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ABSTRACT

Despite the water crisis in 2016, 76% of  the energy in Brazil was generated by hydroelectric plants, which shows that the Brazilian 
system is still strongly dependent on the hydrological conditions of  basins. Therefore, the flow forecasts for these plants subsidize 
the decision making within the scope of  the Electric Sector, since they allow the evaluation of  the operational conditions of  the 
hydroelectric and thermoelectric plants through the use of  energy optimization models, providing gains in the operations of  SIN 
(Sistema Interligado Nacional – the Brazilian National Interconnected System). The precipitation forecast is of  fundamental importance 
for the elaboration of  these hydroelectric flow forecasts. For energy evaluations, the DECOMP and NEWAVE models are used, with 
the GEVAZP model being applied to generate scenarios through an AR (p) (autoregressive) model. Accordingly, this study shows 
the impact of  precipitation forecast on flow predictions in the climate horizon. For this, a statistical correction was made in the rain 
predicted by the CFS (Climate Forecast System) model, which tends to overestimate the predicted rain, with rainfall-flow models 
being calibrated. Tests were performed with this new modeling system and the results, in the form of  scenarios, were compared with 
the scenarios generated by the GEVAZP model, showing the possibility of  reducing the generated range by the latter, consequently 
causing the DECOMP model to not consider ranges with little or no probability of  occurrence, which can improve the optimization 
of  the SIN operation planning. This work also shows that the SMAP model exhibited better performance when compared to the 
Neural Networks model, in terms of  the average flow range predicted in relation to the observed flow. There was a clear improvement 
in the flow predictions with the incorporation of  the rain observed one month ahead in the simulations, mainly in the forecast of  high 
flows. Finally, the climate indices had a good relationship with the flow and rain variables.

Keywords: Flow forecast; São Francisco river; Neural Networks (NN); SMAP (Soil Moisture Accounting Procedure); Precipitation 
forecast; Hydrological simulation.

RESUMO

Mesmo com a crise hídrica, em 2016, 76% da energia no Brasil foi gerada por usinas hidrelétricas, mostrando que ainda se tem um 
sistema que é fortemente dependente da situação hidrológica das bacias hidrográficas. Com isso, as previsões de vazões a essas usinas 
subsidiam a tomada de decisão do âmbito do Setor Elétrico, já que permitem a avaliação das condições operacionais das usinas 
hidrelétricas e termelétricas, através da utilização dos modelos de otimização energética, proporcionando ganhos na operação do 
SIN – Sistema Interligado Nacional. A previsão de precipitação-é de fundamental importância para a elaboração dessas previsões de 
vazões das hidrelétricas. Para as avaliações energéticas são utilizados os modelos Decomp e Newave, que utilizam o Modelo Gevazp 
para a geração dos cenários através de um modelo AR(p). Assim, o presente trabalho objetiva mostrar o impacto da previsão de 
precipitação na previsão de vazões, no horizonte climático. Para isso fez-se uma correção estatística na chuva prevista pelo Modelo 
CFS e foram calibrados modelos chuva vazão Após essa calibração, foram realizados testes com esse novo sistema de modelagem e os 
resultados, em forma de cenários, foram comparados com os cenários gerados pelo Modelo Gevazp, mostrando que há possibilidade 
de reduzir a faixa gerada por esse último e, consequentemente, fazer com que o modelo Decomp não visite faixas com pouca ou 
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INTRODUCTION

Despite the water crisis that the Brazilian Northeast 
Subsystem has been facing since 2013, approximately 76% of  
the country’s total energy generation in 2016 was derived from 
hydropower. Due to this peculiar characteristic, both the planning 
and the electroenergetic generation of  SIN (Sistema Interligado 
Nacional – the Brazilian National Interconnected System) exhibit 
a close correlation with the water stocks in the reservoirs of  
hydroelectric plants and with the flow of  these reservoirs. With this, 
the information on flow prediction for these plants is extremely 
important for the planning and programming of  the SIN, as they 
subsidize the decision making of  the Brazilian Electric Sector, 
allowing the evaluation of  the operational conditions of  the 
hydroelectric and thermoelectric plants over time, respecting the 
electrical constraints through the use of  different optimization 
and energy simulation models, providing synergic gains for the 
SIN operation. These forecasts, when previously performed 
and carried out with relative accuracy, allow decision making to 
minimize the effects of  scenarios of  exceptional flood or shortage 
of  water resources. In this context, it is important to highlight the 
role of  precipitation forecast, taking into account its importance 
for forecasting hydroelectric plant flows (Cataldi et al., 2007).

As described by Rocha et al. (2015), the Brazilian System 
flow representation should be divided into three stages: the first 
refers to the first month of  the planning horizon, with weekly 
discretization and flows being individually treated by each plant. 
The second stage refers to a period of  one or more months ahead 
(only a one-month period, according to current practices), with 
monthly discretization and flows individually treated by each 
plant. The third stage refers to the remaining period until the 
horizon of  five years ahead, with monthly discretization and flows 
treated in an aggregated way in terms of  energy, for each of  the 
electrically‑interconnected subsystems, covering all hydroelectric 
subsystems usage in the form of  equivalent reservoirs. Nevertheless, 
it is important to detach the daily programming process from the 
Dessem Model (Centro de Pesquisa de Energia Elétrica, 2003).

ONS (Operador Nacional do Sistema Elétrico – the 
Brazilian National Electric System Operator) is responsible for 
preparing the forecast of  average natural flows on a daily, weekly 
and monthly basis for all hydroelectric usage sites, in addition 
to generating monthly scenarios, to be used in the planning and 
scheduling processes of  the SIN operation. The probabilistic runoff  
scenarios for the horizon of  one month up to five years ahead, 
adopted in the second and third stages of  the planning studies, 
which complement the representation of  hydroelectric energy 
generation by flow, are obtained through the GEVAZP model 
(Maceira & Mercio, 1997; Jardim et al., 2001); a stochastic model 
that generates synthetic series, which, are possible realizations of  

a certain stochastic process, under the hypothesis of  stationarity 
and ergodicity. The flows of  these series are generated through 
autoregressive modeling, with the inclusion of  random noise 
obtained from the time series of  each plant, according to a set 
of  probabilistic laws and without taking into account any past or 
future climate trends. Nevertheless, it is important to note that 
this runoff  scenario generation does not objectively incorporate 
any type of  meteorological or climate information.

Many studies have been carried out to better understand 
subseasonal predictions and how to use these in the flow forecast 
process, for instance, by using neural networks or physical models. 
Some application examples of  these methodologies are discussed 
ahead.

When analyzing the subseasonal to seasonal (S2S) 
predictions, White et al. (2017) showed that S2S prediction fills 
the gap between short-range weather prediction and long-range 
seasonal outlooks. In this specific study, the emerging operational 
S2S forecasts are presented to the wider weather and climate 
applications community by undertaking the first comprehensive 
review of  sectoral applications of  S2S predictions, including 
public health, disaster preparedness, water management, energy 
and agriculture.

On the other hand, Vitart et al. (2017) developed a database 
for S2S predictions. The S2S database includes near‑real‑time 
ensemble forecasts and reforecasts of  up to 60 days from 
11 centers. This database will also help to assess the potential 
of  current operational S2S systems to forecast extreme events 
around the globe.

In turn, Baker  et  al. (2019) enhanced climate forecast 
relevance and usability through the development of  a system 
for evaluating and displaying real-time S2S climate forecasts on 
a watershed scale. The paper described the formulation of  S2S 
climate forecast products based on the Climate Forecast System 
version 2 (CFSv2) and the North American Multi-Model Ensemble 
(NMME). Forecast verification reveals to be an appreciable skill in 
the first two bi-weekly periods (Weeks 1–2 and 2–3) from CFSv2, 
being useful in the NMME Month 1 forecast, with varying skills 
at longer lead times, depending on the season. The application of  
a bias-correction technique (quantile mapping) eliminates forecast 
bias in the CFSv2 reforecasts, without any significant change of  
the Pearson correlation skill.

Regarding the flow forecasting process, Tucci et al. (2015) 
presented an assessment of  ensemble inflow forecasts for a hydropower 
reservoir in Brazil, the Três Marias dam. Inflow forecasts with lead 
times of  15 days were generated twice a day using a 14-members 
ensemble obtained from the global numerical weather prediction, 
run by the Brazilian Weather Forecasting Center (CPTEC), and 
a large-scale hydrological model. Results are encouraging and it 

nenhuma probabilidade de ocorrência, o que pode melhorar tanto a otimização do planejamento da operação do SIN. Este trabalho 
também mostra também que o modelo SMAP apresentou melhor desempenho quando comparado ao modelo de Redes Neurais, 
quando comparado com o intervalo de vazão médio previsto em relação ao fluxo observado. Houve uma melhoria clara nas previsões 
de fluxo com a incorporação da chuva observada um mês à frente nas simulações, principalmente na previsão de vazões altas. Por fim, ​​
os índices climáticos apresentaram boa relação com as variáveis ​​vazão e chuva.

Palavras-chave: Previsão de vazões; Rio São Francisco; Redes neurais; SMAP; Previsão de precipitação; Simulação hidrológica.
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is believed that ensemble inflow forecasts for reservoirs in Brazil 
will be used in a near future as inputs to the optimization of  the 
national electric power production system. Therefore, the MGB-IPH 
hydrological model (Collischonn et al., 2007) was used to conduct 
the generation of  ensemble inflow forecasts.

In turn, Fan et al. (2016) introduced a mass conservative 
scenario tree reduction in combination with detailed hindcasting and 
closed-loop control experiments for a multipurpose hydropower 
reservoir in a tropical region in Brazil - the Três Marias hydropower. 
In the experiments, precipitation forecasts based on the observed 
data, as well as deterministic and probabilistic forecasts are used to 
generate streamflow forecasts in a hydrological model over a period 
of  2 years. Results for a perfect forecast show the potential benefit 
of  the online optimization and indicate a desired forecast lead 
time of  30 days. The range of  the energy production rate between 
the different approaches is relatively small, varying between 78% 
and 80%, which suggests that the use of  stochastic optimization 
combined with ensemble forecasts leads to a significantly higher 
level of  flood protection without compromising energy production.

Regarding neural networks, which are also used in the present 
work, according to Evsukoff  et al. (2012), data-based models such 
as Artificial Neural Networks (ANNs) and neuro‑fuzzy models 
have been applied on hydrological modeling and have provided 
good simulation results, although they usually require a great 
number of  parameters for large period simulations.

When analyzing the scenario generation process, Cossich et al. 
(2015) showed the possibility of  improving the method of  
generating runoff  scenarios in the horizon of  up to three months, 
considering, in addition to information on past runoff, GCM 
climate precipitation forecasts from the atmosphere, using the 
ECHAM 4.5, CFS, COLA/IRI and CCM3 models. The authors 
applied a statistical AR model and another ARx (autoregressive) 
model. The vresults showed that both models represented the 
seasonal flow behavior well. However, the univariate methodology 
presented inferior quality in relation to the multivariate methodology, 
since AR models cannot usually anticipate flow variations, being 
unable to capture their natural variability. The authors highlighted 
that the insertion of  the climate precipitation forecasts by sets 
proved to be an important complement to the univariate stochastic 
modeling. They also pointed out that, even with the errors of  
climate models in relation to the simulation of  the precipitation 
variable, it can be concluded that their use in scenario generation 
models is promising, pointing out that these GCMs tend to have 
better results in the future.

On the other hand, when analyzing the other flow forecasting 
methodology that will be used in this work, Fernández Bou et al. 
(2015) developed a model for predicting flows one month ahead, 
based on precipitation forecasts originating from the CFSv2 model. 
The model used for rainfall-runoff  transformation was SMAP. 
Precipitation forecasts were corrected (correction coefficients 
were generated for each month of  the year) and compared to 
rainfall resulting from 12 rainfall monitoring stations from ANA 
(Agência Nacional de Águas – the Brazilian National Water 
Agency). The precipitation forecast used was the average of  the 
25 members. The results achieved better quality flow predictions 
than the official ONS model, currently used in the PMO (Programa 
Mensal de Operação - Monthly Operation Program) processes 
and their revisions.

Da Silva et al. (2018) used the SMAP model to make flow 
forecasts for the Água Vermelha hydroelectric plant, located in the 
Grande River Basin. In addition, the RegCM Regional model was 
used for precipitation forecasts, with this model being also used 
with boundary conditions from the MIROC model. Both models 
had a bias correction, essential to improve the rain simulation. 
As a result, it was observed that the model was able to simulate the 
main patterns observed throughout South America. The simulation 
showed that the rainfall has an added value when the regional 
climate model is used, as compared with the global climate model.

Regarding the evaluation of  atmospheric climate variables 
as inputs in neural network models, the distribution of  SST 
(Sea Surface Temperature) anomalies and their influence on the 
oceans, as well as other climate variables, are useful for society, 
considering the influence of  SST on the climate of  all the Earth. 
Therefore, experts have been continuously taking this information as 
a basis for their studies, including its relationship with precipitation 
and river flows.

For instance, Pinto et al. (2006) presented the results of  
climate indicators used in the probabilistic forecast of  semiannual 
precipitations (October-March) and quarterly flows (OND and 
JFM) at the Alto São Francisco basin. The climate indicators used 
were SST anomalies in different regions of  the oceans and the 
SOI (Southern Oscillation Index). The model developed estimates 
the probabilities of  precipitation and seasonal flows to occur in 
categories defined as normal, below normal and above normal. 
Consensual forecasts were made with two or three probabilistic 
models, being of  higher quality in relation to forecasts solely based 
on climatology for both precipitations and flows.

With this in mind, the objectives of  this study are to 
evaluate the generation of  runoff  scenarios from rainfall-runoff  
models, using climate prediction, subsequently comparing these 
scenarios with those generated by GEVAZP, which is a generator 
of  synthetic series without any type of  climate conditioning. 
Accordingly, two rainfall-runoff  modeling methodologies were 
tested: one conceptual, based on the SMAP model, and another 
based on Artificial Neural Networks (ANN), from a Multi-Layer 
Perceptron (MLP) model.

These techniques were applied in order to present the gain 
that can be obtained with the use of  precipitation information in the 
generation of  runoff  scenarios, through rainfall-runoff  modeling, 
in the horizon of  up to one month, and its consequences for the 
planning and the operation of  the SIN. The usage evaluation 
was carried out for the hydroelectric located in the São Francisco 
river basin: the Três Marias dam, which together with Sobradinho 
and the Luiz Gonzaga hydroelectric, represent 96% of  the EAR 
(Energia Armazenada - Stored Energy) in the Brazilian Northeast 
Subsystem.

MATERIALS AND METHODS

Study area

According to Ana (Agência Nacional de Água, 2004), the 
São Francisco basin has an area of  639,000 km2 and its main course 
has an extension of  2,700 km between the headwaters, in Serra da 
Canastra, located in the municipality of  São Roque de Minas (state 
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of  Minas Gerais), and the mouth, in the Atlantic Ocean, between 
the states of  Sergipe and Alagoas. The basin area corresponds to 
approximately 8% of  the national territory, covering parts of  six 
Brazilian states and the Federal District. It is also worth noting that 
the basin comprises a significant part of  the Drought Polygon, 
which is a territory recognized by the Brazilian legislation as being 
subject to critical periods of  prolonged droughts and is mainly 
located in the Northeastern region, extending to the north of  the 
State of  Minas Gerais.

The present study was developed on the drainage area 
of  the Três Marias reservoir, located in the municipality of  Alto 
São Francisco. Rainfall data from ANA and CEMIG (Companhia 
Energética de Minas Gerais – the Energy Company of  the State 
of  Minas Gerais) were used.

Study assumptions

In order to obtain the runoff  scenarios, climate forecasts 
from the CFS models (Saha et al., 2010), operated in National 
Centers for Environmental Prediction (NCEP), are used. These 
predictions served as input for the rainfall-runoff  models to 
elaborate the flood scenarios for up to one month ahead, using 
the SMAP model and a MLP Neural Network model in this 
rainfall-runoff  transformation. Figure 1 shows the flow diagram 
of  the steps adopted in the current study.

A brief  description of  the CFS atmospheric model, the 
method for correcting this precipitation forecast, as well as of  
the rainfall-runoff  modeling obtained from the SMAP and MLP 
Neural Networks models are also shown ahead. Moreover, a brief  
report on the climate information that was used in this study is 
also presented.

a)	 Climate forecast model and forecast correction

The CFS is a climate model developed by the National 
Centers for Environmental Prediction (NCEP) to simulate the 
condition of  the coupled ocean-atmosphere-land system and 
sea‑surface ice, with high resolution for the period from 1979 
to 2010. The global atmospheric model has a horizontal spatial 
resolution of  approximately 38 km with 64 vertical levels. The oceanic 
model has a latitudinal spacing of  0.25º near the Equator and of  
up to 0.5º in the tropics, with 40 levels, to a depth of  4,737 meters. 
The first version of  CFS, later called CFSv1, was put into operation 
at the NCRMSE in August 2004 and was the first global model 
used at the NCRMSE for seasonal prediction (Saha et al., 2006) 
of  fully coupled atmosphere-ocean-land.

As described by Saha et al. (2014), the second version of  
CFS (CFSv2) was operationalized at the NCEP in March 2011. 
This version has brought improvements to almost all aspects of  
the data assimilation components and system model forecast. 
A  coupled reanalysis was conducted over a 32-year period 

Figure 1. Flowchart diagram of  the study steps.
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(1979-2010), which provided the initial conditions for performing 
retrospective forecasts for the period from 1982 to 2010.

For the correction of  the precipitation forecast, the 
methodology described by Wood et al. (2002) will be used, the 
PDF (Probability Density Function) methodology, in which, for 
each month of  the year and for each forecast grid point of  the 
climate model, two probability distribution curves are developed, 
for observed and predicted data, respectively . The correction is 
made based on the equality of  the frequency curves, as shown 
in Figure 2.

The PDF methodology consists of  determining the 
frequency of  each variable and the correction through the 

equality of  the frequencies between the observed and the 
predicted curves, with subsequent calculations of  the Pearson 
correlation coefficient between the two variables being 
obtained. The linear correction consists of  the determination 
of  a coefficient of  direct relation between the climate and the 
average rain observed in the basin.

In order to evaluate the quality of  the precipitation forecasts 
of  the CFS model by graphic analysis, the results predicted by this 
model in the period from 2011 to 2016 were compared with the 
average rainfall data of  the Três Marias reservoir.

Figure  3 shows the location of  the reservoirs of  Três 
Marias, in Brazil..

b)	 Climate variables analysis

This study evaluated the climate variables and possible 
influences of  SST anomalies in the Equatorial Pacific, Tropical 
Atlantic and other climate variables, as well as their relationship 
with the flow of  the Três Marias reservoir.

As showed in Venables & Smith, 2017, Principal Component 
Analysis (PCA) aims to simplify the structure of  a set of  variables 
and explain their total variance as much as possible by determining 
values ​​as linear combinations of  the original variables. The 
Principal Components (PCs) should be used to reduce the size 
of  the data, being formed by transforming a set of  “p” variables 
into a set of  uncorrelated variables. These new variables are 
linear combinations of  the original variables, being obtained in 
descending order of  importance such that, for example, the first 
major component accounts for as much of  the total variability 
as possible in the original data.Figure 2. Methodology for precipitation correction.

Figure 3. Drainage area of  the Três Marias reservoirs. Adapted from Tucci et al. (2015).
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c)	 Flow forecast and scenario generation models

There are several methodologies to estimate rainfall-runoff  
transformation. Physical and stochastic models, as well as those 
based on the Neural Networks technique, are available. Among the 
physical or conceptual models, this text highlights the SMAP model, 
which is widely used in Brazil, either because of  its feasibility and 
few parameters, or due to the quality obtained in its calibration.

As previously shown, Fernández Bou et al. (2015) developed 
a model to forecast flows one month ahead, based on precipitation 
forecasts. The precipitation forecasts originated from the CFSv2 
model, with SMAP being the model used for rainfall-runoff  
transformation. Precipitation forecasts were corrected (correction 
coefficients were generated for each month of  the year) and 
compared to a rainfall resulting from 12 ANA rainfall stations. 
The precipitation forecast used was the average of  25 members. 
The results achieved were flow forecasts of  better quality than 
the official ONS model, currently used in PMO processes and 
their revisions.

The models based on the Neural Networks technique have 
also been widely used in several sectoral applications and also in 
the area of  water resources, in the rainfall-runoff  transformation. 
This study also highlights the feasibility and the results obtained 
using this methodology.

In this study, rainfall-runoff  models based on NN (Neural 
Networks) and the SMAP model are used. The approach presented 
selected a Multi-Layer Perceptrons (MLP) Neural Network with 
a Levemberg-Marquardt supervised learning algorithm, similar to 
that used by Gomes (2006). This choice was based on its good 
performance presented in the previously mentioned study, in 
which it was used for a similar problem to the one approached 
in this study.

c.1) Neural Networks models

One of  the most important properties of  a Neural Network 
is its learning ability, for improving performance. This occurs 
through an iterative adjustment process, applied to its weights, 
known as training. This learning ability occurs from the downward 
gradient that is performed by the backpropagation algorithm. 
The goal of  this downward gradient is to seek a global minimum 
through adjustments in the synaptic weights, by a value that is 
proportional to the opposite direction of  the derivative of  the 
error provided by the neuron in relation to the weighting value. 
The term backpropagation is related to the recursive propagation 
of  errors. Therefore, the training can be understood as follows: 
initially, the signals are propagated in a progressive way (from the 
input layer to the output layer). Then, the recursively propagated 
errors (from the output layer to the input layer) are calculated 
through the network by determining the derivatives of  the error 
function. Finally, these derivatives are used to perform weight 
adjustments (Valença, 2005).

Moreover, as previously mentioned, the weight and bias 
adjustments are optimized according to the Levemberg-Marquardt 
algorithm, suitable for networks with a moderate amount of  data 
(up to several hundreds of  synaptic weights). This method has 
a higher convergence speed than the networks with downward 
training gradient, in which network weights and deviations are 
updated as the performance function has a sharper decrease 
(Gomes, 2006).

In the training process, the cross-validation method was 
applied, which uses an independent dataset to determine the 
optimum stop point during training, in order to especially minimize 
the risks of  super-adjustment or under-adjustment. Thus, the data 
set was divided into three sub-sets:

–	 training: patterns used to modify weights;

–	 validation: patterns used to mainly check the problem of  
super-adjustment (overfitting);

–	 test: patterns to test the final model performance.

Figure  4 shows an example of  one of  the simulations 
performed, showing that the simulation was interrupted when 
the error began to increase for the validation dataset, avoiding 
over adjustment.

c.2)	SMAP model

The SMAP (Soil Moisture Accounting Procedure) model is 
a conceptual model, focused on hydrological simulation of  rainfall-
runoff  transformation, having as main advantages its simplicity, 
feasibility in obtaining the input data, application for the great 
majority of  SIN basins, ease of  understanding the methodology 
as well as the functioning of  the model and its parameters, which 
allows adjustments/improvements, as well as the use of  a small 
number of  parameters.

The SMAP was originally developed by Lopes et al. (1982) 
for a daily time interval and later adapted to the hourly and monthly 
versions, with some changes in its structure. In this study, the 
monthly version was used.

In its monthly version, SMAP consists of  two mathematical 
reservoirs (Rsolo and Rsub), whose state variables are updated 
monthly.

The model also contains a routine of  previous updates of  
the humidity level, in which, for each time interval, a percentage of  
the average rain of  the month is added in order to use the average 
moisture content of  the month. Such a routine is an increment 
that considerably improves the results, out of  observations, 

Figure 4. Process for stopping the training of  a Neural Network 
of  the study (output example from Matlab).
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mainly in regions of  great variability in the pluviometric regime 
(Lopes et al., 1982).

The main parameters obtained in the calibration of  the 
SMAP are (the detailed formulation can be observed in Fernández 
Bou et al. (2015)):

Str - soil saturation capacity (mm);
K2t - surface flow parameter (dimensionless);
Capc - recharge coefficient (dimensionless), related to 

the movement of  water in the unsaturated zone of  the soil and, 
therefore, a function of  soil type;

K - Recession constant (month -1).
The results obtained considered the MAPE (mean absolute 

percentage error), the RMSE (Root-mean-square error), the 
MAE (mean absolute error), the Nash Coefficient and Nash-Log. 
The detailed formulation can be observed in Fernández Bou et al. 
(2015) and Gomes (2006).

c.3) Generation scenario

The results of  the flow forecasts by the SMAP and NN 
models were compared with the flows generated by GEVAZP 
through two example applications for the months of  September 
2012 and January 2013, and for the period from January 2015 until 
December 2016. GEVAZP (Maceira & Mercio, 1997; Jardim et al., 
2001) is a stochastic model of  synthetic series generation, in 
which realizations of  a stochastic process are possible, under the 
hypotheses of  stationarity and ergodicity. The flows of  these series 
are generated from autoregressive modeling, with the inclusion 
of  random noise, obtained from the time series of  each plant and 
according to a set of  probabilistic laws.

RESULTS AND DISCUSSION

Climate and correction forecast model

Correction of  the precipitation forecast was made for 
the drainage area of  the Três Marias reservoir. This correction 
is detailed below.

Figure 5 shows a comparison of  the average rainfall predicted 
by the CFS with 1, 2, and 3 months in advance, compared to the 
average rainfall observed. This average forecast corresponds to 
the ensemble forecasts.

In Figure  5, it can be observed that the CFS model 
has a good rainfall forecast for the study area, in relation to its 
seasonal variability. However, it is observed that the model tends 
to overestimate the forecasts in the periods of  little or no rain.

Due to this overestimation, it was necessary to make a 
correction in the precipitation forecast of  the CFS model. Initially, 
a climate correction was made using the linear model and the 
model proposed by Wood et al. (2004), here referred as PDF. 
Subsequently, the different months of  each year were corrected 
by the same methodology used in the climate forecast.

As shown by Fernández Bou et al. (2015) and Silva et al. 
(2018), in order to improve climate forecasts, it is necessary to 
make a climate correction on the rain forecast results of  the 
models. Using the PDF and Linear methods, this correction was 
performed based on a comparison between the predicted and 
observed average rain in a given period. In this study, the period 
for climate correction was from 1982 to 2010 - the available period 
of  precipitation forecast data.

Figure  6 shows the comparison between the climate 
forecast obtained for the CFS and the average rainfall observed 
at the Três Marias drainage area. It can be observed that the CFS 
model tends to overestimate the forecast for the study area, with 
more or less intensity, in all months of  the year, maintaining the 
seasonality, which is important.

Figure 7 shows the application of  the PDF methodology 
for the Três Marias drainage area. Table 1 shows the coefficients 
obtained. Therefore, it can be observed that the values obtained 
tend to be close, with the average of  the period from January to 
December being of  0.70 for both cases, with no tendency to be 
above one or the other coefficient. However, in the months of  
May, July, August and September, these coefficients change to 
values with larger differences.

The monthly correction of  the rain predicted by the 
CFS model was also carried out through the PDF methodology. 

Figure 5. Comparison of  predicted rainfall by the CFS model with 1, 2, and 3 months in advance, compared to the average observed 
rainfall in the drainage area of  the Três Marias reservoir.
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below, with the data originating from the climate correction by 
the PDF methodology and the Linear Coefficient.

As established in the methodology, the frequency curves 
were then elaborated and the precipitation was corrected by 
replacing these values with the observed value, both at the same 
frequency. As an example, Figure 8 shows the results obtained 
from the climate corrected by the PDF methodology.

Table 2 shows a summary of  the CFS model correction 
results. The best average forecast obtained was the one that had 
the PDF climate correction.

Corrections for the wet and dry periods were also made 
for all 25 members of  the CFS model. The results obtained show 
certain changes in the forecasts carried out for each day, by each of  
the 25 members of  the model, though without any great changes 
from one member to another.

Climate variables analysis

As previously discussed, a statistical analysis was performed 
considering the climate variables, average rainfall and basin runoff. 
A monthly average data from 1982 to 2017 was used, which 
corresponds to the available meteorological data. It should be 
emphasized that this evaluation aims to define which variables 
are best related to the natural flow of  the Três Marias reservoir, 
which is the variable to be predicted in this study.

In order to better characterize the order of  magnitude, 
Table 3 presents the average, minimum, maximum and standard 
deviations of  the variables under analysis.

Figure  9 shows the relationship between the average 
rainfall of  Três Marias and all climate variables: without a 
temporal lag (t), with a time lag of  1 month (t-1), 2 months (t-2) 
and 3 months (t-3). For most variables, it was observed that, in 
absolute terms, an increase in the time lag causes an upsurge of  
the Pearson correlation of  the variables. None of  the lags showed 
a good Pearson correlation between SOI and the Três Marias 
average rainfall, as well as the PDO (Pacific Decadal Oscillation). 
At time t, there is a positive Pearson correlation with SATL and 
Nino 1+2. At the same time t, the negative Pearson correlation of  
the Três Marias average rainfall for variables NATL, Nino 4 and 
Nino 3.4 was highlighted. In relation to the Pearson correlation 
with the Três Marias average rainfall in other lags, a high Pearson 
correlation is still observed at times t-1 (0.58) and t-2 (0.34). 
Regarding the Pearson correlation with the natural flow of  Três 
Marias, a high Pearson correlation (0.74) was observed at time t, 
reducing t-1, t-2, and t-3 times, as expected.

Figure 10 shows an analysis of  the relationship between 
the natural flow of  Três Marias and the various climate variables 
in analysis: without a temporal lag (t), with a time lag of  1 month 
(t-1), 2 months (t-2) and 3 months (t-3). The variables SOI, PDO, 

Table 1. Relationship between the climate and the average rainfall 
at the Três Marias area, Linear Coefficient and PDF.

Três Marias CFS 
Climate Verif Clinear Cpdf

Jan 354.0 263.8 0.75 0.62
Feb 260.1 177.6 0.68 0.63
Mar 261.6 169.6 0.65 0.70
Apr 106.4 63.0 0.59 0.72
May 47.2 33.9 0.72 0.85
Jun 21.3 11.2 0.52 0.59
Jul 17.6 10.5 0.59 0.71

Aug 16.9 14.9 0.89 0.65
Sep 59.3 50.5 0.85 0.68
Oct 142.9 101.7 0.71 0.69
Nov 265.7 183.5 0.69 0.75
Dec 377.9 288.2 0.76 0.76

Average 160.9 114.0 0.70 0.70

Figure 6. CFS climate x average rainfall at the Três Marias drainage 
area, from 1982 to 2010.

Figure 7. PDF analysis, comparison of  CFS climate x average 
rainfall at the Três Marias drainage area, from 1982 to 2010.

The months of  the year were grouped into two sets of  data: 
wet (with data from November to April) and dry (from May to 
October). This grouping was carried out because only a few years 
exhibited information from the CFS, with the month-to-month 
separation probably leading to lower results than those grouped 
in the wet and dry periods. The results of  this analysis are shown 

Table 2. Results obtained with the correction of  precipitation, 
Três Marias area.

Deviation 
(mm)

Predicted 
Raw

Refined 
Predicted 
Climate

Refined 
Predicted 

Period
PDF 47.2 34.5 37.5
Linear Coef. 35.3 36.8
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Figure 8. Comparison of  predicted, corrected predicted and observed precipitation.

Figure 9. Pearson correlation of  the Três Marias average rainfall with the climate variables for t, t-1, t-2 and t-3 lags.

Figure 10. Pearson correlation of  the natural flow of  Três Marias with the climate variables for t, t-1, t-2 and t-3 lags.
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and Nino 3.4 do not exhibit a good Pearson correlation with the 
natural flow of  Três Marias in none of  the lags.

At time t, this study highlights the positive Pearson 
correlation of  this flow with the variables SATL and Nino 1+2. 
At  the same time t, the negative Pearson correlation with the 
NATL and Nino  4 variables was highlighted. Regarding the 
Pearson correlation with the natural flow of  Três Marias in other 
lags, high Pearson correlations at t-1 (0.67) and t-2 (0.37) were 
observed. With respect to the Pearson correlation with the average 
rainfall at Três Marias, the values are high for all the lags analyzed, 
mainly t, t-1 and t-2, as expected.

It should be noted that, based on the results obtained in the 
Pearson correlation analysis of  the Três Marias average rainfall, the 
flows at Três Marias, the variables SOI_norm, Nino 4 and PDO 
presented a low Pearson correlation and were not used as inputs 
in the flow prediction process.

A Principal Component Analysis (PCA) was performed 
with the series under analysis. Five components were required to 
explain 94.9% of  the series variance. The PC1 component explains 
45.18% and the PC2 explains 32.10% of  the total series variance.

Figure 11 shows the distribution of  these 5 factors that 
explain 94.9% of  the series variance. It can be observed that the 
rain variables are mostly explained by components 1, 2, and 3. 
In terms of  climate variables, principal component 1 is mainly 
present in the variables NATL, SATL, TROP, Nino 1+2, Nino 4 
(all with a large proportion) and Nino 3.4 (small proportion).

Principal component 2 is also present in all climate variables, 
with the variables TROP, Nino 1+2, Nino 4 and Nino 3.4 exhibiting 
the largest proportions of  this variable. Component 3 is mainly 
present in the NATL and Nino 3.4 variables.

Regarding flows, it can be observed in Figure 11 that they 
are mostly explained by principal components 1 and 4, although 
all contain explanatory factors. Principal component 4 is mainly 
present in the SATL and Nino 3.4 variables.

Flow forecast models and scenario generation

a)	 Model calibration

a.1)	SMAP

The evaluation of  the SMAP methodology for the natural 
flow of  Três Marias is shown below. The data from January 1987 
to April 2011 were used in the calibration, with the period from 
May 2011 to December 2016 used for validation (with the rain 
forecast by the CFS model). Figure 12 shows the daily observed 
and calculated hydrograms and the hydrograms of  the basic flow 
from the underground reservoir of  the model, as well as the series 
of  observed precipitation accumulated in 24 hours, obtained from 
the average rain weight in the sub-basin considering the weights 
adjusted by the optimization routine.

The average calculated flow was of  645 m3/s, and the 
observed flow was of  652 m3/s, showing an average volume 
deviation of  1.1%. Table 4 shows the main parameters obtained 
in the calibration of  the SMAP.

Table 5 presents the results regarding the metrics used for 
the performance evaluation of  the calibrated model.

Figure 11. Principal component analysis factors by variables.

Table 3. General information of  the variables under analysis.

Variable Average Minimum Maximum Standard 
deviation

SOI_norm 0.0 -3.6 2.9 1.0
NATL 26.9 24.8 28.9 1.0
SATL 25.0 22.3 27.9 1.5
TROP 27.8 26.8 29.3 0.5
NINO1+2 23.3 18.6 29.2 2.4
NINO3 26.0 23.0 29.1 1.4
NINO4 28.6 26.4 30.3 0.8
NO3,4 27.1 24.3 29.6 1.1
PDO -0.2 -3.1 2.4 1.1
P_UTM 108.8 0.0 508.1 107.8
Nat_UTM 655.5 40.0 3744.0 631.7
Where: SOI_norm, NATL, SATL, TROP, NINO1+2, NINO3, NINO4, 
NINO3,4, PDO represents the meteorological variables; P_UTM represents 
the rainfall in the area and Nat_UTM, the flow.



RBRH, Porto Alegre, v. 25, e16, 2020

Paiva et al.

11/18

Figure 12. SMAP model calibration for the Três Marias area.

Table 4. Main parameters obtained in SMAP calibration.
Str K2t Capc K
524 5.21 7.80 6.0

Table 5. Performance index found in the calibration.

MAPE RMSE MAE Nash Nash-
Log R2

24.7% 237.5 144.5 0.84 0.89 0.85

Table 6. Input variables considered in the MLP Neural Network for the wet period.

Case Number 
Variables Variables

Simul1 8 NATL SATL TROP NINO1+2 NINO3 NINO4 NO3,4 P_UTM
t-1 t-1 t-1 t-1 t-1 t-1 t-1 t-1

Simul2 18 NATL NATL SATL SATL TROP TROP NINO1+2 NINO1+2 NINO3
t-2 t-1 t-2 t-1 t-2 t-1 t-2 t-1 t-2

NINO3 NINO4 NINO4 NO3,4 NO3,4 P_UTM P_UTM Nat_UTM Nat_UTM
t-1 t-2 t-1 t-2 t-1 t-2 t-1 t-2 t-1

Simul3 4 P_UTM P_UTM Nat_UTM Nat_UTM
t-2 t-1 t-2 t-1

Simul4 27 NATL NATL NATL SATL SATL SATL TROP TROP TROP
t-3 t-2 t-1 t-3 t-2 t-1 t-3 t-2 t-1

NINO1+1 NINO1+2 NINO1+2 NINO2 NINO3 NINO3 NINO3 NINO4 NINO4
t-3 t-2 t-1 t-3 t-2 t-1 t-3 t-2 t-1

NO3,4 NO3,4 NO3,4 P_UTM P_UTM P_UTM Nat_UTM Nat_UTM Nat_UTM
t-3 t-2 t-1 t-3 t-2 t-1 t-3 t-2 t-1

Simul5 12 SATL SATL SATL NINO1+1 NINO1+2 NINO1+2 P_UTM P_UTM P_UTM
t-3 t-2 t-1 t-3 t-2 t-1 t-3 t-2 t-1

Nat_UTM Nat_UTM Nat_UTM
t-3 t-2 t-1

a.2)	Neural Network

The application of  the rainfall-runoff  models based on the 
Neural Networks technique for the prediction of  the natural flow 
of  Três Marias are shown ahead. The calibration was carried out 
with the observed rainfall and an evaluation of  the performance 

of  the model was performed using the rain predicted by the CFS 
model for the period from May 2011 to December 2016, due to 
several correction methodologies of  this precipitation forecast.

Table 6 shows the simulated input variables in the wet period 
for the flow prediction for Três Marias, in which t corresponds to 
the variable on the forecast day, t-1 with a one-month lag, t-2 with 
a two-month lag, and so on.

The list of  these variables with the respective acronym 
adopted in this study are presented as follows:

-	 Climate variables: North Atlantic Temperature (NATL), 
South Atlantic Temperature (SATL), region temperature 
as shown by Pinto et al. (2006): temperature in the tropical 
region (TROP) and temperature in Pacific regions (Nino 1+2, 
Nino 3, Nino 4, Nino 3.4);
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-	 Average rainfall in the drainage area of  the Três Marias 
reservoir (P_UTM);

-	 Natural flow at the Três Marias reservoir (Nat_UTM).

Table 7 shows the deviations of  the flow forecasts one 
month ahead for the Três Marias reservoir. It can be observed 
that simulation 5 provided the best results, which consists of  a 
selection of  the best correlated climate variables, of  the average 
rainfall at the reservoir and of  the natural flow at Três Marias, 
all with up to 3 months of  lag,. Comparing the simulations, the 
effect of  the incorporation of  the natural flow for Três Marias 
is highlighted. It is observed that simulation 1, which does not 
have the natural flow at Três Marias as an input variable, had 
very low-quality results. Comparing simulations 2 and 4, it was 
noticed that the addition of  time t-3 in the simulation variables is 
important. Comparing the simulations from 1 to 5, it was observed 
that simulation 5 best represented the predicted flows, having the 
best performance indices.

Figure  13 shows the predicted vs. observed graph of  
simulation 5 (data used in the Neural Network), in which no error 
is observed in the forecast lag. In general, it is also observed that 
the simulation represented well the low flows.

In order to evaluate the contribution of  the rainfall 
forecast, the climate predictions of  the CFS model were added 
in the predictions of  flows one month ahead for the Três Marias 
reservoir. These forecasts were carried out for the climate 
correction (average of  the period from 1982 to 2010) and then 
by the monthly correction. Considering that no systematic error 
was observed in the rainfall forecasts, the observed rain of  the 
given month, representing the perfect rainfall, was initially used in 
the calibrations. With the addition of  this variable in simulation 5, 
the results shown in Table 8 (simulation 6) and represented in 
Figure 14 were obtained.

Comparing the results of  simulations 5 and 6, an 
improvement in the forecasts can be clearly observed, as a result 
of  the incorporation of  the observed rainfall in m+1 in the 
simulations. For instance, MAPE decreased from 39.2% to 21.8%, 
and the Nash coefficient increased from 0.73 to 0.89. Comparing 

Table 7. Results obtained for the one-month lag forecasts for the 
Três Marias reservoir.

Simulation MAPE RMSE MAE Nash Nash-
Log

Simul1 42.6 384 253 0.64 0.75
Simul2 34.3 360 219 0.69 0.80
Simul3 38.0 378 240 0.65 0.79
Simul4 35.7 331 211 0.73 0.80
Simul5 39.2 333 218 0.73 0.79

Figures 13 and 14, a substantial improvement was observed mainly 
in the forecast of  high flows, such as in the wet period of  1997.

In order to further improve flow forecasts, following the 
methodology for a daily flow forecast shown by Gomes (2006), two 
Neural Networks were adjusted: one for the wet period (November 
to April) and another for the dry period (May to October). Table 9 
and Figure 15 show the results obtained through simulation 6. 
Comparing simulations 6 and 7, it should be noted that the latter, 
with separate calibrations for the wet and dry periods, showed 
an improvement of  5.8% in the MAPE, 31 m3/s in the RMSE, 
29 m3/s in the MAE, 0.03 in the Nash coefficient and 0.02 in the 
Nash-Log coefficient.

b)	 Evaluation of  the Models

The results were subsequently evaluated, replacing the 
observed rainfall data at time m+1 (subsequent month) by the 
forecast rainfall data. These simulations were performed in the 

Figure 13. Observed flows x predicted flows by simulation 5 using NN (Neural Networks).

Table 8. Results of  simulation 6 that incorporate the observed 
rainfall.

Simulation MAPE RMSE MAE Nash Nash-
Log

Simul6 21.8 211 133 0.89 0.92

Table 9. Results of  simulation 7, with one network for the wet 
period and another for the dry period.

Simulation MAPE RMSE MAE Nash Nash-
Log

Simul7 16.0 180 103.7 0.92 0.94
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Figure 14. Observed flows x predicted flows by simulation 6 that incorporate the observed rainfall.

Figure 15. Observed flows x predicted flows by simulation 7 that incorporate observed rainfall.

Figure 16. Results of  simulation 7 incorporating rain forecasts of  the CFS model (ensemble average).
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period from April 2011 to December 2016, the available period 
of  the CFS forecasts (test period).

Figure 16 shows the results of  these simulations, being 
observed that the simulations with a climate correction by the 
Linear method (Simul7C), except for the MAPE index, had slightly 
better results than the others. By analyzing this Figure, it can be 
observed that none of  the simulations were able to make a good 
prediction for the low flows in the data of  the wet period, nor the 
simulation with the observed rain, showing the difficulty of  the 
calibration for this type of  forecast. However, in the dry season 
network, low flow rates were easily predicted by all models. This 
same graph shows that there is no phase error in the forecasts, 
that is, no time lag is observed.

A simulation was also separately carried out for all 
25 members of  the CFS model, with all being corrected with the 
same methodology used for calculating the average ensemble. 
As an example, Figure 17 shows the forecasts obtained based 
on the rain predicted by the CFS corrected by the PDF/PDF 
methodology (climate correction with the PDF methodology and 
monthly correction with the PDF methodology).

In Figure 17, it can be observed that the results of  flow 
forecast with the Neural Networks vary considerably in some cases, 
depending on the methodology adopted for the correction of  the 
precipitation forecast. For instance, in the forecast performed 
for January 2013, the observed flow was of  1059 m3/s and the 
forecast flow varied from 839 to 1913 m3/s with rain correction 
by the PDF/PDF methodology; from 594 to 1069 m3/s using 
only climate correction with the PDF methodology; and from 
872 to 1957 m3/s using the rain correction with the Linear/PDF 
methodology.

As previously shown, in parallel to the application of  
Neural Networks, the SMAP methodology was evaluated for the 
natural flows of  Três Marias.

With this calibration, this study made an assessment of  the 
model’s performance using the rainfall predicted by the CFS model 
for the period from May 2011 to December 2016, using several 
methodologies to correct this forecast precipitation. Figure 18 
shows the results found.

The purpose of  this assessment was to evaluate the range 
of  flows generated by the SMAP model, which was compared 

Figure 17. Outflow prediction with NN (Neural Networks) using the rain forecasts of  the CFS model, PDF/PDF correction.

Figure 18. Application of  predicted rain by the CFS for the evaluation of  the SMAP model for the Três Marias area. Where: Qverif  
represents the observed flow; Q c Pverif  represents the predicted simulated flow with the observed rainfall (only for the comparison 
with the previous simulations in the same data period); pdfpdf_md Q represents the predicted flow with the average rainfall of  the 
ensemble and with both climate correction and monthly correction by the PDF method; pdf_md Q represents the predicted flow 
with the average rain of  the ensemble and with climate correction by the PDF method; linearpdf_md Q represents the predicted flow 
with the average rain of  the ensemble and with climate correction by the Linear method and monthly correction by the PDF method; 
linear_md Q represents the predicted flow with the average rain of  the ensemble and with climate correction by the Linear method.
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to the flows obtained in the previous item, using the Neural 
Networks methodology.

Figure  19 shows the range of  flows generated by the 
SMAP model and by the Neural Network model, compared 
to the observed flow. By analyzing the data that generated this 
Figure, it is observed that in 23 cases, which represent 34%, the 
observed flows are outside the range of  flows predicted by the 
Neural Networks model. In 52 cases, which represent 76%, the 
SMAP forecasts failed to reproduce the range. In 26 cases, which 
represent 38%, SMAP minimum flows represent smaller values 
than those obtained with Neural Networks models. In 5 cases, 
which represent 7%, SMAP maximum flows represent higher 
values than those obtained with the Neural Networks models. 
It is worth pointing out that in only 5 cases (7%), the predicted 
flow by the Neural Networks model did not present values in the 
observed range, although the SMAP model would have improved 
the accuracy of  this range – in almost all cases, the flow would 
have reduced its range. In other words, in only 7% of  cases, 
SMAP would be able to improve the flow forecast performed by 
the Neural Networks model.

Table 10 and Figure 20 show the comparison of  the average 
range generated by SMAP and Neural Networks predictions. 
Although the main objective of  this study is not to correct a 
prediction but to locate the probable range of  its occurrence, it 
should be noted that the SMAP model performed better than the 
Neural Networks model, when comparing the average flow range 
predicted in relation to the observed flow.

In Figure 21, it is observed that in the range generated by 
the GEVAZP model, the flows produced by the Neural Networks 
model are already present, while in the range generated by the 
latter, the SMAP flows are present.

Figure 19. Evaluation of  the flow range of  the flow predictions for the Três Marias reservoir.

Figure 20. Comparison of  the average ranges predicted by SMAP and Neural Networks models.

Table 10. Deviations from the average flow range predicted by 
SMAP and Neural Networks models for the period from May 
2011 to December 2016.

Simulation MAPE RMSE MAE Nash Nash-
Log

Smap 51.8 303 157 0.49 0.65
Neural network 73.5 339 198 0.36 0.52
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In Figure 22, it can be observed that in the range generated 
by the GEVAZP model, the flows produced by the Neural 
Networks model are already present. However, in the range 
generated by the latter, the SMAP flows (the flow range predicted 
by SMAP was from 628 to 810 m3/s and the flow range predicted 
by the Neural Networks model was from 649 to 1987 m3/s) are 
no longer present.

In Figures  21  and  22, it is interesting to note that the 
runoff  scenarios predicted by GEVAZP contain flows well above 
the observed ones and those predicted by the different rainfall 
scenarios of  the CFS, especially in the predicted flows for the 
wet period, as is the case of  Figure 22 with predicted flows for 
February 2013.

Figures 21 and 22 show that GEVAZP generates several 
series out of  the likely range. The NEWAVE rounds, in determining 
future cost, visit all of  these series generated by GEVAZP. If  this 
GEVAZP range is reduced, the NEWAVE future cost function 
will not visit these series out of  schedule, enabling it to deal with 
uncertainty (Cataldi et al., 2012). This lower opening of  the scenario 
decreases the chance that the future cost function will go somewhere 
in the domain that has no chance of  being accomplished.

In addition, the flows generated by the Neural Networks 
model, SMAP, were compared and verified with the flows generated 
by Gevazp, for January 2015 until December 2016, as observed 
in Figure 23. Thus, it can be seen that Gevazp shows scenarios 
that cannot be verified.

Figure 21. Scenarios predicted by GEVAZP, along with the range of  the CFS model and observed flow, PMO September 2012 
(predicted flows for October 2012) with SMAP range.

Figure 22. Scenarios predicted by GEVAZP, along with the CFS model range and observed flow, PMO January 2013 (predicted flows 
for February 2013) with SMAP range.

Figure 23. Scenarios predicted by GEVAZP, with the Neural Networks model range, SMAP and the observed flow, for the period 
from Jan./2015 to Dec./2016.
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CONCLUSION

-	 The CFS climate forecasts tend to overestimate the predicted 
rain mainly in the months of  little or no rain;

-	 The corrections made by the CFS model for the ensemble 
average, led to better results when compared with the 
climate correction and the monthly correction by the PDF 
methodology. It is worth noting that, in some cases, the 
results of  flow forecast vary considerably depending on 
the methodology used to correct the precipitation forecast;

-	 Simulations with Neural Networks showed that, for the 
Três Marias reservoir, 17% of  the observed flows would 
be outside the range generated by the model. In these cases, 
the flow generated by SMAP would improve the accuracy 
of  this range in 3% of  the cases. It should be noted that 
the Neural Networks model performed well in this flow 
range, considering that even when it did not reach the given 
range, it generated values very close to it. Although the main 
objective of  this study is not the correction of  a prediction, 
but the probable range of  its occurrence, it should be noted 
that the SMAP model performed better than the Neural 
Networks model, when compared to the average flow range 
predicted in relation to the observed flow;

-	 There was a clear improvement in the flow predictions 
with the incorporation of  the rain observed one month 
ahead in the simulations, mainly in the forecast of  high 
flows, as for the wet period of  1992;

-	 The study showed that it is possible to safely reduce the 
range predicted by the GEVAZP model, which prevents 
the DECOMP and NEWAVE energy models from 
visiting these scenarios with very little or no probability of  
occurrence. It should be noted that the flow forecast for 
2 months ahead was evaluated and the results were also 
promising and do not significantly change the expected 
range presented in this work;

-	 The variables NATL, SATL, TROP, Nino 1+2, Nino 3, 
Nino 4 and Nino 3.4 had a good relationship with the flow 
and rain variables. However, the SOI and PDO variables 
did not present a good Pearson correlation with the flows 
and rainfall of  Três Marias;

-	 In the historical arrangement of  the natural flow data of  
Três Marias with the main correlated variables, which are the 
temperature in the Nino 1+2 area and in the South Atlantic, 
it was observed that the up and down cycles of  these three 
variables are similar. It is also observed that the temperature 
amplitude in the Nino 1+2 region is much higher than the 
SATL. The natural flow at Três Marias clearly shows the 
water crisis that has been faced by the São Francisco basin 
since 2012. However, no great historical variation can be 
observed in the Nino 1+2 and SATL data.
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