collected from 30 specimens of O. bonariensis collected in a Pampean shallow lake (33°25'28”S 62°53'56”W) of Córdoba (Argentina). The 28S rRNA gene of L. cyprinacea was amplified by means of PCR to obtain the 28S rDNA sequence. The sequence obtained of this parasite from Argentina showed high genetic similarity with those from various geographical origins. The present study provided molecular characterization of L. cyprinacea in South America for the first time.

Keywords:
Lernaeidae; freshwater fish; Odontesthes bonariensis; Argentina

Resumo

Os copépodos parasitos da família Lernaeidae são frequentemente encontrados infestando peixes de água doce em todo o mundo, causando a lernaeose, uma doença que pode levar a graves efeitos patogênicos em seus hospedeiros. O lerneídeo mais comum é a Lernaea cyprinacea, que tem sido amplamente introduzida por meio da importação de peixes tropicais, tais como ciprinídeos. Na América do Sul, é um dos parasitos mais comuns em peixes selvagens, bem como em peixes de cultivo na região central argentina. Odontesthes bonariensis é um dos peixes mais importantes para a pesca esportiva na Argentina e um dos mais afetados pela lerneose. Um total de seis espécimes desses copépodes foram coletados de espécimes de 30 O. bonariensis capturados em um lago de pouca profundidade nos Pampas (33°25’28”S 62°53’56”W) em Córdoba (Argentina). O gene 28S rRNA de L. cyprinacea foi amplificado por PCR para obter a sequência do 28S rDNA. A sequência obtida desse parasito da Argentina mostrou alta similaridade genética com aquelas de outras origens geográficas. O presente estudo forneceu, pela primeira vez, uma caracterização molecular de L. cyprinacea na América do Sul.

Palavras-chave:
Lernaeidae; peixe de água doce; Odontesthes bonariensis; Argentina

Parasitic copepods of the family Lernaeidae (anchor worms) are often found infesting freshwater fishes worldwide. They cause lernaeosis, a disease that can lead to serious pathogenic effects on their fish hosts (LESTER & HAYWARD, 2006Lester RG, Hayward CJ. Phylum Arthropoda. In: Woo PTK. Fish diseases and disorders: Protozoan and Metazoan infections. vol. 1. Wallingford: CAB International; 2006. p. 466-565.). Copepodites may cause disruption and necrosis on the epithelium of fish gill, and attachment of adult females usually results in hemorrhage, muscle necrosis and an intense inflammatory response, which sometimes is associated with secondary bacterial infections. (KHALIFA & POST, 1976Khalifa KA, Post G. Histopathological effect of Lernaea cyprinacea (a copepod parasite) on fish. Prog Fish-Cult 1976; 38(2): 110-113. http://dx.doi.org/10.1577/1548-8659(1976)38[110:HEOLCA]2.0.CO;2.
http://dx.doi.org/10.1577/1548-8659(1976...
; BERRY et al., 1991Berry CR Jr, Babey GJ, Shrader T. Effect of Lernaea cyprinacea (Crustacea: Copepoda) on stocked rainbow trout (Oncorhynchus mykiss). J Wildl Dis 1991; 27(2): 206-213. PMid:2067042. http://dx.doi.org/10.7589/0090-3558-27.2.206.
http://dx.doi.org/10.7589/0090-3558-27.2...
; LESTER & HAYWARD, 2006Lester RG, Hayward CJ. Phylum Arthropoda. In: Woo PTK. Fish diseases and disorders: Protozoan and Metazoan infections. vol. 1. Wallingford: CAB International; 2006. p. 466-565.).

The most common lernaeid is the Lernaea cyprinacea. This parasite probably originated from Asia and it has spread to different parts of the world via movement of aquarium species (ROBINSON & AVENANT-OLDEWAGE, 1996Robinson J, Avenant-Oldewage A. Aspects of the morphology of the parasitic copepod Lernaea cyprinacea Linnaeus, 1758 and notes on its distribution in Africa. Crustaceana 1996; 69(5): 610-626. http://dx.doi.org/10.1163/156854096X00628.
http://dx.doi.org/10.1163/156854096X0062...
; INNAL & AVENANT-OLDEWAGE, 2012Innal D, Avenant-Oldewage A. Occurrence of Lernaea cyprinacea on mosquito fish (Gambusia affinis) from Kundu Estuary (Antalya-Turkey). Bull Eur Assoc Fish Pathol 2012; 32(4): 140-147.). It has been widely introduced through fish farming and is currently found throughout North America, Europe, Asia, southern Africa and eastern Australia (HOFFMAN, 1999Hoffman GL. Parasites of North American freshwater fishes. 2nd. New York: Ed. Cornell University Press; 1999. 317 p.; LESTER & HAYWARD, 2006Lester RG, Hayward CJ. Phylum Arthropoda. In: Woo PTK. Fish diseases and disorders: Protozoan and Metazoan infections. vol. 1. Wallingford: CAB International; 2006. p. 466-565.). In South America, L. cyprinacea has been introduced through importation of tropical fishes, e.g. cyprinids (FIGUEIRA & CECCARELLI, 1991Figueira LB, Ceccarelli PS. Observações sobre a presença de ectoparasitas em pisciculturas tropicais de interior (CEPTA e Região). B Téc CEPTA 1991; 4(1): 57-65.).

The life cycle of this parasite does not include an intermediate host. It has nine stages in its life cycle, including three free-living naupliar stages, five copepodites stages and one adult stage (HOFFMAN, 1999Hoffman GL. Parasites of North American freshwater fishes. 2nd. New York: Ed. Cornell University Press; 1999. 317 p.). After male and female adults mate on the fish host and then males die, females metamorphose, insert their anterior body into the host tissue and then produce eggs (LESTER & HAYWARD, 2006Lester RG, Hayward CJ. Phylum Arthropoda. In: Woo PTK. Fish diseases and disorders: Protozoan and Metazoan infections. vol. 1. Wallingford: CAB International; 2006. p. 466-565.; NAGASAWA et al., 2007Nagasawa K, Inoue A, Myat S, Umino T. New host records for Lernaea cyprinacea (Copepoda), a parasite of freshwater fishes, with a checklist of the Lernaeidae in Japan (1915 – 2007). J Grad Sch Biosp Sci 2007; 46: 21-33.).

The economic importance of lernaeids has increased due to numerous epizootics among the most important farmed fish species in several parts of the world, especially when fish are young (fingerlings), which may lead to death caused by only a small number of parasites (KABATA, 1985Kabata Z. Parasites and diseases of fish cultured in the tropics. London: Taylor and Francis; 1985.; MOLNÁR, 1987Molnár K. Solving parasite related problems in cultured freshwater fish. Int J Parasitol 1987; 17(2): 319-326. PMid:3294646. http://dx.doi.org/10.1016/0020-7519(87)90106-8.
http://dx.doi.org/10.1016/0020-7519(87)9...
; HEMAPRASANTH et al., 2008Hemaprasanth KP, Raghavendra A, Singh R, Sridhar N, Raghunath MR. Efficacy of doramectin against natural and experimental infections of Lernaea cyprinacea in carps. Vet Parasitol 2008; 156(3-4): 261-269. PMid:18650018. http://dx.doi.org/10.1016/j.vetpar.2008.06.005.
http://dx.doi.org/10.1016/j.vetpar.2008....
).

Reports of lernaeids in South America are still scarce, but is worth mentioning that there are thousands of native freshwater fish on this continent that have never been examined for parasites (THATCHER, 2000Thatcher VE. Perulernaea pirapitingae n. sp. (Copepoda: Lernaeidae) a parasite of the serrasalmid fish, Piaractus brachypomus from the Meta River, Colombia. Amazoniana 2000; 16(1-2): 249-257.). However, L. cyprinacea is one of the most common parasites both in wild and in farmed fish in the central region of Argentina, and it gives rise to a variety of problems in fisheries (MANCINI et al., 2008bMancini M, Rodriguez C, Ortíz V, Salinas V, Tanzola D. Lerneosis en peces silvestres y cultivados del centro de Argentina. Biol Acuat 2008b; 24: 33-41.).

The Argentinean silverside, Odontesthes bonariensis, is one of the most important freshwater fish for consumption and for sport fishing in the Pampas region, as well as one of the species most affected by lernaeosis (MANCINI et al., 2008aMancini M, Bucco C, Salinas V, Larriestra A, Tanzola R, Guagliardo S. Seasonal variation of parasitism in pejerrey Odontesthes bonariensis (Atheriniformes, Atherinopsidae) from La Vina reservoir (Cordoba, Argentina). Rev Bras Parasitol Vet 2008a; 17(1): 28-32. PMid:18554437. http://dx.doi.org/10.1590/S1984-29612008000100006.
http://dx.doi.org/10.1590/S1984-29612008...
). In chronic diseases, L. cyprinacea produces serious consequences in O. bonariensis, mainly secondary bacterial infections. (MANCINI et al., 2006Mancini M, Rodriguez C, Prosperi C, Salinas V, Bucco C. Main diseases of pejerrey (Odontesthes bonariensis) in central Argentina. Pesq Vet Bras 2006; 26(4): 205-210. http://dx.doi.org/10.1590/S0100-736X2006000400004.
http://dx.doi.org/10.1590/S0100-736X2006...
). This fish is the main species used for restocking because of its high adaptability and economic importance. Furthermore, it has been introduced into numerous freshwater environments in Argentina and other countries (e.g. Japan, Italia, Peru, Bolivia, Uruguay and Chile) due to the economic activities generated by pejerrey game fish and aquaculture (GROSMAN, 1995Grosman F. El pejerrey: ecología, cultivo, pesca y explotación. Buenos Aires: Editorial Astyanax; 1995.; MANCINI et al., 2016Mancini M, Grosman F, Dyer B, García G, Ponti O, Sanzano P, et al. Pejerreyes del sur de América: aportes al estado de conocimiento con especial referencia a Odontesthes bonariensis. Rio de Janeiro: UNIRIO; 2016.).

Thirty specimens of O. bonariensis were collected in a Pampean shallow lake (33°25’28”S 62°53’56”W) of Córdoba (Argentina) and analyzed for parasites. Six specimens of copepods were collected, washed in 0.75% NaCl solution and preserved in 80% ethanol. The morphological identification of the copepods follows Kabata (1979)Kabata Z. Parasitic copepoda of british fishes. vol. 152. London: Ray Society; 1979.. The genomic DNA was isolated using the phenol/chloroform protocol (BILLINGS et al., 1998Billings AN, Yu X, Teel PD, Walker DH. Detection of a spotted fever group rickettsia in Amblyoma cajennense (Acari: Ixodidae) in South Texas. J Med Entomol 1998; 35(4): 474-478. PMid:9701930. http://dx.doi.org/10.1093/jmedent/35.4.474.
http://dx.doi.org/10.1093/jmedent/35.4.4...
). The 28S rRNA gene was amplified by PCR with the designed primers 28SF (5' – ACA ACT GTG ATG CCC TTA G – 3') and 28SR (5' – TGG TCC GTG TTT CAA GAC G – 3') (SONG et al., 2008Song Y, Wang GT, Yao WJ, Gao G, Nie P. Phylogeny of freshwater parasitic copepods in the Ergasilidae (Copepoda: Poecilostomatoida) based on 18S and 28S rDNA sequences. Parasitol Res 2008; 102(2): 299-306. PMid:17940799. http://dx.doi.org/10.1007/s00436-007-0764-8.
http://dx.doi.org/10.1007/s00436-007-076...
). PCR reactions (25 μL) consisted of 2.5 μl of 10× PCR buffer minus Mg, 1.5 μL of MgCl2 (50 mM), 2 μL of dNTP’s (2.5 mM), 1.25 μL of each primer (10 mM), 0.2 μL of Platinum Taq DNA polymerase (5 U/μL) (Invitrogen, Carlsbad, California), 13.8 μL of H2O, and 2.5 μL of genomic DNA. PCR cycling parameters were according to Song et al. (2008)Song Y, Wang GT, Yao WJ, Gao G, Nie P. Phylogeny of freshwater parasitic copepods in the Ergasilidae (Copepoda: Poecilostomatoida) based on 18S and 28S rDNA sequences. Parasitol Res 2008; 102(2): 299-306. PMid:17940799. http://dx.doi.org/10.1007/s00436-007-0764-8.
http://dx.doi.org/10.1007/s00436-007-076...
.

PCR results were visualized through electrophoresis in a 1.5% agarose gel stained with ethidium bromide. The amplified products were purified with Exo-SAP-IT Kit (GE Healthcare Life Sciences) according to the manufacturer’s instructions, Sanger sequenced using the ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit (Applied Biosystems-Perkin Elmer) in a MegaBACE sequencer (GE Healthcare Life Science), with same primers of PCR reactions. Contiguous sequences were assembled in Geneious ver.9 (KEARSE et al., 2012Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012; 28(12): 1647-1649. PMid:22543367. http://dx.doi.org/10.1093/bioinformatics/bts199.
http://dx.doi.org/10.1093/bioinformatics...
) and deposited in GenBank under accession number KX908211.

Specimens of L. cyprinacea had prevalence of 20.0%. The copepods were found attached around the fins of O. bonariensis, mainly on the pectorals fins (Figure 1). All parasites were morphologically similar to the description of L. cyprinacea (KABATA, 1979Kabata Z. Parasitic copepoda of british fishes. vol. 152. London: Ray Society; 1979.).

Figure 1
Lernaea cyprinacea specimen (arrow) attached to the base of the pectoral fin of Odonthestes bonariensis from a Pampean shallow lake (33°25’28”S 62°53’56”W) of Rio Cuarto, Córdoba (Argentina).

Sequence obtained in this study, plus those retrieved from GenBank, were aligned separately according to region using the E-INS-I algorithm of the program MAFFT (KATOH et al., 2002Katoh K, Misawa K, Kuma KI, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002; 30(14): 3059-3066. PMid:12136088. http://dx.doi.org/10.1093/nar/gkf436.
http://dx.doi.org/10.1093/nar/gkf436...
) implemented in Geneious, and ambiguously aligned positions were excluded. Sequences for comparison were chosen according to the following criteria: belonging to L. cyprinacea and with sequence length of the 28S rRNA > 661bp. The alignment was subjected to maximum likelihood (ML) under the evolution model Kimura-2-parameters (K2P) for estimation of the genetic distances (KIMURA, 1980Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16(2): 111-120. PMid:7463489. http://dx.doi.org/10.1007/BF01731581.
http://dx.doi.org/10.1007/BF01731581...
).

The newly obtained sequence of the 28S rDNA for L. cyprinacea from Argentina deposited in GenBank (Accession No: KX908211) showed high genetic similarity with those from various geographical origins, e.g., Japan (KP235364), China (DQ107546, DQ107547) and Iran (KM281817) have 99% of genetic identity, and the isolate from Egypt (KX258626) had 100% of genetic identity (Table 1). Within all the sequences, the K2P distance varied between 0 and 0.010 (Table 1), and the percentages of cytosine and guanine ranged from 51.7% to 52.5%. Voucher specimens were deposited in the Crustacea Collection of the National Museum of Rio de Janeiro (MNRJ).

Table 1
Genetic identity, Kimura-2-parameters (K2P) and CG content (%) of sequences of the 28S rDNA from L. cyprinacea obtained in the present study and retrieved from GenBank database.

The taxonomic features used for identifying species of Lernaea seem to be ill-defined. The shape of the anchors is used as the most reliable characteristic for taxonomic comparison, in which the growth of the anchors is considered. This growth depends on the thickness of the tissue to which the parasite is attached (HARDING, 1950Harding JP. On some species of Lernaea (Crustacea, Copepoda: parasites of freshwater fish). Bull Br Mus Nat Hist Zool 1950; 1(1): 1-27.; FRYER, 1961Fryer G. Variation and systematic problems in a group of lernaeid copepods. Crustaceana 1961; 2(4): 275-285. http://dx.doi.org/10.1163/156854061X00400.
http://dx.doi.org/10.1163/156854061X0040...
, 1968Fryer G. The parasitic Crustacea of African freshwater fishes; their biology and distribution. J Zool 1968; 156(1): 45-95. http://dx.doi.org/10.1111/j.1469-7998.1968.tb08578.x.
http://dx.doi.org/10.1111/j.1469-7998.19...
). Conversely, this feature is in fact unreliable for distinguishing species within Lernaea, since it may exhibit high intraspecific variation, which creates much taxonomic confusion.

In the present study, the size of the sequence was 661 bp. The mean G + C content (Guanine + Cytosine) was 51.9%. The G+C content of a genome is frequently used in taxonomic descriptions of species and genera. According to Klenk et al. (2014)Klenk H-P, Meier-Kolthoff JP, Göker M. Taxonomic use of DNA G+ C content and DNA–DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64(2): 352-356. PMid:24505073. http://dx.doi.org/10.1099/ijs.0.056994-0.
http://dx.doi.org/10.1099/ijs.0.056994-0...
, the G+C content can vary up to 3–5% between species and no more than 1% within species, if computed from genome sequences. In this study the G + C content varied no more than 0.8% (Table 1). There was small sequence divergence within the 28S rRNA gene of representative of L. cyprinacea (K2P distances from 0 to 0.010).

The high genetic similarities among the sequences suggest that species of L. cyprinacea constitute a genetically homogeneous group, independent of geographical distribution. Moreover, these high genetic similarities suggest that all representatives belong to the same species, according to the sequences of the 28S rRNA gene.

In this light, it is evident that a complete revision of the genus needs to be undertaken. Further descriptions of new species need to be made through an integrated approach that includes use of molecular data.

According to Kabata (1979)Kabata Z. Parasitic copepoda of british fishes. vol. 152. London: Ray Society; 1979. there are around 37 valid species of Lernaea. With the advent of molecular biology as an integrative tool for morphological identification, the number of valid species of Lernaea is likely to be reduced. Despite the importance of the molecular ecology and population genetics of this parasite in relation to freshwater aquaculture, these characteristics of this parasite still remain unexplored (SU et al., 2016Su YB, Wang LX, Kong SC, Chen L, Fang R. Complete mitochondrial genome of Lernaea cyprinacea (Copepoda: Cyclopoida). Mitochondrial DNA A DNA Mapp Seq Anal 2016; 27(2): 1503-1504. PMid:25186453. http://dx.doi.org/10.3109/19401736.2014.953112.
http://dx.doi.org/10.3109/19401736.2014....
).

The present study provided molecular characterization of L. cyprinacea in South America for the first time. It represents the first step towards future studies on this still-neglected parasite in Argentinean waters. Furthermore, this integrative approach has proven to be a powerful tool for shedding light on the complicated taxonomy of Lernaea spp.

Acknowledgements

Iris A. Soares was supported by a doctoral fellowship from CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil), program CAPG/BA (Programa de Centros Associados de Pós-Graduação, UFRRJ-UNRC). José L. Luque was supported by a Researcher fellowship from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico do Brasil).

References

  • Berry CR Jr, Babey GJ, Shrader T. Effect of Lernaea cyprinacea (Crustacea: Copepoda) on stocked rainbow trout (Oncorhynchus mykiss). J Wildl Dis 1991; 27(2): 206-213. PMid:2067042. http://dx.doi.org/10.7589/0090-3558-27.2.206
    » http://dx.doi.org/10.7589/0090-3558-27.2.206
  • Billings AN, Yu X, Teel PD, Walker DH. Detection of a spotted fever group rickettsia in Amblyoma cajennense (Acari: Ixodidae) in South Texas. J Med Entomol 1998; 35(4): 474-478. PMid:9701930. http://dx.doi.org/10.1093/jmedent/35.4.474
    » http://dx.doi.org/10.1093/jmedent/35.4.474
  • Figueira LB, Ceccarelli PS. Observações sobre a presença de ectoparasitas em pisciculturas tropicais de interior (CEPTA e Região). B Téc CEPTA 1991; 4(1): 57-65.
  • Fryer G. The parasitic Crustacea of African freshwater fishes; their biology and distribution. J Zool 1968; 156(1): 45-95. http://dx.doi.org/10.1111/j.1469-7998.1968.tb08578.x
    » http://dx.doi.org/10.1111/j.1469-7998.1968.tb08578.x
  • Fryer G. Variation and systematic problems in a group of lernaeid copepods. Crustaceana 1961; 2(4): 275-285. http://dx.doi.org/10.1163/156854061X00400
    » http://dx.doi.org/10.1163/156854061X00400
  • Grosman F. El pejerrey: ecología, cultivo, pesca y explotación. Buenos Aires: Editorial Astyanax; 1995.
  • Harding JP. On some species of Lernaea (Crustacea, Copepoda: parasites of freshwater fish). Bull Br Mus Nat Hist Zool 1950; 1(1): 1-27.
  • Hemaprasanth KP, Raghavendra A, Singh R, Sridhar N, Raghunath MR. Efficacy of doramectin against natural and experimental infections of Lernaea cyprinacea in carps. Vet Parasitol 2008; 156(3-4): 261-269. PMid:18650018. http://dx.doi.org/10.1016/j.vetpar.2008.06.005
    » http://dx.doi.org/10.1016/j.vetpar.2008.06.005
  • Hoffman GL. Parasites of North American freshwater fishes 2nd. New York: Ed. Cornell University Press; 1999. 317 p.
  • Innal D, Avenant-Oldewage A. Occurrence of Lernaea cyprinacea on mosquito fish (Gambusia affinis) from Kundu Estuary (Antalya-Turkey). Bull Eur Assoc Fish Pathol 2012; 32(4): 140-147.
  • Kabata Z. Parasites and diseases of fish cultured in the tropics London: Taylor and Francis; 1985.
  • Kabata Z. Parasitic copepoda of british fishes vol. 152. London: Ray Society; 1979.
  • Katoh K, Misawa K, Kuma KI, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002; 30(14): 3059-3066. PMid:12136088. http://dx.doi.org/10.1093/nar/gkf436
    » http://dx.doi.org/10.1093/nar/gkf436
  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012; 28(12): 1647-1649. PMid:22543367. http://dx.doi.org/10.1093/bioinformatics/bts199
    » http://dx.doi.org/10.1093/bioinformatics/bts199
  • Khalifa KA, Post G. Histopathological effect of Lernaea cyprinacea (a copepod parasite) on fish. Prog Fish-Cult 1976; 38(2): 110-113. http://dx.doi.org/10.1577/1548-8659(1976)38[110:HEOLCA]2.0.CO;2
    » http://dx.doi.org/10.1577/1548-8659(1976)38[110:HEOLCA]2.0.CO;2
  • Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16(2): 111-120. PMid:7463489. http://dx.doi.org/10.1007/BF01731581
    » http://dx.doi.org/10.1007/BF01731581
  • Klenk H-P, Meier-Kolthoff JP, Göker M. Taxonomic use of DNA G+ C content and DNA–DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64(2): 352-356. PMid:24505073. http://dx.doi.org/10.1099/ijs.0.056994-0
    » http://dx.doi.org/10.1099/ijs.0.056994-0
  • Lester RG, Hayward CJ. Phylum Arthropoda. In: Woo PTK. Fish diseases and disorders: Protozoan and Metazoan infections vol. 1. Wallingford: CAB International; 2006. p. 466-565.
  • Mancini M, Bucco C, Salinas V, Larriestra A, Tanzola R, Guagliardo S. Seasonal variation of parasitism in pejerrey Odontesthes bonariensis (Atheriniformes, Atherinopsidae) from La Vina reservoir (Cordoba, Argentina). Rev Bras Parasitol Vet 2008a; 17(1): 28-32. PMid:18554437. http://dx.doi.org/10.1590/S1984-29612008000100006
    » http://dx.doi.org/10.1590/S1984-29612008000100006
  • Mancini M, Grosman F, Dyer B, García G, Ponti O, Sanzano P, et al. Pejerreyes del sur de América: aportes al estado de conocimiento con especial referencia a Odontesthes bonariensis Rio de Janeiro: UNIRIO; 2016.
  • Mancini M, Rodriguez C, Ortíz V, Salinas V, Tanzola D. Lerneosis en peces silvestres y cultivados del centro de Argentina. Biol Acuat 2008b; 24: 33-41.
  • Mancini M, Rodriguez C, Prosperi C, Salinas V, Bucco C. Main diseases of pejerrey (Odontesthes bonariensis) in central Argentina. Pesq Vet Bras 2006; 26(4): 205-210. http://dx.doi.org/10.1590/S0100-736X2006000400004
    » http://dx.doi.org/10.1590/S0100-736X2006000400004
  • Molnár K. Solving parasite related problems in cultured freshwater fish. Int J Parasitol 1987; 17(2): 319-326. PMid:3294646. http://dx.doi.org/10.1016/0020-7519(87)90106-8
    » http://dx.doi.org/10.1016/0020-7519(87)90106-8
  • Nagasawa K, Inoue A, Myat S, Umino T. New host records for Lernaea cyprinacea (Copepoda), a parasite of freshwater fishes, with a checklist of the Lernaeidae in Japan (1915 – 2007). J Grad Sch Biosp Sci 2007; 46: 21-33.
  • Robinson J, Avenant-Oldewage A. Aspects of the morphology of the parasitic copepod Lernaea cyprinacea Linnaeus, 1758 and notes on its distribution in Africa. Crustaceana 1996; 69(5): 610-626. http://dx.doi.org/10.1163/156854096X00628
    » http://dx.doi.org/10.1163/156854096X00628
  • Song Y, Wang GT, Yao WJ, Gao G, Nie P. Phylogeny of freshwater parasitic copepods in the Ergasilidae (Copepoda: Poecilostomatoida) based on 18S and 28S rDNA sequences. Parasitol Res 2008; 102(2): 299-306. PMid:17940799. http://dx.doi.org/10.1007/s00436-007-0764-8
    » http://dx.doi.org/10.1007/s00436-007-0764-8
  • Su YB, Wang LX, Kong SC, Chen L, Fang R. Complete mitochondrial genome of Lernaea cyprinacea (Copepoda: Cyclopoida). Mitochondrial DNA A DNA Mapp Seq Anal 2016; 27(2): 1503-1504. PMid:25186453. http://dx.doi.org/10.3109/19401736.2014.953112
    » http://dx.doi.org/10.3109/19401736.2014.953112
  • Thatcher VE. Perulernaea pirapitingae n. sp. (Copepoda: Lernaeidae) a parasite of the serrasalmid fish, Piaractus brachypomus from the Meta River, Colombia. Amazoniana 2000; 16(1-2): 249-257.

Publication Dates

  • Publication in this collection
    19 Feb 2018
  • Date of issue
    Jan-Mar 2018

History

  • Received
    09 July 2017
  • Accepted
    10 Jan 2018
Colégio Brasileiro de Parasitologia Veterinária FCAV/UNESP - Departamento de Patologia Veterinária, Via de acesso Prof. Paulo Donato Castellane s/n, Zona Rural, , 14884-900 Jaboticabal - SP, Brasil, Fone: (16) 3209-7100 RAMAL 7934 - Jaboticabal - SP - Brazil
E-mail: cbpv_rbpv.fcav@unesp.br