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ABSTRACT

In this work, the data assimilation method namely ensemble Kalman filter (EnKF) is applied to the Tocantins River basin. This method 
assimilates streamflow results by using a distributed hydrological model. The performance of  the EnKF is also compared with an 
empirical assimilation method for hourly time intervals, in which two applications based on information transfer from gauged to 
ungauged sites and real time streamflow forecasting are assessed. In the first application, both assimilation methods are able to transfer 
streamflow to ungauged sites, obtaining better results when more than one station located upstream or downstream of  the basin are 
gauged. In the second application, integration of  a real time forecast model with EnKF is able to absorb errors at the beginning of  
the forecast. Therefore, a greater efficiency in the Nash-Sutcliffe index for the first 144 hours in advance in relation to its counterpart 
without assimilation is obtained. Finally, a comparison between both data assimilation methods shows a greater advantage for the 
EnKF in long lead times.

Keywords: Ensemble Kalman filter; Distributed hydrological model; Streamflow forecast; Information transfer.

RESUMO

Neste trabalho, o método de assimilação de dados por filtro de Kalman por conjunto (EnKF) é aplicado na bacia do rio Tocantins. 
Esse método atualiza as vazões do rio usando um modelo hidrológico distribuído. O desempenho de EnKF é também comparado com 
um método de assimilação empírico a intervalos de tempo horário, onde duas aplicações baseadas em transferência de informação de 
locais monitorados para não monitorados e previsão de vazão em tempo real são avaliadas. Na primeira aplicação, ambos os métodos 
de assimilação de dado conseguem transferir vazões a outros locais não monitorados, obtendo melhores resultados quando mais de 
uma estação localizada a montante ou a jusante da bacia são monitoradas. Na segunda aplicação, a integração de um modelo de previsão 
com EnKF consegue absorver os erros no início da previsão. Dessa forma, uma maior eficiência no índice de Nash-Sutcliffe para 
as primeiras 144 horas de antecedência é encontrada quando se compara com os resultados do modelo sem assimilação. Finalmente, 
a comparação entre os métodos de assimilação de dados no modelo de previsão mostra uma maior vantagem a favor de EnKF em 
maiores horizontes de previsão.

Palavras-chave: Filtro de Kalman por conjunto; Modelo hidrológico distribuído; Previsão de vazões; Transferência de informação.
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INTRODUCTION

Advances in understanding the dynamics of  the soil-water-air 
relationship encouraged the development of  hydrological models 
of  the earth surface, in order to perform a simple, even if  realistic 
representation of  water movement in the basin through a mass 
balance, differential equations of  routing and energy transfer 
(BEVEN, 2012). Nevertheless, there are various sources of  
uncertainties involved, as in the structure of  the hydrological 
model, in the estimation of  the hydrological parameters and in 
the errors of  the hydro meteorological forcing data to the model 
(VRUGT  et  al., 2005; LIU; GUPTA, 2007; GÖTZINGER; 
BÁRDOSSY, 2008; SALAMON; FEYEN, 2010). That is, the 
model parameters using an automatic or manual calibration process 
will always be associated with uncertainties. For cases of  real time 
flood forecasting, it may be even more difficult due to errors in the 
rainfall forecast. Also, The sensitivity of  the models to the initial 
conditions of  short duration intensive rainfalls corresponding to 
the nonlinear effects and to the runoff  responses may be another 
cause of  uncertainties (CHEN et al., 2013). The quantification 
and reduction of  these uncertainties is necessary to avoid greater 
errors in decision-making (LIU et al., 2012).

Advanced methods of  data assimilation are an option 
for an optimal combination of  information from models that 
are inherently imperfect, with also uncertain observations, thus 
obtaining estimates that are physically consistent with the reduction 
and quantification of  the uncertainties (MCLAUGHLIN, 1995; 
WEERTS; EL SERAFY, 2006; LIU; GUPTA, 2007; CLARK et al., 
2008; REICHLE, 2008; LIU et al., 2012; RIDLER et al., 2014; 
ERCOLANI; CASTELLI, 2017). Initially these methods were 
more popular in earth sciences for meteorological forecasting, 
characterization of  atmospheric and oceanic conditions; however, in 
recent years they have been adapted for hydrological and hydraulic 
applications (LIU et al., 2012).

Data assimilation methods with applications of  discharge data 
into distributed hydrological models are more abundant (WEERTS; 
EL SERAFY, 2006; CLARK  et  al., 2008; RAKOVEC  et  al., 
2012; CHEN et al., 2012; DECHANT; MORADKHANI, 2012; 
CHEN et al., 2013; DUMEDAH; COULIBALY, 2013; ZHANG et al., 
2014; MORADKHANI et  al., 2005a; MORADKHANI et  al., 
2005b; SEO et al., 2009; XIE; ZHANG, 2010; PAUWELS; DE 
LANNOY, 2009; ERCOLANI; CASTELLI, 2017). However, recent 
advances in remote sensing encouraged the use of  observations 
such as radar altimetry to estimate river levels (PAIVA  et  al., 
2013b; ANDREADIS et al., 2007; BIANCAMARIA et al., 2011), 
microwave radiation to estimate soil humidity (NAGARAJAN et al., 
2011; YAN; MORADKHANI, 2016), remote observation to infer 
the properties of  snow as an extension of  large scale coverage 
(ANDREADIS; LETTENMAIER, 2006), among others.

The first experiments of  the advanced method of  data 
assimilation in simulation and forecasting models were performed 
using lumped models with synthetic data (e.g. WEERTS; 
EL   SERAFY, 2006; DUMEDAH; COULIBALY, 2013; 
DECHANT; MORADKHANI, 2012; MORADKHANI et al., 
2005a; MORADKHANI et al., 2005b; NAGARAJAN et al., 2011; 
CHEN et al., 2013; SEO et al., 2009). The results of  these studies 
were promising with a great potential for expansion into more 
complex systems and more realistic situations. Later, the applications 

in semi-distributed and distributed hydrological models proved 
more interesting and appropriate. Chen et al. (2012) demonstrated 
that the data assimilation methods in semi-distributed models 
provided a better representation of  the maximum streamflow 
peaks compared to the lumped models. Various methods of  
data assimilation in distributed hydrological models were applied 
in different basins worldwide, as in Andreadis and Lettenmaier 
(2006), Clark et al., (2008), Salamon and Feyen (2009), Mendoza 
(2010), Noh et al. (2011), Chen et al., (2012), Paiva et al. (2013b), 
Xie and Zhang (2010), Abaza et al. (2014), Ercolani and Castelli 
(2017), Xu et al. (2017), among others. Nevertheless, applications 
of  data assimilation in South America basins are still insufficient. 
The advantage of  the distributed models with data assimilation 
is forcing them with spatial data. Another advantage is the ability 
to simulate and predict hydrological variables at internal sites in 
the basin, and it should be underscored that the estimation of  the 
variables at sites with poor or no monitoring in the basin means 
a new applications to the advanced methods of  data assimilation 
(LIU et al., 2012).

The research cited demonstrated relative accurate when 
compared to a model that is not assimilated (PAIVA et al., 2013b; 
ABAZA et al., 2014; MENDOZA, 2010; ERCOLANI; CASTELLI, 
2017) when they are applied in distributed hydrological models 
for real time streamflow forecasting. Additionally, these methods 
were useful to transfer information on streamflows, such as in 
Paiva et al. (2013b), Xie et al. (2014) and Zhang et al. (2014); Ercolani 
and Castelli (2017). The few works that exist on information 
transfer to ungauged sites showed reliable estimates for streamflow 
prediction in regions without much monitoring, but their results 
depend on the location of  the monitored sites in relation to the 
ungauged sites (XIE et al., 2014)

The most disseminated advanced method of  data 
assimilation is of  the sequential or filtering methods. The  most 
common methodologies are the ensemble Kalman filter 
(EVENSEN, 1994; EVENSEN, 2003) (EnKF) and the particle 
filter (ARULAMPALAM et al., 2002). The first is an extension of  
the classic Kalman filter method which was developed for linear 
systems. The EnKF is an approach of  simulations by Monte 
Carlo to the traditional Kalman filter, where the error of  matrix 
of  covariance is done routing an ensemble of  model states using 
the updated states of  the previous period. The works of  Evensen 
(1994) and Evensen (2003) introduced the ensemble Kalman Filter 
method presenting an algorithm of  the formulation and numerical 
implementation. The results of  multiple studies demonstrated that 
EnKF is robust and has computational efficiency, and is easy to 
implement compared to other advanced data assimilation methods 
(CHEN et al., 2013).

Another data assimilation method is the Particle Filter 
(PF), similar to EnKF, which utilizes the Monte Carlo method 
and the filtering theory based on the Bayesian theory. The central 
idea is to represent the function of  posterior probability density 
of  an ensemble of  randomly chosen samples (particles), and each 
particle is associated with a weight (ARULAMPALAM  et  al., 
2002; VRUGT et al., 2013). This method has the advantage of  
being applicable to models that present nonlinear functions with 
non-Gaussian density distributions. It updates the weights of  the 
particles and not of  the ensemble of  state variables, which reduces 
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numerical instabilities, especially in distributed physical models 
(LIU et al., 2012). One of  the first studies using PF in hydrological 
applications is that of  Moradkhani  et  al. (2005a) developing a 
mathematical algorithm to analyze uncertainties in streamflow 
forecasting, considering uncertainties in the state variables together 
with the hydrological model parameters. Nevertheless, one may 
need a greater number of  members compared to EnKF to provide 
more reliable forecasts.

Another group of  advanced methods used in recent years 
is the variational method (COUSTAU et al., 2013), classified as 
a technique derived from the evolution of  distribution of  state 
variables over a time interval which involves the minimization 
of  a cost function. The variational methods are computationally 
less expensive than EnKF (LIU; GUPTA, 2007). However, they 
work in a time window containing a sequence of  observations, 
and are more appropriate for curve adjustment than for real time 
data (SALAMON; FEYEN, 2009).

Research presented by Paz et al. (2007), Collischonn et al. (2005), 
Collischonn et al. (2007b) and Fan et al. (2014) showed an empirical 
method of  data assimilation for flood forecasting analyses in 
operational systems of  inflows to the reservoirs. However, those 
techniques only allow assimilating the streamflow in rivers. In this 
sense, the advanced methods for data assimilation allow estimating 
the state variables together with the model parameters, considering 
uncertainties in the input and output data.

The objective of  this study is to evaluate a data assimilation 
scheme using EnKF in a distributed hydrological model in the 
Tocantins River basin to test its usefulness for real time forecasting 
and transferring information. In this study, EnKF is coupled to 
the distributed hydrological model MGB-IPH to assimilate the 
river streamflows. A model for the generation of  a synthetic series 
of  rainfalls is used to alter the state variables of  the hydrological 
model. The results are shown in terms of  statistical performance 
among the simulations of  the data assimilation model (EnKF), 
data assimilation by an empirical model (Empirical) described by 
Paz et al. (2007) and not using data assimilation (Open-Loop). 
This work is organized in 4 sections. The first is the Introduction 
containing the state of  art of  the application of  data assimilation 
methods in the field of  hydrology. The second is the Methodology 
containing a summary of  the ensemble Kalman filter theory, the 
model of  synthetic generation of  rainfall and some considerations 
regarding system errors. The third is Discussion of  Results, which 
describes the final results of  the different simulations and, finally, 
the last section presents the conclusions.

METHODOLOGY

Distributed MGB-IPH Hydrological Model

MGB-IPH is a large-scale distributed hydrological model 
developed by Collischonn et al. (2007a). This model seeks out to 
represent processes of  routing generation and streamflow propagation 
in the drainage system of  the basin by using meteorological 
variables, and data derived from geographic information systems 
based on topography, land use and soil type. The drainage-basin 
area is divided into irregular cells namely “small basins” in which 
hydraulic and hydrological quantities are determined. Otherwise, the 

Grouped Response Unit (GRU) approach is used for hydrological 
classification with similar combinations of  soil type and land use 
without consideration of  its exact location within the cell. It is 
important to mention that a cell contains a limited number of  
distinct GRUs.

MGB-IPH simulates the water balance based on physical 
relations divided into two distinct processes, vertical and 
horizontal. Among the vertical processes are canopy interception, 
evapotranspiration, infiltration, surface runoff, sub-surface and 
soil water budget, all of  them simulated in each GRU. Horizontal 
hydrological processes include flow generated within each catchment 
is routed to the stream network using a linear reservoirs type 
model (surface, subsurface and base flow). Currently, MGB-IPH 
has three streamflow routing methods along the drainage network, 
besides the linear routing by Muskingum Cunge, the module of  
hydrodynamic routing with solution of  the complete Saint-Venant 
equations (PAIVA; COLLISCHONN; BUARQUE, 2013a) and 
inertial flow routing method (PONTES et al., 2015).

The MGB-IPH model has an empirical data assimilation 
method coupled to updated streamflow by using routing module 
by Muskingum Cunge (PAZ et al., 2007; COLLISCHONN et al., 
2005; COLLISCHONN  et  al., 2007b; TUCCI  et  al., 2006). 
The usefulness of  this empirical model was demonstrated for 
reservoir inflow predictions based on quantitative precipitation 
forecast (COLLISCHONN et al., 2005; COLLISCHONN et al., 
2007b) and flood forecasting using ensemble rainfall forecasts 
(FAN et al., 2014; FAN et al., 2016). A complete description of  
the empirical assimilation methodology can be found in the above 
mentioned articles.

Ensemble Kalman Filter (EnKF)

Sequential data assimilation consists of  estimating the 
system states variables of  the model recursively each time an 
observation becomes available (MORADKHANI et al., 2005a). 
When the systems follow a linear behavior of  their equations, 
this problem may be solved by the Kalman filter as an optimal 
recursive algorithm. In the case of  non-linear dynamic systems, the 
current state vector is linearized to use the extended Kalman Filter. 
However, this method presents many inconveniences, producing 
instabilities and divergences (EVENSEN, 2003). The EnKF presents 
as alternative to the traditional method of  extended Kalman Filter 
(EVENSEN, 1994, 2003). In EnKF, the Monte Carlo method is 
used to generate an ensemble of  trajectories of  the model where 
the covariance matrix of  error is done routing an ensemble of  
model states using the updated states of  the previous time step. 
The model that represents the dynamic of  a simulated system 
could be shown at discrete time intervals and can be represented 
by the following equation:

( ), ,t 1 t t t tf+ = +x x θ µ ω 	 (1)

where f  is a non-linear operator that represents the transition 
model from time t to time t 1+ ; x represents the model state 
variables; θ represents the model parameters; µ is the model input 
or forcing; and ω represents the errors in the model structure, 
parameters, input data.
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The most general equation that describes the relationship 
between the system observations and the states of  the model is:

( ),t t 1 t t 1h + += +y x vθ 	 (2)

where h is a non-linear operator that relates the state variables 
x of  the model to the observations y and v is the vector of  the 
errors in observation.

It is considered that there is no bias in the errors of  the 
model and observations, there is no correlation between the 
errors of  the observations and of  the model and the variance of  
errors is known. After updating the model in the time interval t, 
the model is used to calculate the states in the time interval  t 1+ .

The next group of  equations is the formulation of  EnKF 
which consists of  the stages of  forecasting and updating at each 
time interval. The notation of  time in the following formulas is 
eliminated in order to avoid confusion with the index that will 
identify each member of  the ensemble. The original routines of  
the EnKF method are available at site http://enkf.nersc.no/. 
For further details and discussion the reader should look at Evensen 
(2003), Paiva et al. (2013b) and Clark et al. (2008).

Let fX  be a nstate ×  N - size matrix, where nstate is the 
number of  state variables and N  is the number of  members of  
the ensemble, containing all the state vectors of  the model in the 
forecasting stage. It can be represented as follows:

( ), .,f ff
N1= …X x x 	 (3)

where , .,f f
N1 …x x  are the state vectors of  the model for each 

member of  the ensemble. According to Evensen (2003, 2004) 
in the formulation of  EnKF, the mean of  the ensemble states 
( )fx  is considered “true”, given that the real states are unknown. 
For this purpose, the mean of  the ensemble ((  fx ) is calculated to 
estimate the matrix of  covariance of  the errors of  model ( fP ) 
based on the matrix of  anomalies defined as [ ( )' '' , ,  f ff

N1
 = …  
X x x ], 

with ' f f f
i i= −x x x :

f 1
N 1

=
−

P  'f 'f Tx x  	 (4)

When an observation is available, the error of  this forecast is 
calculated as [ ( )iy h− x f

i ] known as innovation matrix, iy  is a 
matrix of  nobs × N  size, where nobs is an observations number 
and each element of  these matrix is calculated for probability 
distribution model. Thus, the goal of  data assimilation is to obtain 
an optimum estimate ( ax ) of  the state variables, considering the 
errors of  the model and of  the observations. Consequently, the 
optimal, non-biased estimate and with minimum variance of  the 
state variables is given by:

( )i= + −x x K y Hxf fa
i i i

	 (5)

( ) 1f T f T −
= +K P H HP H R 	 (6)

where K is the Kalman gain, P is the matrix of  variance-covariance 
of  the errors of  model ω, iy  is the vector of  the observations 
generated, R is the matrix of  variance-covariance of  the errors 
of  observations, and H is the operator that takes the space of  
the model states to the observation space.

Uncertainty in rainfall forcing

In this study, the state variables of  the hydrological model 
were generated from a model of  generation of  synthetic series by 
the distributive multiplicative error with a log-normal distribution 
in the rainfall observed. The reason for choosing rainfall as a 
forcing to be disturbed is the consideration that the greatest source 
of  error in the simulation system and hydrological forecasting 
comes from precipitation. In this sense, the rainfall sequences are 
generated using Equation 7. This expression was already applied 
by Nijssen and Lettenmaier (2004) to evaluate the effects of  the 
error on the sampling of  precipitation estimated by satellite and in 
the generation of  synthetic series for analysis of  data assimilation 
in Paiva et al. (2013b). The rainfall values are disturbed using a 
log-normal distribution as shown below:

( )exp ln 2
c 2

1P E 1 P
E 1

β ∈
 +  = +  

  + 
	 (7)

Where cP  is the disturbed rainfall (mm.∆t-1), P is the observed 
rainfall(mm.∆t-1), E is the relative error of  rainfall (%), β  is the 
relative bias and ∈ is the random variable with the normal distribution 
correlated with mean zero and variance one. The value of  the 
relative bias is considered zero as in Nijssen and Lettenmaier 
(2004). To calculate the random variable (( )∈), this is a function of  
the variable w of  Equation 8 that represents a vector of  random 
numbers generated with normal distribution (mean zero, variance 
equal to 1) and isotropic exponential correlation, in which the spatial 
correlation drops to 1e−  in the distance xτ  called length of  spatial 
decorrelation. At each spatial location, the temporal correlation 
was also considered using the following equation to simulate the 
temporal evolution of  the errors. (EVENSEN, 2003).

( )2
t t 1 t 11 w∈ α∈ α− −= + − 	 (8)

where t is the time interval,  t∈  is a sequence of  errors in time with 
a temporal correlation and after being calculated it is introduced 
into Equation 7; α estimates the temporal decorrelation according 
to the following relation:

t

t1α
τ
∆

= − 	 (9)

where   tτ  is the length of  temporal decorrelation.

Quantification of  errors in the observed streamflow

The measurement errors of  streamflow (Q) were modelled 
using the following relation:

( );  ~ ,
2

c Q Q QQ Q                N 0 Q  ε ε σ = +  
 

	 (10)

where cQ  (m3.s-1) is the sequence of  observations of  Q (m3.s-1) 
accrue of  Q  ε (m3.s-1), where Qε  is the random error modelled by a 
normal distribution, where Qσ  is a parameters that must be specified.
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Determination of  the assimilation parameters of  
EnKF

A sensitivity analysis is performed to determine the parameters 
for the general procedure of  EnKF. The first parameter is the 
number of  members of  the ensemble of  the assimilation method 
EnKF (N) and the three others refer to the model of  generation 
of  synthetic rainfall series (Equation 7), the relative error of  
rainfall being (E; %), the spatial decorrelation ( xτ , degrees) and 
the temporal decorrelation ( tτ , hours). This analysis of  sensitivity 
is valid for hydrographic basins with more than one station to 
assimilate and where an ensemble of  parameters valid for the 
entire basin is required.

The state variable to be assimilated is streamflow, therefore 
the sensitivity study is performed by two groups of  river gauging 
stations considered, one for the data assimilation process and 
the other group for the verification process. For each of  these 
groups a term called changes in root-mean-square error ( rms∆ ), is 
calculated; greater negative values indicate a better performance 
of  the model and it is calculated as follows:

( )2 1

1

100 rms rms
rms

rms
−

∆ = 	 (11)

where 1rms  e 2rms  are the root-mean-square error in observed 
streamflow with the Open-loop and EnKF streamflow, respectively..

Study area description

The Tocantins River basin is an area of  study located in 
the central region of  Brazil, with a drainage area of  310.000 km2 
up to the confluence with the Araguaia River (see Figure  1). 
The monthly mean temperature of  the study area varies from 
20 °C to 25 °C, approximately. The monthly mean maximums 
occur in the months of  August and September while the monthly 
mean minimum occurs in July and August. The mean rainfall 
is 1480 mm.year-1 and streamflow is 3300 m3.s-1 at the Estreito 
station according to the estimated calculation for the 2008-2014. 
The basin topography elevations range from 83 to 1640 meters.

The Tocantins River basin was selected as area of  study 
because it has a very important hydropower system formed by 
the Serra da Mesa, Cana Brava, São Salvador, Peixe Angical and 
Estreito hydroelectric plants. The Cana Brava and Estreito have 
an installed capacity for electricity generation of  1275 MW and 
1087 MW, respectively. It was also chosen because it is a region 
that periodically suffers extreme events, typical situations in other 
regions of  Brazil. Currently, the National Center of  Monitoring 
and Alerts of  Natural Disasters (CEMADEN Centro Nacional de 
Monitoramento e Alertas de Desastres Naturais) monitors the municipalities 
of  Goiatins and Porto Nacional, located within the Tocantins River 
basin, classified as being vulnerable to hydrological risks. Likewise, 
the town of  Imperatriz do Maranhão, downstream from Estreito 
suffers constant floods, with an impact on the populations living 
in the riparian areas.

The basin was discretized into 410 cells, 45 sub-basins and 
the integration of  the use and soil type maps generated 6 different 
types of  hydrological response units which are: forest in medium 

soil (5%), forest in deep soil (9%), low vegetation in medium soil 
(19%), low vegetation in deep soil (36%), agriculture in deep soil 
(30%) and waterbody (1%).

Available data

The data on streamflow at hourly time intervals were 
extracted from 16 stations, 10 (ten) of  them from hydroelectric 
power companies, as well as from the National Water Agency 
(ANA - Agência Nacional de Águas) and the other 6 (six) stations are 
from National Operator of  the Electric System (ONS - Operador 
Nacional de Sistema Elétrico). The naturalized streamflow data of  
ONS is available at daily time intervals and for this work they were 
interpolated linearly to obtain hourly data. The drainage areas for 
the sites with a hydroelectric plant located along the mainstream 
of  the river are more than 50.000 km2 and less than 289.000 km2. 
For the stream stations located in the Southest and Northeast region 
of  the basin the drainage areas range from 3.000 – 44.000 km2.

The data on mean air temperature, relative humidity, wind 
velocity, atmospheric pressure and insolation were obtained from 
15 climate gauging stations located around the basin, supplied 
by ANA and interpolated for hourly data. The precipitation was 
obtained from 50 rain-gauging station supplied by hydroelectric 
power companies and by the National Institute of  Meteorology 
(INMET Instituto Nacional de Meteorologia). Considering the low 
density of  the rain-gauging stations (1 station at every 6,200 km2) 
it was chosen to combine with TRMM satellite precipitation 
product. This option was performed to attempt to improve the 
response in the simulated streamflows at several basin stations 
using a methodology based on the work by Rozante et al. (2010). 
Quiroz (2017) used that methodology to determine temporal 
series of  rainfall at hourly time intervals in the Tocantins River 
basin for the period of  1998-2014 called MergeHQ.

Figure 1. Location of  the Tocantins river basin showing the 
50 rain-gauging station and 6 gauging stations with naturalized 
streamflow.
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Uncertainties in the data assimilation system by 
EnKF

EnKF estimates the states in a nonlinear system, considering 
the uncertainty, both in the observation and in the structure of  
the hydrological model, parameters and input data. Thus, the 
choice of  error values is important to obtain a better estimate 
of  the state variables (LIU; GUPTA, 2007; NOH et al., 2011). 
In this study, the error in observations was defined based on other 
studies performed, that used the assimilation of  data in different 
river basins. For instance, Paiva et al. (2013b) used 10% for daily 
streamflow in the Amazon region, Clark et al. (2008) used 10% 
for hourly streamflow in New Zealand, Noh et al. (2013) in Korea 
and Japan used 10% and Chen et al. (2013) used 20% in basins 
in America and in China. Based on this information, the value 
of  20% was considered as the percentage error of  the observed 
streamflow for all stations.

Integration of  the assimilation method using the 
ensemble Kalman filter with the hydrological model 
MGB-IPH

The rainfall observed was altered by means of  a model for 
synthetic generation of  rainfall. State variables were obtained for 
each member of  the ensemble EnKF through the hydrological 
simulation process. Sensitivity analysis was performed to determine 
the parameters that involve the model of  synthetic generation of  
rainfall and the number of  members of  the EnKF assimilation 
method. The state variables of  MGB-IPH considered in assimilation 
are water storage in the soil layer, the volume in the reservoirs 
(surface, subsurface and groundwater), and routing streamflow. 
The state variables mentioned regarding the water bucket in the 
soil and the volumes of  the three reservoirs were estimated in 
each GRU of  the basin, others that govern the streamflow routing 
equations were estimated on the stream of  the drainage network. 
Based on these considerations, a total of  5800 state variables 
for each member of  the ensemble is constituted for matrix fX . 
The  state variables at the beginning of  the data assimilation process 
were estimated based on the initial conditions of  the hydrological 
model and repeated for each member of  the ensemble. For all the 
results of  the simulation with EnKF, it was chosen to consider 
the mean of  the streamflows of  all members of  the ensemble 
at each time interval. The parameters of  model MGB-IPH were 
considered invariant in time, i.e., model parameters after the 
calibration process are kept constant throughout the assimilation 
process by EnKF and streamflow forecasting.

DISCUSSION OF RESULTS

Calibration and verification of  the model MGB-IPH 
parameters

An analysis of  the calibration and verification of  the 
model MGB-IPH parameters was performed independently for 
each type of  rainfall data. The calibration period corresponded to 

January/2008 - June/2012 and the validation period corresponded 
to July/2012 - June/2013.

Figure 2 shows the statistical coefficients of  Nash-Sutcliffe 
(NS) for all gauging stations of  the Tocantins River basin used in 
the study. The results of  calibration and verification showed the 
NS efficiency greater than 0.60 with MergeHQ for locals with a 
drainage area greater than 20,000 km2. It was also observed that the 
NS efficiency of  basins with a drainage area close to 10.000 km2 
improved in the verification compared to the calibration period.

Figure 3 shows the streamflow hydrographs observed and 
simulated with MergeHQ for stages of  calibration and verification 
of  model MGB-IPH for four more representative stations. Model 
predictions with MergeHQ reproduced observed streamflow 
reasonably well to streamflow maximum and minimum events 
in the Tocantins River basin. Other studies such as those by 
Chiang et al. (2007) Jiang et al. (2012), Quiroz and Collischonn 
(2015) showed the efficiency of  the methods of  combining the 
rainfall to simulate the observed streamflow in a basin. In some 
cases, the combined rainfall can simulate adequately the peak 
of  maximum observed streamflow. In other cases, a statistical 
analysis shows an improvement of  least error in favor of  the 
streamflows simulated with precipitation combined for a given 
time period. Quiroz (2017) and Fan et al. (2014) demonstrated 
the usefulness of  these combined rainfall data in a forecast of  

Figure 2. Statistical coefficients of  Nash-Sutcliffe (NS) as a 
function of  the accumulated drainage area corresponding to the 
gauging stations in the Tocantins river basin for the calibration 
(above) and validation periods (below).
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deterministic streamflows and probabilistic forecast by ensemble in 
the Tocantins river basin respectively. Thus, the combined rainfall 
given by MergeHQ was chosen as rainfall observed for sensitivity 
analysis, a process of  assimilation to transfer information and 
analyze streamflow forecasts.

Sensitivity analysis

There is no norm to estimate the size ensemble. According 
to the literature consulted, in the case of  basins with one control 
station it is usual to test several numbers of  members and compare 
with a measure of  error between the variables observed and 
assimilated for a given period as in Weerts and El Serafy (2006), 
Nagarajan et al. (2011), Chen et al. (2013), and Vrugt et al. (2013). 
Other studies that include the assimilation of  several gauging stations 
merely test a given number of  members, as in Mendoza (2010), 
Rakovec et al. (2012), Chen et al. (2012), and Ridler et al. (2014) 
varying from 30 to 200 members.

For this study, a procedure similar to that presented 
in Paiva  et  al. (2013b) was adopted to determine the number 
of  members (N), the relative error precipitation (E; %), spatial 
decorrelation ( xτ ; degrees) and temporal decorrelation ( tτ ; hours). 
Lajeado station was chosen to compose the temporal series of  
stations for the assimilation process due to its central location in 
the basin, whereas the Serra da Mesa, Cana Brava, São Salvador, 
Peixe Angical and Estreito stations were considered for the 
verification process. The time period to calculate the parameters 
was around 6 months from Jan/2012 to June/1212.

Figure 4 shows the results of  the EnKF sensitivity analysis 
for the ensemble size, relative error precipitation, spatial and 

temporal decorrelation. According to Equation 11, more negative 
values of  Δrms produce improvement data assimilation model, 
interpreted as a better approximation of  the hydrograms between 
the flows observed and simulated by EnKF. The values of  Δrms 
for assimilation, composed by the Lajeado station, presented 
more negative values compared to the stations for verification 
composed by the Serra da Mesa, Cana Brava, São Salvador, Peixe 
Angical and Estreito stations.

According to the analysis showed in Figure 4, the data 
assimilation scheme by EnKF depends on the ensemble size. 
An improvement in the performance of  the model is observed 
with the increase of  this variable until N = 100, after this value, 
the rms∆  value remains almost constant and larger in assimilation 
and validation sites, respectively. The data assimilation scheme is 
also sensitive to the precipitation relative error E, improving its 
performance in assimilation sites. However, when E 50%≥ , the rms∆  
value is practically constant in validation sites. Also, a moderate 
and low dependence was observed between xτ  and tσ , respectively. 
Finally, based on the sensitivity analysis it was decided to consider 
the following values: N = 100; E 50%= ; xτ = 2º e t 10τ =  hours.

Transfer of  information from gauged sites to 
ungauged sites

Four scenarios are elaborated considering assimilate one, 
two and three from six gauging stations located in the mainstream 
course of  the Tocantis River basin. The remaining stations are 
used to validate the performance of  data assimilation model to 
transfer streamflow from gauge sites to ungauged sites. The first 
scenario (EST) considers Estreito gauge as monitored site and 

Figure 3. Hydrographs for the four most representative stations in the Tocantins river basin. The vertical dashed line corresponds to 
the division between the calibration (January, 2008 – June, 2012) and validation (July, 2012 – June,2013) periods, respectively. Red line 
corresponds to the streamflows of  simulation with MergeHQ and black line corresponds to the observed streamflows.
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located further downstream in the basin. The second scenario (LAJ) 
considers Lajeado station as monitored site, located approximately 
in the central region of  the basin. The third scenario (LAJ_EST) 
considers Lajeado station together with the Estreito station as 
monitored sites. Finally, the fourth scenario (SM_CB_SS) considers 
Serra da Mesa, Cana Brava and São Salvador stations as monitored 
sites located upstream in the basin.

As to the empirical method of  data assimilation, the 
updated (assimilated) streamflows are based on a correction 
factor among the observed and calculated streamflows by the 
hydrological model and by the ratio of  the accumulated drainage 
areas of  the cell to be updated and the cell corresponding to the 
gauge with the observation (PAZ et al., 2007). This condition 
makes the statistical terms exact, presenting null error and perfect 
efficiency of  Nash‑Sutcliffe with values equal to 1 at sites with 
measured data. For the case of  the statistical terms calculated with 
EnKF, the error will always exist because the covariance matrix is 
calculated based on the errors of  the measurements of  the gauge.

The data assimilation performance for transfer of  
information of  streamflow is evaluated by comparison of  observed 
and simulated series via EnKF and empirical method in ungauged 
sites. The Nash-Sutcliffe efficiency and the root mean square error 
(RMSE) are used as statistical terms for evaluations within the 
period from January/2009 to December/2011. Table 1 shows the 
results of  RMSE and NS of  the simulations of  EnKF, empirical 
method and open-loop for four scenarios at four gauges located 
in the main network of  the Tocantins river basin.

A comparison between both data assimilation methods 
showed a greater advantage for the empirical method with NS values 
greater than 0.70 for the last three scenarios. For instance, in 
scenario 2 (LAJ), NS for Peixe Angical is 0.92 and 0.82 for the 
empirical method and EnKF, respectively. On the other hand, 
already in the first scenario, EnKF presents a slight advantage 
over the empirical method.

The results in transfer of  information to EnKF were able 
to absorb streamflow errors. However, the number of  stations 
and their locations were important for evaluating model statistical 
performance. For the two first scenarios, where only one gauge 
was considered, a similar performance was observed between 
open-loop and EnKF in ungauged locations. For instance, Peixe 
Angical presents NS of  0.82 for both approaches. When the 
gauged locations conformed by more than one station, such as 
scenarios 3 and 4, located more downstream or upstream, the 
statistical performance favored Open-loop, with exception of  the 
gauge Estreito in the four scenario, where Lajeado presents NS 
of  0.92 for EnKF and 0.87 for Open-loop, for instance.

Figure 5 shows the RMSE and NS for the gauges located 
in the southeast region of  the basin (such as Fazenda Areia, 
Fazenda Santana, Rio da Palma and Ponte Paranã, see Figure 1) 
of  scenario 3 (LAJ_EST). It is observed that in three of  the four 
stations, monitoring at Lajeado and Estreito improved the statistical 
performance at these stations compared to the open-loop model.

The performance in monitored stations is also analyzed. 
The simulations by the empirical method are forced to the observed 
streamflow, while simulations by EnKF are corrected considering 

Figure 4. Ensemble size of  EnKF and parameters of  the precipitation synthetic model. Changes of  the root mean square error for 
gauges with EnKF (star dots, blue color) and gauges with verification (circle dots, red color).



RBRH, Porto Alegre, v. 24, e14, 2019

Jiménez et al.

9/15

errors in the observed streamflow and state variables. In the case 
of  scenario 3 (LAJ_EST), the series of  streamflow assimilated by 
EnKF at Lajeado and Estreito showed that NS of  0,96 and 0,97 
compared to open-loop results with 0,87 and 0,56, respectively.

To illustrate the aforementioned results, the hydrographs 
of  Peixe Angical and Estreito for scenario 3 (LAJ_EST) with 
EnKF, open-loop and observed streamflow simulations are shown 
in Figure 6. The streamflows of  EnKF presented an adequate 
follow up of  the observed maximum and minimum streamflows. 
In Estreito, the assimilated streamflows presented an adequate 
adjustment to the observed data, all this being more evident since 
January 2011. A statistical analysis shows that NS efficiency at Peixe 
Angical is 0.89 (EnKF) and 0.82 (open-Loop) and at Estreito the 
NS efficiency is 0.97 (EnKF) and 0.56 (open-Loop).

Streamflow forecasting

Streamflow forecasting was realized for two periods, the 
first one lasting from January 1, 2013 to May 15, 2013, and the 
second one from December 15, 2013 to March 15, 2014, obtaining 
in total 3575 and 1800 time intervals, respectively. In each of  these 

periods the forecast frequency was 1 hour with a lead time of  
144 hours (6 days). Here, it was decided to consider the observed 
rainfall as the forecast rainfall that simulates a scenario of  real 
time forecasting, in which the rainfall forecasts do not present 
errors. This consideration has already been made in other studies 
such as in Tucci et al. (2006) and Paiva et al. (2013b), where data 
assimilation methods were applied. The results of  streamflow 
forecasting are shown at the gauges located in the main network 
of  the Tocantins river, which are considered as those of  the major 
importance for a real time forecasting system.

Figure 7 and Figure 8 show the efficiency of  Nash-Sutcliffe 
(NS) based on the lead time for four representative gauges for 
each analyzed period. Vertical lines in gray color represented the 
superiority of  performance, in terms of  NS, of  a data assimilation 
method in relation to another. Both figures show that the assimilation 
with both methods (EnKF and empirical method) was greater as 
compared to the efficiency of  simulations without assimilation. 
In  addition, the assimilation used in both methods proved to 
absorb the errors at the beginning of  the forecast.

Also, Figure  7 shows greater efficiency of  EnKF 
compared to the empirical method for lead times longer than 

Table 1. Statistical results of  four gauges most representatives for four scenarios of  information transfer of  streamflow in Tocantins 
river basin.

Scenario
Serra Mesa Peixe Angical Lajeado Estreito

Empi-
rical EnKF Open-

Loop
Empi-
rical EnKF Open-

Loop
Empi-
rical EnKF Open-

Loop
Empi-
rical EnKF Open-

Loop
1
EST

RMSE 334 301 302 659 508 506 815 624 615 0.00 1630 1575
NS 0.73 0.78 0.78 0.70 0.82 0.82 0.77 0.86 0.87 1.00 0.53 0.56

2
LAJ

RMSE 268 300 302 339 511 506 0.00 634 615 1549 1645 1575
NS 0.82 0.78 0.78 0.92 0.82 0.82 1.00 0.86 0.87 0.57 0.52 0.56

3
LAJ_EST

RMSE 268 295 302 338 405 506 0.00 327 615 0.00 391 1575
NS 0.82 0.79 0.78 0.92 0.89 0.82 1.00 0.96 0.87 1.00 0.97 0.56

4
SM_CB_SS

RMSE 0.00 129 302 298 329 506 438 469 615 1585 1721 1575
NS 1.00 0.96 0.78 0.94 0.93 0.82 0.93 0.92 0.87 0.55 0.47 0.56

Figure 5. Root mean square error and Nash –Sutcliffe efficiency calculated for the Fazenda Areia, Fazenda Santana, Rio da Palma 
and Ponte Paranã corresponding to scenario 3 (LAJ_EST).
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Figure 6. Hydrographs of  the Peixe Angical (above) and Estreito (below) stations considering scenario 3 (LAJ_EST) with the simulations 
by EnKF, open-loop and observed streamflow for the period of  January, 2009 – December, 2011.

Figure 7. Nash-Sutcliffe efficiency coefficient (NS) as function as a function of  lead time with a forecasting period from January 1, 
2013 to May 15, 2013.
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18, 37, 57 and 48 hours for Serra Mesa, São Salvador, Peixe Angical 
and Estreito, respectively, related to the first period. In Figure 8, the 
performance with EnKF expressed in terms of  NS was superior 
to the empirical method for lead times longer than 10 hours for 
Peixe Angical and 100 hours for Estreito. However, in the Serra 
Mesa and São Salvador, the efficiency of  NS calculated by the 
empirical method is nearly equal to that obtained with EnKF for 
lead times longer than 20 hours.

A visual analysis of  the forecasts using the data assimilation 
methods is shown in Figure 9. This analysis was performed for 
maximum events during the first period of  analysis at two gauges, 
Peixe Angical and Lajeado. It is observed that the forecasting 
hydrographs calculated with both data assimilation methods 
showed differences when compared to the maximum observed 

streamflow. For instance, in Peixe Angical, the maximum streamflow 
obtained with the empirical method is overestimated, while this is 
underestimated with EnKF in relation to the observed maximum 
streamflow at January 1, 2013. In the same gauge, the streamflow 
forecast with both data assimilation methods were underestimated 
when compared to the maximum observed streamflow at January 
26, 2013. In Lajeado, the maximum streamflow obtained with data 
assimilation methods were anticipated (18/1/2013) compared to 
the maximum observed streamflow. For the case of  the second 
event (27/1/2013), the simulations with data assimilation were 
anticipated and underestimated in relation to the maximum 
observed streamflow. The forecasting analysis carried out at the 
beginning of  this section has shown the usefulness of  the data 
assimilation methods for several forecast horizons.

Figure 8. Nash-Sutcliffe efficiency coefficient (NS) as a function of  lead time with a forecasting period from December 15, 2013 to 
March 15, 2014.
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CONCLUSIONS

In this study, a data assimilation method namely EnKF was 
tested to evaluate its usefulness for real time streamflow forecasting 
and the transfer of  information of  streamflow from gauge sites 
to ungauged sites. The results were presented in statistical terms 
using a distributed hydrological model applied to the Tocantins 
river basin in Brazil. A comparison to an empirical method of  
data assimilation was also studied. For assimilation with EnKF, the 
state variables were generated from a synthetic generation model 
of  rainfall by means of  the hydrological model. The parameters 
of  the rainfall generation model, such as the relative error of  

rainfall, as well as the ensemble size of  EnKF were calculated 
using a sensitivity analysis.

According to the results presented herein, the data 
assimilation schemes (empirical and EnKF) proved to be reliable 
in the transferring information, although these results properly 
depend on the location of  the gauge sites. Gauge sites located 
downstream and in the middle of  the basin led to adequate results, 
even better than those obtained with the open-loop simulation. 
Also gauge sites upstream in the basin transferred streamflows at 
nearby gauges. The consideration of  more than one gauge as the 
set of  gauge sites led to the method of  assimilation by EnKF to 
present better performance when compared to the performance 
of  the open-loop simulations. Thus, the comparison of  the two 
assimilation methods revealed a slightly better advantage, in 
statistical terms, in favor of  the empirical method.

In the streamflow forecasting scheme, the simulations using 
EnKF proved to be promising, in which the NS efficiency was 
greater than that of  the empirical method for greater lead time 
of  forecasting (for instance, 10 hours for the Peixe Angical and 
100 hours for the Estreito). Although the empirical method behave 
better in terms of  computation time. However, the configuration 
for the management of  uncertainties from various sources can 
be treated with the more advanced assimilation methods such as 
EnKF and not with the empirical method.

Finally, it is recommended that the results in transfer 
of  information and real time streamflow should be discussed 
using other sources of  uncertainties such as model parameters. 
The incorporation of  uncertainties into the parameters of  the 
distributed hydrological model is an analysis that has been discussed 
in recent years.
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