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ABSTRACT

Calibration of  hydrologic models estimates parameter values that cannot be measured and enable the rainfall-runoff  processes simulation. 
Multi-objective evolutionary algorithms can make the calibration faster and more efficient through an iterative process. However, the 
standard stopping criterion used to stop the iterative process is to reach a pre-defined number of  iterations defined by the modeller. 
Alternatively, the Ticona stopping criterion is based on the minimum number of  iterations required to achieve a determined number 
of  non-dominated solutions in the Pareto front, resulting in a reduction of  the computational time without losing performance during 
the calibration processes. We evaluated the Ticona stopping criterion in the Tank Model calibration. The calibration processes were 
performed using data from two river basins, with three genetic algorithms and two objective functions. The Ticona stopping criterion 
required a computational time 27.4% to 44.1% lower than using the standard stopping criterion and were obtaining similar results in 
simulated streamflow time series and similar values of  the best set of  parameters.

Keywords: Multi-objective evolutionary algorithm; Tank model; Stopping criterion; NSGA-II; NSGA-III; SPEA-II.

RESUMO

A calibração de modelos hidrológicos estima os valores de parâmetros que não podem ser mensurados e permite a simulação dos 
processos chuva-vazão. Os algoritmos evolucionários multi-objetivos podem tornam a calibração mais rápida e eficiente por meio 
de processos iterativos. Contudo, o critério de parada padrão usado para encerrar o processo iterativo é baseado em um número de 
iterações pré-definido pelo usuário. Como alternativa, o critério de parada Ticona é baseado no número mínimo de iterações requerido 
para alcançar um determinado número de soluções não-dominadas na Frente de Pareto, resultando em um menor tempo computacional 
sem perda de desempenho durante a calibração. Neste estudo, foi avaliado o uso do critério de parada Ticona na calibração do Tank 
Model. A calibração foi realizada em duas bacias hidrográficas, usando três algoritmos genéticos e duas funções-objetivo. Os resultados 
indicaram um tempo computacional 27,4% a 44,1% menor quando utilizado o critério de parada Ticona em comparação com o critério 
de parada padrão, ao mesmo tempo que foram obtidos resultados similares quanto aos valores dos parâmetros calibrados e à série 
temporal de vazão simulada.

Palavras-chave: Algoritmo evolucionário multi-objetivo; Tank model; Critério de parada; NSGA-II; NSGA-III; SPEA-II.
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INTRODUCTION

Hydrologic models are efficient tools for simulating rainfall-
runoff  processes, representing the processes of  the hydrological 
cycle in a basin in a simplified way (Beven. 2019). These models 
are based on mathematical equations and assumptions that aim to 
simplify the real-world system (Gupta et al., 1998). Thus, measured 
data are used as input to the model and the parameter values that 
cannot be measured because they represent an abstraction of  
reality are estimated by the calibration process.

The calibration process aims to find parameter values that 
represent the hydrological behaviour of  the basin as closely as 
possible (Madsen, 2000). Different combinations of  parameters can 
represent the observed data because of  the model’s simplifications 
as well as the inherent data uncertainties (Beven, 1993, 2001; Beven 
& Smith, 2015). Single or multi-objective optimization algorithms 
can be coupled to hydrologic models during the calibration to 
make this process faster and more efficient (Madsen, 2000). Single-
objective optimization seeks to find a solution that minimises or 
maximises the objective function. Differently, multi-objective 
optimization results in a set of  solutions that are not inferior or 
not dominated, known as the Pareto front (Yapo et al., 1998).

For the optimization of  multi-objective problems, such 
as the calibration of  hydrologic models, evolutionary algorithms 
simulate the basic principles of  the evolutionary process in a 
set (population) of  candidate solutions (individuals). Through 
an iterative process, where an iteration represents a generation, 
the individuals are sorted by their fitness and used to generate 
new individuals by the so-called evolutionary operators such 
as crossover and mutation (Coello et al., 2007; Gutierrez et al., 
2019a). The following elements must be defined to apply a Multi-
Objective Evolutionary Algorithm (MOEA) in hydrologic-model 
calibration: (1) objective functions, (2) optimisation algorithm, 
and (3) stopping criterion (Gupta et al., 1998). As the size of  the 
population grows and the number of  objective functions increases, 
the optimization process may be time-consuming, requiring a prior 
indication of  a stopping criterion to analyse when the solutions 
reached are acceptable and additional calculation is not justified 
(Gutierrez et al., 2019b). Several stopping criteria can be used to 
verify if  the solution achieved is the best answer or an acceptable 
answer. These criteria check if  solutions do not change in a 
determined number of  iterations. If  the algorithm does not stop, 
a limit to the maximum number of  iterations should be defined. 
This last criterion is referred to as the standard stopping criterion.

Gutierrez et al. (2019a) developed a stopping criterion that 
ensures the quality of  the solutions of  the multi-objective optimization 
process and interrupts it when no significant improvement occurs, 
reducing computational resources considerably. The approach 
proposed by the authors aims to find a representative set of  
solutions, sufficiently close to that which would be obtained using 
the standard stopping criterion. Gutierrez et al. (2019a) stopping 
criterion have three parameters that can be defined with some 
previous calibration tests: the minimum number of  generations 
(Imin) required to reach the population size of  non-dominated 
solutions (Np) and the number of  generations that this population 
size must be maintained consecutively during the iterative process 
(CountMax). Gutierrez et al. (2019a) used the stopping criterion during 
the calibration of  seven parameters of  the IPH-II conceptual 

hydrologic model and found that the metric values showed results 
similar to those obtained using the standard stopping criterion. 
Despite both stopping criteria resulted in similar Pareto fronts for 
the three MOEAs tested (NSGA-II, NSGA-III and SPEA-II), an 
expressive computational gain was observed with Gutierrez et al. 
(2019a) stopping criterion, decreasing the computational time by 
70% compared to the standard stopping criterion. Some models, 
such as the Tank Model, have a higher number of  parameters and, 
consequently, more computational time is spent on running the 
model code and generating the target output (Yilmaz et al., 2010).

The Tank Model is a conceptual, lumped rainfall-runoff  
model based on the representation of  the hydrological system by a 
succession of  vertically aligned tanks, simulating the different soil 
layers with their respective water retention and transfer properties 
(Sugawara & Singh, 1995). The resulting flow is a function of  the 
precipitation, evapotranspiration, and water storage in the previous 
time step (Suryoputro et al., 2017; Jaiswal et al., 2020). Different 
methods have already been applied to calibrate the Tank model. 
Some examples of  single-objective methods used to calibrate 
the Tank model are the Uniform random search, Pattern search, 
Rosenbrock method, Generalized reduced gradient method, 
Generic GA, and SCE-UA algorithm (e.g.: Tanakamaru, 1995; 
Madsen, 2000; Song et al., 2017) and multi-objective methods, 
such NSGA-II (Vasconcellos, 2017).

Therefore, this study aims to investigate if  the computational 
gain in using the Gutierrez et al. (2019a) stopping criterion in 
comparison to the standard stopping criterion still holds on when 
applied in the calibration of  a hydrologic model with a more 
complex structure. The IPH II and Tank Model are conceptual 
hydrologic models, however, the IPH II structure is simpler and 
had a lesser number of  parameters (7 parameters). The Tank 
Model is highly non-linear, and in this study, were tested two 
structures (4-tank: 16 parameters, and 3-tank: 12 parameters). 
Thus, the Gutierrez et al. (2019a) stopping criterion, called the 
Ticona stopping criterion in this study, was tested in the multi-
objective calibration of  the Tank Model, applied in two different 
river basins with a larger calibration dataset.

MATERIAL AND METHODS

Study area

Two basins with different morphological characteristics 
were selected to compare the performances of  the Ticona stopping 
criterion and the standard stopping criterion, during the calibration 
of  the Tank model, as analysed by Gutierrez et al. (2019b) using 
the IPH II model.

The Ijuí River basin is in the northwest region of  the 
state of  Rio Grande do Sul (south of  Brazil), the basin has a 
drainage area of  5,414 km2. The terrain is composed of  hills 
in regions of  fields with smooth slopes that vary between 3 to 
15%. The concentration time estimated by the Kirpich formula 
is 2 days. The daily hydrological data were obtained from the 
National Water Agency, Brazil (ANA - Agência Nacional de 
Águas-, Brazil) dataset in the period from 01/01/2003 to 
12/31/2018. The seven gauging stations in the basin provided 
the data used in this study. Figure 1a shows the daily hyetograph 
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and hydrograph used in the simulations, with the calibration 
period from 2010 to 2018 and the validation period from 
2003 to 2005. The period between 2006 and 2009 was not 
used due to missing data.

The Vila Canoas River basin is in the state of  Santa Catarina 
(south of  Brazil) and it has a drainage area of  989 km2. Unlike 
the Ijuí River basin, the Vila Canoas basin is in a mountainous 
region, with very shallow soils over basaltic rocks and sandstone, 
with a predominance of  fields, sparse forests in areas of  the 
greater slope, and some cultivated areas and reforestation. 
The concentration time was estimated at 2 days using the Kirpich 
formula. The hydrological data were also obtained from the ANA 
dataset. Five gauging stations were identified and used. Figure 1b 
shows the daily hyetograph and hydrograph for simulations, with 
the period of  calibration from 1977 to 1990 and validation period 
from 1996 to 2001. The period from 1991 to 1995 was not used 
due to missing data.

Hydrologic model

The Tank model estimates runoff  from precipitation data 
(Sugawara, 1961, 1972, 1979; Sugawara & Singh, 1995). It is a 
lumped hydrologic model that simulates the water balance of  a 
basin using tanks or reservoirs arranged in a vertical series, where 
the storage of  the first tank is determined by precipitation and the 
storage of  the other tanks is determined by the infiltration from the 
upper tank (Sugawara and Singh 1995). For a better understanding 

of  the Tank model structure, the reader could access Sugawara 
(1961, 1972, 1979), and Sugawara & Singh (1995).

The Tank model has never been applied in these basins; 
therefore, we tested a 3-tank (Figure 2b) and 4-tank (Figure 2a) 
structure aiming to evaluate the best number of  tanks to represent 
the Ijuí River basin and Vila Canoas River basin.

The parameters that can be calibrated in the Tank model 
are the runoff  and infiltration coefficients and the coefficients that 
determine the storage capacity (such as the height of  the side outlets) 
of  each reservoir in the model (Haan, 1989). They are related to the 
soil type and land use, and geological characteristics of  the basin 
(Ishihara & Kobatake, 1979). Table 1 shows the parameters of  the 
Tank model and the range values for each of  the parameters. This 
range of  values was applied in the calibration of  the 3-tank and 
4-tank structures of  the Tank model used in this study.

Objective functions

Two objective functions were used in the multi-objective 
calibration of  the Tank model: the RMSEinv (Equation 1) and the 
NS defined by Nash & Sutcliffe (1970) (Equation 2), also referred 
to in this study as OF1 (Objective Function 1) and OF2 (Objective 
Function 2), respectively.

2
NT

inv t 1 Obs,t Calc,t

1 1 1RMSE
NT Q Q=

 
 = −
 
 

∑ 	 (1)

Figure 1. (a) Ijuí River basin – Precipitation and streamflow time series during calibration (01/01/2010 – 12/31/2018) and validation 
(01/01/2003 – 12/31/2005) of  the Tank model. (b) Vila Canoas River basin – Precipitation and streamflow time series during validation 
(01/01/1996-12/31/2001) and calibration (01/01/1977-12/31/1990) of  the Tank model.
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where ,Calc tQ  is the calculated flow in time interval t (daily), ObsQ

is the average of  the observed flow values, ,Obs tQ  is the value of  
the observed flow in time interval t and NT is the number of  
time intervals. RMSEinv values vary from 0 to +∞, with 0 being 

the ideal value, indicating full agreement between observations 
and simulations. NS values are in the range of  −∞ to 1.0, where 
1.0 is the ideal value (Krause et al., 2005).

NS is a performance measure commonly used to assess 
the quality of  the simulated hydrograph, that emphasizes the 
representation of  high flows (Legates & McCabe Junior, 1999; 
Moussa & Chahinian, 2008; Reynolds et al., 2017). To reproduce 
the entire shape of  the hydrograph and not just the high flows, the 
RMSEinv was also used because it emphasized the representation 

Figure 2. Representation of  the Tank model with 4-tank (a) and 3-tank (b) structure (Adapted from Setiawan et al., 2003).

Table 1. Range values of  parameters in the Tank model.

Parameter Description Unit Range
Minimum Maximum

S1Ia Initial storage of  tank 1 mm 5 50
S2Ia Initial storage of  tank 2 mm 10 50
S3Ia Initial storage of  tank 3 mm 20 100
S4Ib Initial storage of  tank 4 mm 30 500
H1a Height of  side outlet 1 in tank 1 mm 10 70
H2a Height of  side outlet 2 in tank 1 mm 10 45
H3a Height of  side outlet of  tank 2 mm 10 70
H4b Height of  side outlet of  tank 3 mm 10 70
A1a Runoff  coefficient (tank 1) min-1 0.09 0.5
A2a Sub-surface flow coefficient (tank 1) min-1 0.09 0.5
A3a Intermediate flow coefficient (tank 2) min-1 0.09 0.5
A4a Sub-base flow coefficient (tank 3) min-1 0.01 0.1
A5b Base flow coefficient (tank 4) min-1 0.001 0.01
B1a Infiltration coefficient in tank 1 min-1 0.01 0.1
B2a Infiltration coefficient in tank 2 min-1 0.01 0.1
B3b Infiltration coefficient in tank 3 min-1 0.001 0.1

aParameter common to both the 3-tank and 4-tank structures of  the Tank model; bParameter presents only in the 4-tank structure.
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of  low flows (Pushpalatha et al., 2012; Garcia et al., 2017). Thus, 
both objective functions were included in the multi-objective 
calibration simultaneously to consider the maximum and minimum 
flow representation by the model. Therefore, the optimisation 
goal was to maximise NS and minimise RMSEinv.

Multi-objective calibration of  hydrologic models 
using genetic algorithms

The multi-objective calibration of  hydrologic models is an 
optimisation process in which evolutionary algorithms, such as 
genetic algorithms (GA), are commonly used. GAs are a particular 
class of  evolutionary algorithms that apply techniques inspired 
by evolutionary biology, such as heredity, mutation and natural 
selection. During successive generations (iterations), the population 
(set of  candidate solutions) converge towards an approximation 
of  the Pareto front after a stopping criterion is satisfied (Fiben 
& Smith 2003; Chugh et al., 2019).

The standard stopping criterion used to stop the iterative 
process is to reach a pre-defined number of  generations NGen. 
Meanwhile, in the Ticona stopping criterion (Gutierrez  et  al., 
2019a), a counter of  consecutive generations is initialised each 
time the generation number is higher than Imin and at least NP 
non-dominated solution exists in the population. The counter 
adds 1 if  in the next generation both conditions are satisfied, 
otherwise returns to a value equal to zero. If  the counter reaches 
the CountMax value, the iterative process stops.

Several multi-objective GA as the NSGA-II, NSGA-III, 
MOEA/D, SPEA2 and others have been used in many applications 
and their performances tested. In the present study, some of  the 
most representative algorithms for multi-objective optimization 
have been selected (Echevarría et al., 2016): NSGA-II (Deb et al., 
2002), NSGA-III (Deb & Jain, 2014) and SPEA-II (Zitzler et al., 
2001). These three MOEAs have been used in the calibration of  
different hydrologic models (e.g.: Rozos et al., 2004; Rouhani et al., 
2007; Khu et al., 2008; Shafii & De Smedt 2009; Le et al., 2016; 
Mostafaie et al., 2018; Adeyeri et al., 2020).

The simulations were performed using MATLAB R2018a 
version 9.4.0.813654 in a computer with an Intel Core i5-3337U 
1.80GHz processor operating with 8GB of  RAM. During the 
calibration of  the hydrologic model, Np = 100 and Ngen = 500 were 
adopted for the standard stopping criterion as suggested by 
Pushpalatha et al. (2012) and Yapo et al. (1998). For the Ticona 
stopping criterion, Np = 100, Imin = 110 and CountMax = 10 were 
used as suggested by Gutierrez et al. (2019a).

Selection of  the calibrated parameters of  the Tank 
model

The calibrated parameter values of  the Tank model were 
defined as the best solution from the sets of  non-dominated 
solutions that generated the Pareto Fronts (PFs). As it is possible 
to obtain different PFs for the same MOEA when the calibration 
process is repeated (i.e. using other initial population), selecting 
the best solution requires that first, the best PF is selected, and 
then the best solution among the PF is selected.

Therefore, to select the best PF in each calibration attempt 
(w), the criterion of  the lowest average Euclidean distance (Di,w) 
(Equation 3) was used, as adopted by Gutierrez et al. (2019a). 
According to this criterion, the best PF corresponds to the lowest 
value of  Di,w when the stopping criterion is satisfied.

( )( ) ( )( )i
0.52 2ND

i,w 1rel 2rel1 i, j 2 i, jj 1i

1D  OF OF OF OF
ND =

 
= − + − 
  

∑ 	 (3)

From the best PF, the best solution was selected based on 
the minimum distance (Dmin) to a reference result, derived from 
Equations 4 and 5.

( )( ) ( )( )
0.52 2

s 1rel 2rel1 s 2 sR  OF OF  OF OF
 

= − + − 
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	 (4)

{ }pmin 1 2 3 ND R ,R ,  R ,  ,  R  = … 	 (5)

where: OF1(i,j) and OF2(i,j) is the jTH non-dominated solution of  the 
PF in generation i of  the calibration attempt; iND  é is the number 
of  non-dominated solutions for generation i; OF1(s) and OF2(s) are 
the sTH non-dominated solution of  the Pareto front in the final 
generation; OF1rel and OF2rel are a point relative optimum (OF1rel 
= 0 and OF2rel = 1); and Np is the number of  solutions of  the 
PF in the final generation.

MOEA Performance assessment based on the 
stopping criteria

Several metrics to assess the performance of  MOEAs 
were already proposed (Ishibuchi et al., 2015; Yen & He, 2013; 
Araújo et al., 2011). In this study, we selected three well-known 
metrics to compare the MOEAs performance based on the 
stopping criterion used when applied to the Tank model calibration. 
The maximum spread (MS – Zitzler  et  al., 2000) and spacing 
(SP - Schott, 1995) metrics were used to evaluate the diversity of  
solutions across the PF. We also used the generational distance 
(GD - Van Veldhuizen, 1999) metric that measures the proximity 
of  solutions to the true Pareto front (PFtrue).

The PFtrue of  a multi-objective calibration process is 
generally unknown. Ishibuchi et al. (2014) showed how it could 
be achieved using multiple executions of  one or more MOEAs. 
Using this approach and considering the three MOEAs described 
previously, we created a PFtrue for the calibration process of  each 
basin (Figure 3).

EXPERIMENTAL DESIGN

The performance of  the stopping criterion developed by 
Gutierrez et al. (2019a) was evaluated in three MOEAs (NSGA-
II, NSGA-III and SPEA-II) in the calibration of  the Tank model 
arranged in a 3-tank (12 parameters) and a 4-tank (16 parameters) 
structure, compared with the results using the standard stopping 
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criterion. Two objective functions were considered: the maximisation 
of  the NS and the minimisation of  the RMSEinv.

Twenty initial population sets were used for each MOEA 
test. These initial population sets (size equal to 100) were generated 
uniformly at random in the range specified in Table 1. The results 
with the standard and Ticona stopping criteria were obtained in the 
same calibration processes. When the MOEA reached the Ticona 
stopping criterion, the results were archived, and the computation 
continued until the maximum number of  generations was reached 
according to the standard stopping criterion. The calibration procedure 
was performed twenty times with each MOEA using both stopping 
criteria, for a total of  sixty results for each study basin.

The calibrated parameter values of  the Tank model were 
defined as the non-dominated solution with Dmin from the PF with 
lower Di,w. Hydrographs were generated for each study basin by 
the Tank model using the calibrated parameter values obtained 
for each MOEA.

RESULTS AND DISCUSSION

Performance evaluation based on the number of  
tanks in the Tank model structure

The objective function NS presented slightly better accuracy 
for the 4-tank structure than for the 3-tank structure (Table 2). 

The 3-tank structure provided similar performance in representing 
high flows as the 4-tank structure of  the Tank model. However, 
the 3-tank structure could not represent the low flows correctly, 
as presented in Figure 4 and Figure S1 (Supplementary Material), 
which show the comparison between the observed and simulated 
flow for the 3-tank structure using parameters calibrated by MOEAs 
for the Vila Canoas River basin and the Ijuí River basin, respectively. 
The lower performance of  the 3-tank structure in representing 
low flows in both basins was also reflected by the RMSEinv values 
shown in Table 2. For this reason, the 4-tank structure of  the Tank 
model was selected to generate the following results.

Standard stopping criterion vs Ticona stopping 
criterion: performance metrics and best PF results

The best PF with the lowest average Euclidean distance 
(Di,w) was selected from twenty calibration attempts (w = 1, …, 
20) performed with each MOEA (Table 3). The value of  Di,w 
obtained using the Ticona stopping criterion was very similar 
to the value obtained when applying the standard stopping 
criterion (D500, w).

The metrics (SP, MS, and GD) calculated for the best PF 
found, for each MOEA, are presented in Table 4 for the Vila 
Canoas River basin, and in Table S1 (Supplementary Material) 
for the Ijuí River basin. Results showed a small variation of  the 
metrics values for the best PF found, in both basins, when using 
the Ticona stopping criterion and the standard stopping criterion.

The 20-run results analysis is presented hereafter. The metrics 
(SP, MS and GD) calculated and computational times during 
calibration, for all performed runs, are shown in Figure 5 and 
Figure 6 for the Ijuí and Vila Canoas River basins, respectively. 
Analysing the median of  the metrics obtained in the Ijuí River 
basin (Figure 5) with both stopping criteria, the SP and MS metrics 
showed a better performance using NSGA-III. For the metric GD, 
the SPEA-II algorithm presented a higher approximation with 
the PFtrue. For the Vila Canoas River basin (Figure 6), GD and 
SP metrics performed better when the NSGA-III and NSGA-II 
algorithms were applied, respectively, for both stopping criteria. 
However, based on the MS metric, the SPEA-II algorithm showed 
a better performance when the Ticona stopping criterion was used, 
while the NSGA-III algorithm performed better when used the 
standard stopping criterion.

Figure 3. True Pareto Fronts to derive GD based on the calibration 
results of  the Ijuí and Canoas River basins.

Table 2. Objective Functions values during calibration of  the Ijuí and Vila Canoas River basins.

Basin MOEA
3-tank structure 4-tank structure

CALIBRATIONa CALIBRATIONb CALIBRATIONa CALIBRATIONb

NS RMSEinv
* NS RMSEinv

* NS RMSEinv
* NS RMSEinv

*

Ijuí NSGA-II 0.6519 19963.5 0.6515 19887.1 0.7645 0.00626 0.7640 0.00628

NSGA-III 0.6521 19887.1 0.6518 20190.7 0.7638 0.00623 0.7585 0.00620

SPEA-II 0.6489 18947.0 0.6528 20039.5 0.7650 0.00626 0.7633 0.00632

Vila Canoas NSGA-II 0.7002 23317.6 0.7004 23692.0 0.7914 0.03604 0.7913 0.03615

NSGA-III 0.6934 20884.0 0.6921 20743.1 0.7925 0.03627 0.7900 0.03607

SPEA-II 0.7001 23484.8 0.7004 23567.9 0.7885 0.03617 0.7902 0.03644
aStandard stopping criterion; bTicona stopping criterion; *Unit: (s/m3); NS: Nash-Sutcliffe efficiency; RMSEinv: Root Mean Square Error for inverse flows.
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Figure 4. Hydrograph of  the calibration period for the Vila Canoas River basin using the 3-tank structure.

Figure 5. Boxplot of  metrics and computational time for each MOEA (NSGA-II, NSGA-III, SPEA-II); using the Ticona (blue) and 
standard (red) stopping criterion in the Ijuí River basin.

Table 3. Values of  the lowest average distance obtained for the Pareto front with each MOEA, with the standard stopping criterion 
(D500, w) and Ticona stopping criterion (Di, w), in both basins.

MOEA
Ijuí River basin Vila Canoas River basin

Di=500,w Di,w i Di=500,w Di,w i
NSGA-II 0.4576 0.4587 345 0.4623 0.4634 261

NSGA-III 0.4565 0.4576 324 0.4641 0.4632 283

SPEA-II 0.4572 0.4612 261 0.4649 0.4669 261

Table 4. Metrics of  the best PF of  each MOEA used; with standard and Ticona stopping criterion in the Vila Canoas River basin.

MOEA Metricsa Metricsb

SP MS GD SP MS GD
NSGA-II 0.000055 0.009015 0.000248 0.000045 0.008048 0.000286
NSGA-III 0.000447 0.016029 0.000247 0.001193 0.031362 0.000331
SPEA-II 0.000633 0.032155 0.000441 0.000178 0.024078 0.000398

aStandard stopping criterion; bTicona stopping criterion; SP: Spacing; MS: Maximum Spread; GD: Generational Distance.
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Computational time is an important parameter when 
comparing the performance of  different MOEAs, as it measures 
the efficiency of  the optimisation process: a shorter time is better 
(Olazar, 2007). For both basins, MOEAs using the Ticona stopping 
criterion required less computational time than when they used 
the standard stopping criterion, as presented in Figure  5 and 
Figure  6. The computational time required using the Ticona 
stopping criterion for the Ijuí River basin was 28.8% (NSGA-II), 
30.5% (NSGA-III) and 27.4% (SPEA 2) shorter than the standard 
stopping criterion. For the Vila Canoas River basin, computational 
time decreased by 42.7% (NSGA-II), 43.2% (NSGA-III) and 
44.1% (SPEA 2) using the Ticona stopping criterion compared 
to the standard stopping criterion.

When the hydrologic model IPH-II was applied, the 
computational time gain from using the Ticona stopping criterion 
during calibration with the same MOEAs (as presented by 
Gutierrez et al., 2019b) was higher (70% to 77%) than the gains 

obtained during calibration of  the Tank model (27.4% to 44.1%) 
in the same basins and periods. The present study suggests that 
the higher number of  parameters to be calibrated (16 parameters 
for the 4-tank structure of  the Tank model in comparison to 
7 parameters for the IPH-II model) tends to increase the objective-
functions complexity. Thus, the number of  generations also 
increased before the MOEAs find a good representation of  the 
PF, stopping the search.

Standard stopping criterion vs Ticona stopping 
criterion: results of  the multi-objective Tank model 
calibration and validation

The results of  analysing the hydrographs of  the Vila 
Canoas and Ijuí River basins after applying the performance 
metrics are shown in Table 5. The NS showed values ranging 

Table 5. Objective Functions values for each MOEA during calibration and validation periods in the Vila Canoas and Ijuí River basins.

Basin MOEA
CALIBRATIONa CALIBRATIONb VALIDATIONa VALIDATIONb

NS RMSEinv
* NS RMSEinv

* NS RMSEinv
* NS RMSEinv

*

Ijuí NSGA-II 0.7645 0.0063 0.7640 0.0063 0.6192 0.0056 0.6131 0.0057

NSGA-III 0.7638 0.0062 0.7585 0.0062 0.6325 0.0056 0.6178 0.0057

SPEA-II 0.7650 0.0063 0.7633 0.0063 0.6334 0.0056 0.6295 0.0055

Vila Canoas NSGA-II 0.7914 0.0360 0.7913 0.0361 0.8107 0.0293 0.8110 0.0292

NSGA-III 0.7925 0.0363 0.7900 0.0361 0.8118 0.0294 0.8094 0.0297

SPEA-II 0.7885 0.0362 0.7902 0.0364 0.8072 0.0326 0.8093 0.0318
aStandard stopping criterion; bTicona stopping criterion; *Unit: (s/m3); NS: Nash-Sutcliffe efficiency; RMSEinv: Root Mean Square Error for inverse flows.

Figure 6. Boxplot of  metrics and computational time for each MOEA (NSGA-II, NSGA-III, SPEA-II); using the Ticona (blue) and 
standard (red) stopping criterion in the Vila Canoas River basin.
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from 0.7585 (0.7885) to 0.7650 (0.7925) for the calibration period 
and from 0.6131 (0.8072) to 0.6334 (0.8118) for the validation 
periods in the Ijuí River basin (Vila Canoas River basin). RMSEinv 
presented values very close to zero for all analysed MOEAs in 
both the calibration and the validation periods, and both basins, 
indicating a good representation of  low flows. The performance 
metric values were very similar using any of  the MOEA with both 
stopping criteria, and in both periods (calibration and validation). 
Also, the performance of  the Tank model during calibration 
and validation periods based on the parameter values found by 
several MOEAs using the Ticona stopping criterion was like the 
performance observed in previous studies (e.g. Tanakamaru, 1995; 
Madsen, 2000; Song et al., 2017; Vasconcellos, 2017).

The values of  calibrated parameters adopted considering 
the best solution (the one with Dmin) of  the best PF obtained in 
each MOEA are presented for the Ijuí River basin and the Vila 
Canoas River basin in Figure 7. The set of  parameters of  the 
Tank model found for each MOEA showed similar values for 
both stopping criteria.

Hydrographs were generated in the calibration and 
validation periods, in each basin, based on these parameter 
values. In the Vila Canoas River basin, Figure 8a and Figure 8b 
show the hydrographs during the calibration period using the 
parameter values defined by the standard stopping criterion and 

Ticona stopping criterion, respectively; while the hydrographs 
from the validation period are shown in Figure 9a and Figure 9b, 
respectively. As observed in these figures, the standard stopping 
criterion and the Ticona stopping criterion resulted in very 
similar hydrographs for both study basins, showing a good 
representation of  the high and low flows.

Similar results were found in the calibration/validation 
of  the Tank model in the Ijuí River basin, using the standard 
stopping criterion and the Ticona stopping criterion, as presented 
in Figure S2 and Figure S3 (Supplementary Material).

Therefore, the Ticona stopping criterion yields good 
and similar results to those obtained by the standard stopping 
criterion, while reducing the computational processing time. 
Gutierrez  et  al. (2019b), performing the same analysis as 
this study in the calibration of  the hydrologic model IPH-II, 
obtained very similar parameter values and hydrographs during 
the calibration and validation periods, with both stopping 
criteria. As already stated, the IPH-II is conceptually simpler 
than the Tank model. From this analysis, we can affirm that the 
Ticona stopping criterion is also advantageous when applied 
to a more complex model (4-tank structure Tank Model) in 
different study areas.

Figure 7. Calibrated parameter values of  the best solution from the best PF found by each MOEA with both stopping criteria, 
(a, c - Standard stopping criterion; b, d - Ticona stopping criterion), in the Ijuí River basin (a, b) and the Vila Canoas River 
basin (c, d).
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Figure 9. Hydrograph of  the validation period in the Vila Canoas River basin with parameter values defined by (a) the standard stopping 
criterion and (b) the Ticona stopping criterion. The event of  the highest flows was highlighted in the time series and an enlargement 
view of  the event is presented on the right side.

Figure 8. Hydrograph of  the calibration period in the Vila Canoas River basin with parameter values defined by (a) the standard 
stopping criterion and (b) the Ticona stopping criterion. The event of  the highest flows was highlighted in the time series and an 
enlargement view of  the event is presented on the right side.
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CONCLUSIONS

In this study, we performed the multi-objective calibration 
of  the Tank model for two basins using three MOEAs (NSGA-
II, NSGA-III, and SPEA-II) and we compared two stopping 
criteria: the standard stopping criterion (a maximum number of  
generations) and the Ticona stopping criterion (Gutierrez et al., 
2019a). Firstly, two Tank model structures (3-tank and 4-tank) 
were tested to identify which would be the most suitable to 
represent the hydrological processes of  the two basins. The 4-tank 
structure was chosen for the study because it presented a better 
performance in representing the high and low flows in both 
basins. In the Tank model calibration, the three MOEAs resulted 
in better performance in terms of  computational time using 
the Ticona stopping criterion in comparison to the standard 
stopping criterion in both evaluated basins. Using the Ticona 
stopping criterion, the calibration of  the Tank model required a 
computational time that was 27.4% to 44.1% lower, compared to 
the calibration of  the Tank model using the standard stopping 
criterion.

The Tank model calibration using both stopping criteria 
resulted in similar parameter values. A good fit between the 
simulated and observed streamflow values was obtained during 
calibration and validation in both basins. We have shown that 
applying the Ticona stopping criterion reduces computational 
time while maintaining the quality of  the obtained results. 
For future studies, it would be interesting to assess the Ticona 
stopping criterion against another stopping criterion, and in 
the calibration of  hydrologic models with a higher number of  
parameters.

DATA AVAILABILITY STATEMENT

Some or all data, models, and codes generated or used 
during the study are available from the corresponding author 
upon request. 

REFERENCES

Adeyeri, O. E., Laux, P., Arnault, J., Lawin, A. E., & Kunstmann, 
H. (2020). Conceptual hydrological model calibration using 
multi-objective optimization techniques over the transboundary 
Komadugu-Yobe basin, Lake Chad Area, West Africa. Journal of  
Hydrology: Regional Studies, 27, pp. 100655.

Araújo, D. R. B., Bastos-Filho, C. J. A., Barboza, E. A., Chaves, D. 
A. R., & Martins-Filho, J. F. (2011). A performance comparison 
of  multi-objective optimization evolutionary algorithms for all-
optical networks design. In Proceedings of  2011 IEEE Symposium 
on Computational Intelligence in Multicriteria Decision-Making (MDCM) 
(pp. 89-96). USA: IEEE.

Beven, K. (1993). Prophecy, reality and uncertainty in distributed 
hydrological modelling. Advances in Water Resources, 16, 41-51.

Beven, K. (2001). Rainfall‐Runoff  modelling: the primer.  Hoboken: 
John Wiley & Sons.

Beven, K. J. (2019). How to make advances in hydrological 
modelling. Hydrology Research, 50(6), 1481-1494. http://dx.doi.
org/10.2166/nh.2019.134.

Beven, K. J., & Smith, P. J. (2015). Concepts of  information content 
and likelihood in parameter calibration for hydrological simulation 
models. Journal of  Hydrologic Engineering, 20(1), 1-15. http://dx.doi.
org/10.1061/(ASCE)HE.1943-5584.0000991.

Chugh, T., Sindhya, K., Hakanen, J., & Miettinen, K. (2019). A survey 
on handling computationally expensive multiobjective optimization 
problems with evolutionary algorithms. Soft Computing, 23(9), 3137-3166.

Coello, C. A. C., Lamont, G. B., & Van Veldhuizen, D. A. (2007). 
Evolutionary Algorithms for Solving Multi-Objective Problems. Springer, 
New York.

Deb, K., & Jain, H. (2014). An evolutionary many-objective 
optimization algorithm using reference-point-based nondominated 
sorting approach, part I: solving problems with box constraints. 
IEEE Transactions on Evolutionary Computation, 18(4), 602-622.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). 
A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE 
Transactions on Evolutionary Computation, 6(2), 182-197.

Echevarría, Y., Sánchez, L., & Blanco, C. (2016). Assessment of  
multi-objective optimization algorithms for parametric identification 
of  a li-ion battery model. In Proceedings of  International Conference 
on Hybrid Artificial Intelligence Systems (pp. 250-260). http://dx.doi.
org/10.1007/978-3-319-32034-2_21

Fiben, A. E., & Smith, J. E. (2003). Introduction to Evolutionary 
Computing. Berlin: Springer.

Garcia, F., Folton, N., & Oudin, L. (2017). Which objective function 
to calibrate rainfall-runoff  models for low-flow index simulations? 
Hydrological Sciences Journal, 62(7), 1149-1166.

Gupta, H. V., Sorooshian, S., & Yapo, P. O. (1998). Toward improved 
calibration of  hydrological models: multiple and noncommensurable 
measures of  information. Water Resources Research, 34(4), 751-763.

Gutierrez, J. C. T., Adamatti, D. S., & Bravo, J. M. (2019a). A new 
stopping criterion for multi-objective evolutionary algorithms: 
application in the calibration of  a hydrologic model. Computational 
Geosciences, 23, 1219-1235.

Gutierrez, J. C. T., Vanelli, F. M., & Bravo, J. M. (2019b). Aplicação de 
um novo critério de parada para algoritmos evolucionários de otimização 
multi-objetivo na calibração automática de modelos hidrológicos. In 
23° Simpósio Brasileiro de Recursos Hídricos. Foz do Iguaçu, PR.

Haan, C. T. (1989). Parametric uncertainty in hydrologic modeling. 
Transactions of  the ASAE, 32(1), 0137-0146.

Ishibuchi, H., Masuda, H., Tanigaki, Y., & Nojima, Y. (2014). 
Difficulties in specifying reference points to calculate the inverted 



RBRH, Porto Alegre, v. 27, e31, 202212/14

Multi-objective calibration of  Tank model using multiple genetic algorithms and stopping criteria

generational distance for many-objective optimization problems. 
In Proceedings of  Symposium on Computational Intelligence in Multi-Criteria 
Decision-Making (MCDM) (pp. 170-177). USA: IEEE.

Ishibuchi, H., Masuda, H., Tanigaki, Y., & Nojima, Y. (2015). 
Modified distance calculation in generational distance and inverted 
generational distance. In A. Gaspar-Cunha, C. Henggeler Antunes, 
& C. Coello (Eds.), Evolutionary Multi-Criterion Optimization. EMO 
2015. (vol 9019, Lecture Notes in Computer Science). Cham: 
Springer. https://doi.org/10.1007/978-3-319-15892-1_8

Ishihara, Y., & Kobatake, S. (1979). Runoff  model for flood 
forecasting. Bulletin of  Disaster Prevention Research Institute, 29(1), 27-43.

Jaiswal, R. K., Ali, S., & Bharti, B. (2020). Comparative evaluation 
of  conceptual and physical rainfall-runoff  models. Applied Water 
Science, 10(1), 1-14.

Khu, S.-T., Madsen, H., & Di Pierro, F. (2008). Incorporating 
multiple observations for distributed hydrologic model calibration: 
an approach using a multi-objective evolutionary algorithm and 
clustering. Advances in Water Resources, 31, 1387-1398.

Krause, P., Boyle, D. P., & Bäse, F. (2005). Comparison of  different 
efficiency criteria for hydrological model assessment. Advances in 
Geosciences, 5, 89-97.

Le, V. T., Kuo, C.-M., & Yang, T.-C. (2016, November 6-10). 
Application of  non-dominated sorting genetic algorithm in 
calibration of  HBV Rainfall-Runoff  Model: a case study of  
tsengwen reservoir catchment in Southern Taiwan. In Proceedings 
of  12th International Conference on Hydroscience & Engineering Hydro-
Science & Engineering for Environmental Resilience. Tainan, Taiwan.

Legates, D. R., & McCabe Junior, G. J. (1999). Evaluating the use 
of  “goodness of- fit” measures in hydrologic and hydroclimatic 
model validation. Water Resources Research, 35(1), 233-241.

Madsen, H. (2000). Automatic calibration of  a conceptual rainfall-runoff  
model using multiple objectives. Journal of  Hydrology, 235, 276-288.

Mostafaie, A., Forootan, E., Safari, A., & Schumacher, M. (2018). 
Comparing multi-objective optimization techniques to calibrate 
a conceptual hydrological model using in situ runoff  and daily 
GRACE data. Computational Geosciences, 22(3), 789-814.

Moussa, R., & Chahinian, N. (2008). Comparison of  different 
multi-objective calibration criteria using a conceptual rainfall-
runoff  model of  flood events. Hydrology and Earth System Sciences, 
13(4), 519-535.

Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through 
conceptual models part I-A discussion of  principles. Journal of  
Hydrology, 10(3), 282-290.

Olazar, M. R. Z. (2007). Algoritmos evolucionários multiobjetivo para 
alinhamento múltiplo de sequencias biológicas (Dissertação de mestrado). 
Universidade Federal do Rio de Janeiro, Rio de Janeiro.

Pushpalatha, R., Perrin, C., Le Moine, N., & Andréassian, V. (2012). 
A review of  efficiency criteria suitable for evaluating low-flow 
simulations. Journal of  Hydrology, 420, 171-182.

Reynolds, J. E., Halldin, S., Xu, C. Y., Seibert, J., & Kauffeldt, A. 
(2017). Subdaily runoff  predictions using parameters calibrated 
on the basis of  data with a daily temporal resolution. Journal of  
Hydrology, 550, 399-411.

Rouhani, H., Willems, P., Wyseure, G., & Feyen, J. (2007). Parameter 
estimation in semi-distributed hydrological catchment modelling 
using a multi-criteria objective function. Hydrological Processes, 
21(22), 2998-3008.

Rozos, E., Efstratiadis, A., Nalbantis, I., & Koutsoyiannis, D. 
(2004). Calibration of  a semi-distributed model for conjunctive 
simulation of  surface and groundwater flows. Hydrological Sciences 
Journal, 49(5), 819-842.

Schott, J. R. (1995). Fault tolerant design using single and multicriteria 
genetic algorithm optimization (M.S. thesis). Massachusetts Institute 
of  Technology, Cambridge, Massachusetts.

Setiawan, B.I., Fukuda, T., & Nakano, Y. (2003). Developing 
procedures for optimization of  tank model’s parameters. Agricultural 
Engineering International: the CIGR Journal of  Scientific Research and 
Development, 1-13. Manuscript LW 01 006.

Shafii, M., & De Smedt, F. (2009). Multi-objective calibration of  a 
distributed hydrological model (WetSpa) using a genetic algorithm. 
Hydrology and Earth System Sciences, 13(11), 2137-2149.

Song, J.-H., Her, Y., Park, J., Lee, K.-D., & Kang, M.-S. (2017). 
Simulink implementation of  a hydrologic model: a tank model 
case study. Water (Basel), 9(639)

Sugawara, M. (1961). On the analysis of  runoff  structure about 
several japanese rivers. Japanese Journal of  Geophysics, 2(4), 1-76.

Sugawara, M. (1972). Runoff  analysis (275 p.). Kyoritsu-shuppan.

Sugawara, M. (1979). Automatic calibration of  the tank model. 
Hydrological Sciences Bulletin, 24(3), 375-388.

Sugawara, M., & Singh, V. P. (1995). Computer models of  watershed 
hydrology (pp. 165-214). USA: Water Resources Publications.

Suryoputro, N., Suhardjono, Soetopo, W., & Suhartanto, E. (2017). 
Calibration of  infiltration parameters on hydrological tank model 
using runoff  coefficient of  rational method. AIP Conference 
Proceedings, 1887, 020056.

Tanakamaru, H. (1995). Parameter estimation for the tank model 
using global optimization.  Transactions of  The Japanese Society of  
Irrigation, Drainage and Reclamation Engineering, 178, 503-512.

Van Veldhuizen, D. A. (1999). Multiobjective evolutionary algorithms: 
classifications, analyses, and new innovations (Ph.D. Thesis). Graduate 



RBRH, Porto Alegre, v. 27, e31, 2022

Gutierrez et al.

13/14

School of  Engineering, Air Force Institute of  Technology, Wright-
Patterson AFB, Ohio, USA.

Vasconcellos, S. M. (2017). Desenvolvimento de um Índice de Umidade 
do Solo Derivado da Versão Distribuída do Tank Model (Dissertação de 
mestrado). Universidade Federal do Rio Grande do Sul, Porto Alegre.

Yapo, P. O., Gupta, H. V., & Sorooshian, S. (1998). Multiobjective 
global optimization for hydrologic models. Journal of  Hydrology, 
204, 83-97.

Yen, G. G., & He, Z. (2013). Performance metric ensemble for 
multiobjective evolutionary algorithms. IEEE Transactions on 
Evolutionary Computation, 18(1), 131-144.

Yilmaz, K., Vrugt, J., Gupta, H., & Sorooshian, S. (2010). Model 
calibration in watershed hydrology. In Proceedings of  Advances in 
Data-Based Approaches for Hydrologic Modeling and Forecasting (pp. 
53-105). World Scientific Publishing Co.

Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of  multiobjective 
evolutionary algorithms: empirical results. Evolutionary Computation, 
8(2), 173-195.

Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving 
the Strength Pareto Evolutionary Algorithm (No. 103. TIK-report). 
Zürich, Suíça: ETH Zurich.

Authors contributions

Juan Carlos Ticona Gutierrez: Data Curation, Formal Analysis, 
Software, Validation, Visualization, Writing – First Redaction, 
Writing – Review and Editing.

Cassia Brocca Caballero: Data Curation, Formal Analysis, 
Visualization, Writing – Review and Editing.

Sofia Melo Vasconcellos: Formal Analysis, Software, Validation, 
Visualization, Writing – First Redaction, Writing – Review and 
Editing.

Franciele Maria Vanelli: Formal Analysis, Validation, Visualization, 
Writing – First Redaction, Writing – Review and Editing.

Juan Martín Bravo: Conceptualization, Formal Analysis, Software, 
Validation, Visualization, Writing – Review and Editing.

Editor in-Chief: Adilson Pinheiro

Associated Editor: Fábio Veríssimo Gonçalves



RBRH, Porto Alegre, v. 27, e31, 202214/14

Multi-objective calibration of  Tank model using multiple genetic algorithms and stopping criteria

SUPPLEMENTARY MATERIAL

Supplementary material accompanies this paper.
Table S1. Metrics of  the best PF of  each MOEA used; with standard and Ticona stopping criterion in the Ijuí River basin.
Figure S1. Hydrograph of  the calibration period for the Ijuí River basin using the 3-tank structure.
Figure S2. Hydrograph of  the calibration period in the Ijuí River basin with parameter values defined by (a) the standard 

stopping criterion and (b) the Ticona stopping criterion. The event of  the highest flows was highlighted in the time series and an 
enlargement view of  the event is presented on the right side.

Figure S3. Hydrograph of  the validation period in the Ijuí River basin with parameter values defined by (a) the standard stopping 
criterion and (b) the Ticona stopping criterion. The event of  the highest flows was highlighted in the time series and an enlargement 
view of  the event is presented on the right side.

This material is available as part of  the online article from 10.1590/2318-0331.272220220046


