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ABSTRACT

This work constitutes one of  the outcomes of  the “Evaluation of  hydrological scenario generation models” activity initiated by the 
Hydrological Scenario Representation Working Group (GT CH) and coordinated by ONS and CCEE. We introduce the LYNX-
Series model, a contemporaneous non-periodic and multivariate variation of  the autoregressive moving average model (CARMA) 
for generating synthetic time series of  average inflow discharges to reservoirs in the Brazilian National Interconnected System (SIN). 
Notably, LYNX-Series couples the synthetic series generator with a multivariate sampling process to select a group of  synthetic 
hydrological scenarios based on a similarity criterion with recent historical data. In addition to reducing the computational burden 
of  the hydrothermal dispatch optimization process, the solution aims to enhance the representativeness of  synthetic hydrological 
scenarios. The paper expounds on the theoretical aspects of  the model and presents numerical simulations that validate its ability to 
replicate hydrological behaviors in various Brazilian basins.
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RESUMO

Este trabalho é um dos resultados da atividade “Avaliação de modelos de geração de cenários de afluências”, proposta pelo Grupo 
de Trabalho de Representação de Cenários Hidrológicos (GT CH) e coordenada pelo ONS e CCEE. Apresenta-se o modelo LYNX-
Series, uma formulação contemporânea autorregressiva de médias móveis (CARMA) não-periódica e multivariada para a geração de 
séries sintéticas de vazões médias afluentes aos reservatórios do Sistema Interligado Nacional (SIN). Como destaque, o LYNX-Series 
acopla o gerador de séries sintéticas a um processo de amostragem multivariada para a seleção de um grupo de cenários hidrológicos 
sintéticos com base em um critério de similaridade em relação ao passado recente. Além de reduzir o peso computacional do processo 
de otimização do despacho hidrotérmico, a solução tem por objetivo melhorar a representatividade dos cenários hidrológicos sintéticos. 
O artigo mostra os aspectos teóricos do modelo, bem como simulações numéricas que comprovam a sua capacidade na reprodução 
dos comportamentos hidrológicos das diversas bacias brasileiras.

Palavras-chave: Séries sintéticas de vazão; Modelos estocásticos; Amostragem multivariada; Sistema Interligado Nacional.
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INTRODUCTION

The generation of  synthetic flow series is a technique 
traditionally employed in hydrology to overcome limitations 
arising from analyses solely reliant on historical records (Medda 
& Bhar, 2019). Furthermore, observed time series are insufficient 
for analyses related to uncertainty and risk (Jardim et al., 2001), 
making the generation of  synthetic series a particularly attractive 
solution for these purposes.

Since the early techniques proposed by Thomas & Fiering 
(1962) and Matalas (1967), numerous methods have been suggested. 
Among them, linear stochastic models of  the Box & Jenkins type 
(Box et al., 2008) are among the most commonly employed for 
generating synthetic flow series. Such methods seek to adequately 
reproduce the persistence structure of  time series, which justifies 
their success in modeling hydrological data. Hipel & McLeod 
(1977), Hipel et al. (1977), Stedinger et al. (1985), and Haltiner 
& Salas (1988) are examples of  studies that brought significant 
advancements in synthetic series modeling using Box & Jenkins 
formulations at the time. Since then, the successful application of  
these methods has ensured their widespread use in hydrological 
studies over the years, including recent works (Singh & Ray, 2021; 
Tukiman & Harun, 2021; Medda & Bhar, 2019; Bayesteh & Azari, 
2019; Pereira & Veiga, 2018).

An example of  applying Box & Jenkins models for the 
generation of  synthetic scenarios can be found in the Brazilian 
National Interconnected System (SIN). It is known that SIN is a 
large-scale hydro-thermal-wind system, with a predominant share 
of  hydropower plants (approximately 53% of  installed capacity – 
Agência Nacional de Energia Elétrica, 2023). The planning of  SIN’s 
operation and expansion is currently based on synthetic time series 
of  natural energy inflows generated by a periodic autoregressive 
model (PAR-p, Maceira & Damázio, 2006). PAR-p is employed to 
obtain synthetic scenarios of  natural energy inflows to equivalent 
reservoirs (Larroyd et al., 2017), a technique adopted to reduce 
the computational burden of  hydrothermal dispatch optimization 
models (Jardim et al., 2001). More recently, Treistman et al. (2020) 
proposed PAR(p)-A, an enhancement to the original formulation 
that includes a component giving more weight to observations 
from the last 12 months in generating synthetic scenarios. This 
is the official version used in the planning and operation models 
of  SIN at present.

This paper addresses the activity proposed by the 
Hydrological Scenario Representation Working Group (GT 
CH) of  the PMO/PLD Technical Committee, coordinated by 
the National Operator of  the Electrical System (ONS) and the 
Chamber of  Electric Energy Commercialization (CCEE), titled 
“Evaluation of  hydrological scenario generation models.” Here, 
we present the LYNX-Series model, a formulation based on the 
contemporaneous autoregressive moving average (CARMA) model. 
The model was initially developed as part of  Line 5 of  the ANEEL 
Strategic Call 001/2008, where the Research and Development 
project PHOENIX – Optimization of  Hydrothermal Dispatch 
through Hybrid Algorithms with High-Performance Computing 
– was conceived. The initial version of  the model was further 
enhanced within the LYNX project – Large-Scale Optimization 
Applied to the Brazilian Hydrothermal Dispatch: Hierarchical 

Models for Medium and Short-Term Operation and Planning with 
Energy and Power Integration, earning the name LYNX-Series.

In contrast to the solution based on equivalent scenarios 
of  natural energy inflow, the proposed approach applies the 
CARMA model to generate synthetic time series of  mean natural 
inflow discharges for all operational power plants within the SIN. 
The CARMA model represents a non-periodic and multivariate 
version of  the Box & Jenkins family of  stochastic models. It is 
a parsimonious formulation, which allows a reduction in the 
number of  parameters to be estimated compared to a conventional 
multivariate ARMA model. The choice of  this formulation was 
made due to the large scale of  the Brazilian hydroelectric system, 
as previously mentioned.

In addition to the development of  LYNX-Series for 
generating 3000 synthetic time series, each with a duration of  60 
months, for all power plants (HPPs) in the SIN, the modeling 
presented highlights the following aspects: (i) application of  the 
Interior Point method for estimating CARMA model parameters 
through maximum likelihood estimation, considering non-linearity 
and constraints in the optimization process; (ii) implementation 
of  a clustering-based sampling methodology using Mahalanobis 
distance as a similarity criterion; and (iii) identification and selection 
of  synthetic scenarios with hydrological characteristics similar to 
those prevalent in recent years, aimed at improving the energy 
optimization process.

This paper presents the theoretical aspects of  the LYNX-
Series model, including a detailed explanation of  the proposed 
sampling process. It also showcases results from numerical 
experiments, demonstrating the model’s capabilities in replicating 
the hydrological characteristics of  the analyzed time series. A final 
conclusion section ends the article.

LYNX-SERIES MODEL: THEORETICAL 
BACKGROUND

The LYNX-Series model is based on the CARMA 
formulation, which stands for Contemporaneous Autoregressive 
Moving Average model (Camacho et al., 1985). It is a multivariate 
approach derived from the linear stochastic models of  the Box 
& Jenkins type, or ARIMA (Box et al., 2008). In general, this 
family of  models operates with the autocorrelation structure 
of  time series data, which justifies its significant applicability to 
flow series. The contemporaneous component of  the model, on 
the other hand, is responsible for considering spatial correlation 
among different locations.

Synthetic series generation model

Let the vectors of  l normally distributed series be denoted as 
'

,1 ,2 ,, , ,t t t t lz z z = … z , each corresponding to a location u ( 1,2, ,u l= … ). 
Also, let the vectors of  l normally distributed residuals be denoted 

as '
,1 ,2 ,, , ,t t t t lε ε ε ε = …  , independent in time but spatially correlated. 

The CARMA model is defined by Equation 1:

( ) ( ), , ,   1, 2, ,u t u u t uB z B t nφ θ ε= = …  (1)
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Where ( )u Bφ  is the u -th autoregressive operator of  order 
( )1 2max , , , lp p p p= … :

( ) 2
1 21 p

u u u upB B B Bφ φ φ φ= − − −…−

In turn, ( )u Bθ  is the u-th moving average operator of  order 
( )1 2max , , , lq q q q= … :

( ) 2
1 21 q

u u u uqB B B Bθ θ θ θ= − − −…−

Finally, B is the lag operator, such that z k
t k tB z− = , for any lag 

k . The form of  the CARMA model is identical to that of  the 
multivariate ARMA model, except for the parameter matrices 

( )u Bφ  e ( )u Bθ . In the CARMA formulation, both matrices are 
considered diagonal and take the form:

11 11

22 22

0 0 0 0
0 0 0 0

                   

0 0 0 0

u u

ll ll

φ θ
φ θ

φ θ

φ θ

… …   
   … …   = =   
   

… …      

       

In practical terms, considering diagonal matrices allows the 
model to replicate the individual statistics of  each location and 
the instantaneous spatial correlation (lag zero) between them. 
Furthermore, the model is parsimonious as it does not require 
the estimation of  an excessively large number of  parameters. 
Haltiner & Salas (1988) and Stedinger et al. (1985) demonstrated the 
efficiency of  this formulation when compared to the conventional 
multivariate ARMA model. Additionally, the CARMA model has 
the advantage of  enabling its parameter matrices to be constructed 
with univariate estimates from each location (Hipel & McLeod, 
1994, p. 784).

The process of  fitting the CARMA model to flow 
series follows the methodological procedure of  identification-
estimation-validation originally proposed by Box et al. (2008). In 
the identification phase, the Bayesian Information Criterion (BIC) 
(Schwartz, 1978) is applied, defined as:

( )2ln lnBIC L r nr= − +  (2)

Where ( )L r  is the likelihood function (defined below), r is the 
number of  model parameters, and n is the size of  the series. The 
criterion is applied to five variations of  the model, CARMA(1,0), 
CARMA(2,0), CARMA(1,1), CARMA(2,1), and CARMA(2,2), with 
the chosen formulation being the one that minimizes Equation 2. 
Models of  maximum order two were selected because they are 
sufficient for the satisfactory fitting of  linear formulations to 
stationary series (Box et al., 2008).

The choice to use the BIC criterion over the traditional analysis 
of  autocorrelation functions (ACF) and partial autocorrelation 
functions (PACF) is primarily due to the scale of  the hydroelectric 
system under analysis. Working with a system that includes 
approximately 200 HPPs makes it impractical to visually analyze the 
ACF and PACF individually for each series, especially considering 
that the model needs to be re-estimated with each update to the 
historical data. Additionally, the BIC is an information criterion 
that penalizes models with an excessive number of  parameters, 
prioritizing the parsimony of  the formulation.

The estimation of  parameters φ̂  e θ̂  is carried out using the 
maximum likelihood method, also individually for each location, 
by minimizing the log-likelihood function given by Equation 3:

( ) ( ) ( )
l

ˆ,
ln ln , ,

ˆ
ˆ ˆ ˆ ˆ

ˆ
 | n

2a t a
a

SSQ
r L z n

φ θ
φ θ σ σ

σ
= = − −

 (3)

Where ˆaσ  is the estimate of  the standard deviation of  the residual 
series a  ( 1,2, ,t n= … ) and ( )ˆ ˆ,SSQ φ θ  represents the sum of  squares 
of  residuals defined by Equation 4:

( ) 2

1

ˆ,ˆ
n

t
t

SSQ φ θ
=

=∑a  (4)

It’s important to emphasize that the minimization process, in 
addition to being non-linear, has constraints arising from the 
stationarity and invertibility properties of  the model (Box et al., 
2008). To address this, the Interior Point optimization method 
(Byrd et al., 2000) is used, with sample estimates serving as initial 
values for φ̂  e θ̂ .

The spatially correlated field is estimated from the Equation 5:

,t u taε = Λ  (5)

Where 
'

,1 ,2 ,, , ,t t t t la a a = … a  is the vector of  l normally distributed 
and independent residuals (in both time and space), and Λ is 
a parameter matrix with dimensions l l× , whose estimation is 
obtained from the solution of  Equation 6:

εγΛ ′Λ =  (6)

Where εγ  represents the variance-covariance matrix of  the residuals 

,t uε . The procedure used is to apply the Cholesky decomposition 
to εγ  to obtain the lower triangular matrix Λ. At this point, it’s 
important to note that this solution only works for positive-
definite εγ  matrices. Therefore, for application to the flow series 
of  HPPs in SIN, it is necessary to exclude duplicated series, as 
occurs in some cases (e.g., Camargos and Itutinga HPPs, Paulo 
Afonso-Moxotó Complex, etc.). The reason for this is that the 
presence of  perfect correlations in the εγ  matrix makes it not 
positive-definite, which renders the estimation procedure using 
the adopted method unfeasible.

As the final step in the CARMA model fitting process, there 
is theoretical validation. A suitable model is one that produces 
residuals that are independent, homoscedastic, and approximately 
normally distributed. These three checks are performed through 
statistical inferences of  the Portmanteau type (Li & McLeod, 1981), 
Levene (Brown & Forsythe, 1974), and Shapiro-Wilk (Shapiro 
& Wilk, 1965), respectively. In all cases, the tests are applied at a 
significance level of  5%.

Sampling procedure

The choice of  3000 scenarios per HPP was established after 
a specific study aimed precisely at determining the appropriate 
quantity of  synthetic series for energy-related applications (Detzel 
& Mine, 2017). However, this is an excessively large number to 
consider in the hydrothermal dispatch optimization process for 
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which the LYNX-Series model provides the synthetic series. 
Therefore, the implementation of  the sampling process was 
motivated to reduce the dimensions of  the problem.

As a relevant issue, it should be noted that the synthetic series 
generation model is multivariate, and therefore, sampling should 
be performed in a way that preserves the entire spatial correlation 
structure among the power plants. The solution was to apply a 
sampling method based on clustering of  synthetic series through 
the calculation of  Mahalanobis distances between scenarios and 
historical data. In other words, the proposed method seeks the 
closest similarities between the generated synthetic series and the 
observed historical series. The Mahalanobis distance is defined 
according to Equation 7 (Maesschalck et al., 2000):

( ) ( ) ( )1, zxd z x z x z xγ −= − −  (7)

Where z  e x are the mean vectors of  historical and synthetic series, 
respectively, and 1

zxγ −  is the inverse of  the joint variance-covariance 
matrix of  historical and synthetic flows. Once the 3000 distances 
are obtained, 200 series are selected through stratified sampling 
based on ten classes. Implementation details of  the entire sampling 
process can be found in the initial publication of  the method by 
Detzel et al. (2013).

However, in the development of  LYNX-Series, the sampling 
of  synthetic scenarios has been revised to include a second objective. 
Now, in addition to reducing the dimensionality of  the problem, 
the sampling aims to represent the recent state of  inflows to the 
power plants in SIN. In other words, the process seeks to identify 
the prevailing hydrological characteristics in the recent past. This 
information is incorporated into the synthetic flow series to be 
sampled, aiming to bring greater refinement to the process.

To achieve this, the entire Mahalanobis distance-based 
sampling and stratification process was retained. The difference 
lies in the historical data used to calculate the distances. In this 
work, the decision was made to use the most recent 12 months 
of  available historical data. Therefore, the length of  the generated 
synthetic series was increased from 'n  to ' 12n +  months, with the first 
twelve months used only in the sampling process. Afterward, the 
first twelve months of  each of  the 200 scenarios are disregarded, 
leaving the remaining 'n  months as the synthetic output series 
from the model. Figure 1 graphically illustrates the procedure, 
assuming the goal is to obtain synthetic series with a final length 
of  60 months.

It’s important to note that the model allows for the choice 
of  any historical period for calculating distances and determining 
similarities. Additionally, it’s also possible to choose samples with 
periods different from the proposed 12 months. These alternatives 
were tested during the model implementation phase, and for the 
series considered, no significant differences were detected. Therefore, 
the use of  the last 12 months was established as a premise.

Considerations regarding seasonality, normality, and 
stationarity

Similar to the Box & Jenkins model family, CARMA is a 
formulation that requires normally distributed series. This condition 
is not met in many Brazilian rivers, so the choice is made to apply 
a logarithmic transformation to the series before subjecting them 
to the stochastic model itself. The logarithmic transformation is 
known to approximate the distribution of  hydrological data to a 
normal shape (Helsel et al., 2020, p. 129).

Another numerical transformation applied aims to address 
the seasonality of  the series. As mentioned in the introduction, 
CARMA is a non-periodic model and, therefore, does not have 
parameters specifically designed for seasonality. This choice was 
made during the initial conception of  the method, aiming to 
maintain the parsimony of  the hydrothermal dispatch model as 
a whole. Therefore, it was chosen to work with deseasonalized 
series, which are obtained through the standardization defined 
by the Equation 8:

, ,
,

,
,   1, 2, ,12t m t m

t m
t m

q q
z m

σ
−

= = …  (8)

Where ,t mq  represents the flow series with mean ,t mq  and standard 
deviation ,t mσ , all calculated for a specific month m. Standardization 
is carried out individually for each location.

Finally, the LYNX-Series model was designed to deal with 
the non-stationarity of  inflow series. Previous studies have shown 
evidence that non-stationarity affects a significant portion of  the 
inflow to Brazilian reservoirs (Melchior, 2022; Silva & Detzel, 
2021; Silva et al., 2019; Chagas & Chaffe, 2018; Detzel et al., 2011). 
In a more recent study, Detzel et al. (2023) showed that 48% 
of  the flow series to hydroelectric power plants in the National 
Interconnected System exhibited some form of  trend. Of  these, 
31% were identified as decreasing trends, and 69% as increasing 

Figure 1. Representation of  the sampling process. For this example, it is assumed that there is historical data available from Jan/31 
to Dec/21, and the goal is to obtain synthetic series with a length of  60 months.
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trends. Since CARMA is a stationary model, the occurrence of  
trends in historical records is undesirable.

As a solution, LYNX-Series implements the Mann-Kendall 
test (Hamed, 2009) for trends and the Pettitt test (Pettitt, 1979) 
to identify breakpoints in the series. Once trends are detected, 
historical data correction is carried out based on the angular 
coefficients of  the cumulative flow series before and after the 
identified breakpoint (Detzel et al., 2011). This solution, based on 
historical data correction, is an alternative to using the ARIMA 
model, which is a non-stationary formulation of  linear stochastic 
models. ARIMA models work by differencing the historical series 
into stationary segments, which are then subjected to the modeling 
process. However, the synthetic series obtained are equivalent to 
the differenced historical data, and returning to the original scale 
would require an individual integration constant for each series, 
which is not known. For this reason, models from this family are 
not commonly used for generating synthetic series (Salas et al., 
1980, p. 279).

That being said, it should be emphasized that for the 
purposes of  the activity proposed by the Hydrological Scenario 
Representation Working Group (GT-CH) within the Technical 
Committee of  PMO/PLD (CT PMO/PLD), the module for 
identifying and correcting non-stationarity has been disabled 
because it alters historical data. If  it were kept active, the model 
would lose a common basis for comparing results as shown in 
Treistman et al. (2023).

NUMERICAL EXPERIMENTS

Prior to submitting the synthetic flow scenarios for the 
activity proposed by the GT-CH, numerical experiments were 
conducted to validate the synthetic series generated by the LYNX-
Series model. For this purpose, the static configuration of  the 
Brazilian hydroelectric system as of  January 2022 was selected, 
with a flow history ranging from January 1931 to December 
2021. The data pertains to naturalized flows, excluding the effects 
of  damming, non-consumptive uses, and reservoir evaporation 

(Braga et al., 2009). The data were collected from the SINtegre 
portal (https://sintegre.ons.org.br), which is maintained by ONS.

The flow series for the 146 plants in the four subsystems 
that make up the SIN, namely: Southeast/Central-West, South, 
Northeast, and North, were modeled. For all of  them, initially, 
3000 series were generated, from which 200 synthetic scenarios 
with a duration of  60 months were sampled. It is important to 
note that intensive investigations into the performance of  the 
CARMA model have been conducted previously (Detzel et al., 
2014, 2016). Furthermore, the last article in this special edition 
presents comparisons with other models using specific statistical 
metrics. Therefore, this section presents only general results of  
the model.

RESULTS AND DISCUSSIONS

Figure 2 displays the distribution of  the selected model 
orders for the hydrological series studied. The BIC criterion 
indicated the ARMA(2,1) model for the majority of  the series 
(67%). The simplest model, AR(1), was selected for 16% of  the 
series, while AR(2) and ARMA(1,1) models were indicated for 
12% and 5% of  the series, respectively. The ARMA(2,2) model 
was not selected in any case. In a more in-depth analysis, it was 
found that purely autoregressive models were indicated for the 
series of  HPPs in the South subsystem. Models with the moving 
average portion were selected for the series of  HPPs in the other 
subsystems.

Figure 3 displays the HPPs considered in the study, 
distinguished by the type of  reservoir (regulation or run-of-
river). Examples of  synthetic series generated for six projects are 
also shown: Samuel (Jamari River), Sobradinho (São Francisco 
River), Ilha Solteira (Paraná River), Barra Bonita (Tietê River), 
Gov. Bento Munhoz (or Foz do Areia, Iguaçu River), and Barra 
Grande (Pelotas River).

Through Figure 3, it is initially possible to observe the different 
hydrological regimes present in the six selected basins. The rivers in 
the Southern subsystem (Figures 3e and 3f) do not have a defined 
seasonality. However, as latitude decreases, the seasonal patterns of  

Figure 2. Frequency histogram for the orders of  the selected models for the hydrological series in the study.
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the series become more evident. For these plants, the synthetic series 
are able to reproduce the seasonal behavior very well, as evidenced 
by the overlap of  the lines of  historical and synthetic monthly 
average flows. The only graph in which a distinction between the 
lines is identified is in Figure 3b, in the first few months.

Another interesting characteristic is the behavior of  synthetic 
series around the average flows. Particularly in the Samuel HPP 
(Figure 3a), the synthetic series vary little and relatively uniformly 
for both high-flow and low-flow periods. On the other hand, the 
synthetic series for the Sobradinho HPP (Figure 3b) and Ilha 
Solteira HPP (Figure 3c) suggest greater uncertainty during high-
flow periods, which is reflected in the wide range of  scenarios 
generated during those times. In the case of  the Gov. Bento Munhoz 
HPP (Figure 3e) and Barra Grande HPP (Figure 3f), the synthetic 
series also suggest high uncertainty around the mean values but 
without characterizing a specific period. This is a consequence of  
the greater annual hydrological regime regularity, as mentioned in 
the previous paragraph.

Figure 4 displays the comparisons between autocorrelation 
functions for the same power plants shown in Figure 3. These 
functions are used to assess the model’s ability to reproduce the 
persistence structure of  historical series in each case. What can 
be observed is that the CARMA model was able to adequately 
reproduce the autocorrelations of  the first lags. In particular, 

for the series of  the Samuel HPP (Figure 4a), Sobradinho HPP 
(Figure 4b), Ilha Solteira HPP (Figure 4c), and Barra Bonita HPP 
(Figure 4d), the autocorrelation is relatively well reproduced up 
to a lag of  24 months. On the other hand, for the series of  the 
Gov. Bento Munhoz HPP (Figure 4e) and Barra Grande HPP 
(Figure 4f), the autocorrelation is satisfactorily reproduced only 
for the first few months.

These results are explained by the orders of  the selected 
models in each case. As mentioned earlier, more complex models 
were indicated for power plants that operate in the Southeast/
Central-West, Northeast, and North subsystems, and therefore, 
the persistence structure is well reproduced for longer lags. In 
the case of  power plants in the South, purely autoregressive 
and lower-order models explain the limited reproduction of  
autocorrelations.

The last numerical results to be discussed pertain to the 
spatial correlation structure among the hydrological series modeled. 
The CARMA model was particularly successful in reproducing 
this characteristic, as evidenced by Figure 5. It is interesting to 
note that there is a group of  power plants whose series have a 
negative correlation with the others. These power plants are located 
in the Southern subsystem and exhibit a hydrological behavior 
that complements the other subsystems. This behavior was also 
adequately reproduced by the model.

Figure 3. HPPs considered in the study, classified according to the type of  reservoir. The synthetic flow series shown refer to the 
plants (a) Samuel, (b) Sobradinho, (c) Ilha Solteira, (d) Barra Bonita, (e) Gov. Bento Munhoz (Foz do Areia), (f) Barra Grande. The 
red lines display historical monthly average flows, the black lines represent synthetic monthly average flows, and the gray lines show 
the synthetic series.
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Figure 4. Comparison of  autocorrelation functions for the HPPs (a) Samuel, (b) Sobradinho, (c) Ilha Solteira, (d) Barra Bonita, (e) 
Gov. Bento Munhoz (Foz do Areia), (f) Barra Grande. The red lines display historical monthly mean flows, the black lines show 
synthetic monthly mean flows, and the gray lines represent synthetic series.

Figure 5. Comparison between the historical (right) and synthetic (left) spatial correlation matrices for all modeled power plants. The 
diagrams were constructed following the encoding sequence of  the plants used by ONS.
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CONCLUSION

This article aimed to provide detailed insight into the 
formulation of  the LYNX-Series model, which was originally 
developed for applications related to the optimization of  the 
Brazilian hydrothermal dispatch. The model’s primary feature 
is the coupling between synthetic scenario generation and the 
method for sampling series that exhibit similarities with recent 
historical data. As demonstrated, the model is capable of  adequately 
reproducing the hydrological behavior of  rivers located in different 
regions of  Brazil. In particular, LYNX-Series exhibits high skill 
in reproducing the spatial correlation structure among series, a 
crucial characteristic in the context of  planning and operating a 
large-scale hydroelectric system like the Brazilian one.

An important note regarding the results presented here 
and their relation to the GT-CH’s activity proposal: LYNX-Series 
was originally designed for generating natural inflow series to 
reservoirs. However, the activity’s proposal was to assess the 
scenarios in terms of  incremental flows between power plants. 
Therefore, an adaptation to the modeling was necessary to calculate 
and provide these synthetic incremental scenarios for comparison 
with other models. Consequently, the results to be presented in 
Treistman et al. (2023) pertain to incremental flows, and their 
interpretation should consider this characteristic.
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