Acessibilidade / Reportar erro

Impulse wave in the Brazilian Lake of Capitólio

Onda de impulso no Lago Brasileiro de Capitólio

ABSTRACT

This note proposes a technical approach towards the disaster occurred on January 8, 2022, in the tourism region of Capitólio (Minas Gerais state, Brazil), where a massive quartzite rock broke from a cliff and toppled on to pleasure boaters drifting on a lake, leaving 10 people dead and 30 others injured. Even though the rockfall was decisive in the tragedy, it is reasonable to affirm that the submersion-wave impact certainly potentialized the accident. Along these lines, this work not only aims to videographically explore the geometric / kinematic characteristics of the solid block, but also to discuss the specificities pertaining the event. Lastly, with basis on the Noda Method (1970), this manuscript also estimates the resulting wave amplitude (near the impact) and the energy-transfer coefficient between the block and the body of water.

Keywords:
Impulse wave; Capitólio rockfall; Noda method; Maximum amplitude wave

RESUMO

Esta nota propõe uma abordagem técnica para o desastre ocorrido em 8 de janeiro de 2022, na região turística de Capitólio (MG), onde uma enorme rocha quartzítica se desprendeu de um penhasco e tombou sobre barqueiros de recreio à deriva em um lago, deixando 10 mortos e outros 30 feridos. Ainda que a queda da rocha tenha sido decisiva na tragédia, é razoável afirmar que o impacto da onda de submersão certamente potencializou o acidente. Nessa linha, este trabalho não só tem como objetivo explorar videograficamente as características geométricas/cinemáticas do bloco sólido, mas também discutir as especificidades pertinentes ao evento. Por fim, com base no Método de Noda (1970), este manuscrito também estima a amplitude de onda resultante (próxima ao impacto) e o coeficiente de transferência de energia entre o bloco e o corpo d'água.

Palavras-chave:
Onda de impulso; Queda de rocha de Capitólio; Método de Noda; Onda de amplitude máxima

INTRODUCTION

On January 8, 2022, in the tourism region of Capitólio (Minas Gerais state, Brazil), a massive quartzite rock broke from a cliff and toppled on to pleasure boaters drifting on a lake, leaving 10 people dead and 30 others injured (Oliveira et al., 2022Oliveira, J. J., Teixeira, B. L., & Augusto, T. (2022). Capitólio: Bombeiros confirmam 10 mortos após rocha desabar sobre lanchas. Uol (SP), Retrieved in 2022, June 28, from https://noticias.uol.com.br/cotidiano/ultimas-noticias/2022/01/09/mergulhadores-retomam-buscas-por-3-desaparecidos-em-capitolio-mg.htm.
https://noticias.uol.com.br/cotidiano/ul...
). The international repercussion of the tragedy brought about a series of discussions entailing: 1) the concealment of risks associated to disasters triggered by natural hazards in tourism regions, especially in the absence of regulatory guidance and adequate monitoring; 2) the necessity to educate the local population and foreign visitors about such risks; and 3) the blind search for culprits after the accident.

From a strictly technical view, the physics of the waves produced by the rock falling on the lake resembles those of surface waves generated by mass movement or strong winds (Mao et al., 2016Mao, M., Van der Westhuysen, A. J., Xia, M., Schwab, D. J., & Chawla, A. (2016). Modeling wind waves from deep to shallow waters in Lake Michigan using unstructured SWAN. Journal of Geophysical Research. Oceans, 121, 3836-3865. http://dx.doi.org/10.1002/2015JC011340.
https://doi.org/ http://dx.doi.org/10.10...
; Mattosinho et al., 2022Mattosinho, G. O., Maciel, G. F., Ferreira, F. O., Vieira, S. A., & Sáo, T. Y. (2022). Meteorological-hydrodynamic model coupling for safe inland navigation of waterway stretches in dam reservoirs, using a scarce database. Brazilian Journal of Water Resources, 27, 1. http://dx.doi.org/10.1590/2318-0331.272220210107.
http://dx.doi.org/10.1590/2318-0331.2722...
). Examples of waves generated by the impact of different materials in the free surface are given in Figure 1. The waves result from the transfer of momentum of the sliding mass into the body of water, usually displacing huge volumes of water in distinct characteristic times. The displaced volume of water is propagated as gravitational waves, such as sinusoidal, cnoidal, solitary, bore and Stokes waves, whose mathematical classification depends on the nature of the impact, e.g. impact Froude number, displaced volume of water and water depth (Slingerland & Voight, 1979Slingerland, R. L. and Voight, B. (1979). Occurrences, properties, and predictive models of landslide-generated water waves. Developments in Geotechnical Engineering, 14 (part B), 317-394. https://doi.org/10.1016/B978-0-444-41508-0.50017-X
https://doi.org/10.1016/B978-0-444-41508...
). Such waves may cause partial or total shore erosion, even resulting in the collapse of buildings and structures (like dams and harbors) (Prasad & Kumar, 2014Prasad, D., & Kumar, N. (2014). Coastal erosion studies: a review. International Journal of Geosciences, 5, 341-345. http://dx.doi.org/10.4236/ijg.2014.53033.
http://dx.doi.org/10.4236/ijg.2014.53033...
; Wang et al, 2019aWang, Z. F., Cao, X. D., Li, Q. J., & Liu, Y. L. (2019a). The Impact of surface wave on the sediment erosion and deposition near the Wellow Rivermouth, China. Applied Ecology and Environmental Research, 17(6), http://dx.doi.org/10.15666/aeer/1706_1491114926.
http://dx.doi.org/10.15666/aeer/1706_149...
). Additionally, the displacement of large volumes of water and sediment can lead to an overtopping in downstream areas (Tessema et al., 2019Tessema, N. N., Sigtryggsdóttir, F. G., Lia, L., & Jabir, A. K. (2019). Case study of dam overtopping from waves generated by landslides impinging perpendicular to a Reservoirs Longitudinal Axis. Journal of Marine Science and Engineering, 7(7), 221. http://dx.doi.org/10.3390/jmse7070221.
http://dx.doi.org/10.3390/jmse7070221...
), causing both loss of life and widespread damage to infrastructure. In this sense, the study of impulse waves generated by landslides (Fritz et al., 2009Fritz, H. M., Mohammed, F., & Yoo, J. (2009). Lituya bay landslide impact generated mega-tsunami 50th anniversary. Pure and Applied Geophysics, 166, 153-175. http://dx.doi.org/10.1007/s00024-008-0435-4.
http://dx.doi.org/10.1007/s00024-008-043...
; Thuro & Hatem, 2010Thuro, K., & Hatem, M. (2010). The 1806 Goldau landslide event: analysis of a large rock slide in geologically active. In Proceedings of the 11th IAEG Congress, Auckland, New Zealand. Retrieved in 2023, April 12, from https://www.yumpu.com/en/document/view/15706652/the-1806-goldau-landslide-event-analysis-of-a-large-rock-slide
https://www.yumpu.com/en/document/view/1...
; Jansen, 2012Jansen, R. B. (2012). Advanced dam engineering for design, construction, and rehabilitation (p. 811). Springer Science & Business Media Retrieved in 2022, June 1, from https://books.google.com.br/books?id=xdZ5BgAAQBAJ&printsec=frontcover&hl=pt-BR&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false.
https://books.google.com.br/books?id=xdZ...
; Crosta et al., 2015Crosta, G. B., Imposimato, S., & Roddeman, D. (2015). Landslide spreading, impulse water waves and modelling of the vajont rockslide. Rock Mechanics and Rock Engineering, 49, 2413-2436. http://dx.doi.org/10.1007/s00603-015-0769-z.
http://dx.doi.org/10.1007/s00603-015-076...
; Wang et al., 2019bWang, J., Ward, S. N., & Xiao, L. (2019b). Tsunami Squares modeling of landslide generated impulsive waves and its application to the 1792 Unzen-Mayuyama mega-slide in Japan. Engineering Geology, 256, 121-137. http://dx.doi.org/10.1016/j.enggeo.2019.04.020.
http://dx.doi.org/10.1016/j.enggeo.2019....
) in natural lakes and dam reservoirs concerns not only hydraulic engineers but also managers of electric power concessionaires as well as the responsible for promoting the economic development of the tourism sector or adventure tourism of all kinds, since they can engender damage or accidents with people.

Figure 1
Phenomenon phases, with focus on wave generation caused by the impact of a non-deformable and fragmented material (adapted from Heller, 2007Heller, V. (2007). Landslide generated impulse waves - Prediction of near field characteristics (Ph.D. thesis), ETH Zurich, Zürich, Switzerland.). Physical tests were carried out in the Hydraulics Laboratory of UNESP – Ilha Solteira, Brazil, with exception to the test done with fragmented material represented by the lower left image (adapted from Han et al., 2022Han, L., Wang, P., & Yu, T. (2022). Wave types and energy conversion of impulse waves generated by landslides into mountain reservoirs. Scientific Reports, 12, 4035. http://dx.doi.org/10.1038/s41598-022-07993-9.
http://dx.doi.org/10.1038/s41598-022-079...
).

Scientific efforts have been aiming to establish physical, mathematical and numerical modellings of impulse waves in order to mitigate accidents caused by them (Raney & Butler, 1976Raney, D., & Butler, H. L. (1976). Landslide generated water wave model. Journal of Hydraulic Engineering (New York, N.Y.), 102, 1269-1282., Maciel, 1991Maciel, G. F. (1991). Contribution expérimentale et théorique à létude des ondes produites par des glissements solides dans des retenues de barrages (PhD thesis). Université Joseph Fourier, French. (in French).; Heinrich, 1992Heinrich, P. (1992). Nonlinear water waves generated by Submarine and Aerial Landslides. Journal of Waterway, Port, Coastal, and Ocean Engineering, 118(3), 249-266. http://dx.doi.org/10.1061/(ASCE)0733-950X(1992)118:3(249).
http://dx.doi.org/10.1061/(ASCE)0733-950...
; Monaghan & Kos, 2000Monaghan, J. J., & Kos, A. (2000). Scott Russells wave generator. Physics of Fluids, 12, 622-630. http://dx.doi.org/10.1063/1.870269.
http://dx.doi.org/10.1063/1.870269...
; Maciel & Nascimento, 2002bMaciel, G. F., & Nascimento, M. F. (2002b). Modelagem numérica de ondas de submersão utilizando o modelo de serre. Revista Brasileira de Recursos Hídricos, 7, 19-24. http://dx.doi.org/10.21168/rbrh.v7n3.p19-24.
http://dx.doi.org/10.21168/rbrh.v7n3.p19...
; Quecedo et al., 2004Quecedo, M., Pastor, M., & Herreros, M. I. (2004). Numerical modelling of impulse wave generated by fast landslides. International Journal for Numerical Methods in Engineering, 59(12), 1633-1656. http://dx.doi.org/10.1002/nme.934.
http://dx.doi.org/10.1002/nme.934...
; Choi et al., 2007Choi, B. H., Kim, D. C., Pelinovsky, E., & Woo, S. B. (2007). Three‐dimensional simulation of tsunami run‐up around conical island. Coastal Engineering, 54(8), 618-629. http://dx.doi.org/10.1016/j.coastaleng.2007.02.001.
http://dx.doi.org/10.1016/j.coastaleng.2...
; Panizzo et al., 2005Panizzo, A., Girolamo, P., & Petaccia, A. (2005). Forecasting impulse waves generated by subaerial landslides. Journal of Geophysical Research, 110(C12), C12025. http://dx.doi.org/10.1029/2004JC002778.
http://dx.doi.org/10.1029/2004JC002778...
; Zweifel et al.2007Zweifel, A., Zuccala, D., & Gatti, D. (2007). Comparison between computed and experimentally generated impulse wave. Journal of Hydraulic Engineering (New York, N.Y.), 133(2), 208-216. http://dx.doi.org/10.1061/(ASCE)0733-9429(2007)133:2(208).
http://dx.doi.org/10.1061/(ASCE)0733-942...
; Pastor et al., 2009Pastor, M., Herreros, I., Merodo, J. A. F., Mira, P., Haddad, B., Quecedo, M., González, E., Alvarez-Cedrón, C., & Drempetic, V. (2009). Modelling of fast catastrophic landslides and impulse waves induced by them in fjords, lakes and reservoirs. Engineering Geology, 109(1-2), 124-134. http://dx.doi.org/10.1016/j.enggeo.2008.10.006.
http://dx.doi.org/10.1016/j.enggeo.2008....
; Abadie et al., 2010Abadie, S., Morichon, D., Grilli, S., & Glockner, S. (2010). Numerical simulation of waves generated by landslides using a multiple-fluid Navier-Stokes model. Coastal Engineering, 57(9), 779-794. http://dx.doi.org/10.1016/j.coastaleng.2010.03.003.
http://dx.doi.org/10.1016/j.coastaleng.2...
; Bosa & Petti, 2011Bosa, S., & Petti, M. (2011). Shallow water numerical model of the wave generated by the Vajont landslide. Environmental Modelling & Software, 26(4), 406-418. http://dx.doi.org/10.1016/j.envsoft.2010.10.001.
http://dx.doi.org/10.1016/j.envsoft.2010...
; Cremonesi et al., 2011Cremonesi, M., Frangi, A., & Perego, U. (2011). A Lagrangian finite element approach for the simulation of water-waves induced by landslides. Computers & Structures, 89(11-12), 1086-1093. http://dx.doi.org/10.1016/j.compstruc.2010.12.005.
http://dx.doi.org/10.1016/j.compstruc.20...
; Tinti et al., 2011Tinti, S., Chiocci, F. L., Zaniboni, F., Pagnoni, G., & Alteriis, G. (2011). Numerical simulation of the tsunami generated by a past catastrophic landslide on the volcanic island of Ischia, Italy. Marine Geophysical Researches, 32, 287-297. http://dx.doi.org/10.1007/s11001-010-9109-6.
http://dx.doi.org/10.1007/s11001-010-910...
; Vasco et al., 2011Vasco, J. R. G., Maciel, G. F., & Minussi, C. R. (2011). Uma introdução às técnicas lagrangeanas: uma aplicação do Método SPH a problemas de engenharia. Revista Brasileira de Recursos Hídricos, 16, 67-82. http://dx.doi.org/10.21168/rbrh.v16n1.p67-82.
http://dx.doi.org/10.21168/rbrh.v16n1.p6...
, Yin et al., 2015Yin, Yp., Huang, B., Chen, X., Liu, G., & Wang, S. (2015). Numerical analysis on wave generated by the Qianjiangping landslide in Three Gorges Reservoir, China. Landslides, 12, 355-364. http://dx.doi.org/10.1007/s10346-015-0564-7.
http://dx.doi.org/10.1007/s10346-015-056...
; Shi et al., 2016Shi, C., An, Y., Wu, Q., Liu, Q., & Cao, Z. (2016). Numerical simulation of landslide-generated waves using a soil–water coupling smoothed particle hydrodynamics model. Advances in Water Resources, 92, 130-141. http://dx.doi.org/10.1016/j.advwatres.2016.04.002.
http://dx.doi.org/10.1016/j.advwatres.20...
; Wang et al., 2017Wang, L., Jiang, Q., & Zhang, C. (2017). Improvement of moving particle semi-implicit method for simulation of progressive water waves. International Journal for Numerical Methods in Fluids, 85(2), 69-89. http://dx.doi.org/10.1002/fld.4373.
http://dx.doi.org/10.1002/fld.4373...
; Si et al., 2018Si, P., Shi, H., & Yu, X. (2018). A general numerical model for surface waves generated by granular material intruding into a water body. Coastal Engineering, 142, 42-51. http://dx.doi.org/10.1016/j.coastaleng.2018.09.001.
http://dx.doi.org/10.1016/j.coastaleng.2...
; Chen et al., 2020Chen, F., Heller, V., & Briganti, R. (2020). Numerical modelling of tsunamis generated by iceberg calving validated with large-scale laboratory experiments. Advances in Water Resources, 142, 103647. http://dx.doi.org/10.1016/j.advwatres.2020.103647.
http://dx.doi.org/10.1016/j.advwatres.20...
; Romano et al., 2020Romano, A., Lara, J. L., Barajas, G., Di Paolo, B., Bellotti, G., Di Risio, M., Losada, I. J., & Girolamo, P. (2020). Tsunamis generated by submerged landslides: numerical analysis of the near-field wave characteristics. Journal of Geophysical Research. Oceans, 125(7), e2020JC016157. http://dx.doi.org/10.1029/2020JC016157.
http://dx.doi.org/10.1029/2020JC016157...
; Takabatake et al., 2020Takabatake, T., Mäll, M., Han, D. C., Inagaki, N., Kisizaki, D., Esteban, M., & Shibayama, T. (2020). Physical modeling of tsunamis generated by subaerial, partially submerged, and submarine landslides. Coastal Engineering Journal, 62(4), 582-601. http://dx.doi.org/10.1080/21664250.2020.1824329.
http://dx.doi.org/10.1080/21664250.2020....
; Amaro et al., 2021Amaro, R. A., Mellado, C. A., Shakibaeinia, A., & Cheng, L. Y. (2021). A fully Lagrangian DEM-MPS mesh-free model for ice-wave dynamics. Cold Regions Science and Technology, 186, 103266. http://dx.doi.org/10.1016/j.coldregions.2021.103266.
http://dx.doi.org/10.1016/j.coldregions....
; Cheng et al., 2021Cheng, L. Y., Amaro, J. R. A., & Henrique, F. E. (2021). Improving stability of moving particle semi-implicit method by source terms based on time-scale correction of particle-level impulses. Engineering Analysis with Boundary Elements, 131, 118-145.; Rauter et al., 2021Rauter, M., Hoße, M. L., Mulligan, R. P., Take, W. A., & Løvholt, F. (2021). Numerical simulation of impulse wave generation by idealized landslides with OpenFOAM. Coastal Engineering, 165, 103815. http://dx.doi.org/10.1016/j.coastaleng.2020.103815.
http://dx.doi.org/10.1016/j.coastaleng.2...
; Zhang et al., 2021Zhang, G., Chen, J., Qi, Y., Li, J., & Xu, Q. (2021). Numerical simulation of landslide generated impulse waves using a δ+ LES-SPH model. Advances in Water Resources, 151, 103890. http://dx.doi.org/10.1016/j.advwatres.2021.103890.
https://doi.org/. http://dx.doi.org/10.1...
; Sabeti & Heidarzadeh, 2022Sabeti, R., & Heidarzadeh, M. (2022). Numerical simulations of tsunami wave generation by submarine landslides: validation and sensitivity analysis to landslide parameters. Journal of Waterway, Port, Coastal, and Ocean Engineering, 148(2), 05021016. http://dx.doi.org/10.1061/(ASCE)WW.1943-5460.0000694.
http://dx.doi.org/10.1061/(ASCE)WW.1943-...
). The first systematic studies related to the phenomenon were performed soon after the nuclear tests in the Bikini Atoll in 1946 (Hager & Evers, 2020Hager, W. H., & Evers, F. M. (2020). Impulse Waves Reservoirs: research uo to 1990. Journal of Hydraulic Engineering (New York, N.Y.), 146(10), 03120002. http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0001770.
http://dx.doi.org/10.1061/(ASCE)HY.1943-...
). In the following years, theoretical works were published with basis on small-scale experiments performed in laboratory (Unoki & Nakano, 1953Unoki, S., & Nakano, M. (1953). On the Cauchy- Potsson waves caused by the eruption of a sub- marine volcano. Oceanographical Magazine, 4, 119-141.; Kranzer & Keller, 1959Kranzer, H. C., & Keller, J. B. (1959). Water waves produced by explosions. Journal of Applied Physics, 30(398), http://dx.doi.org/10.1063/1.1735176.
http://dx.doi.org/10.1063/1.1735176...
; Wiegel, 1955Wiegel, R. L. (1955). Laboratory studies of gravity waves generated by the movement of a submerged body. Eos (Washington, D.C.), 36(5), 759-774. http://dx.doi.org/10.1029/TR036i005p00759.
http://dx.doi.org/10.1029/TR036i005p0075...
; Prins, 1958Prins, J. E. (1958). Characteristics of waves generated by a local disturbance. Eos (Washington, D.C.), 39(5), 865-874. http://dx.doi.org/10.1029/TR039i005p00865.
http://dx.doi.org/10.1029/TR039i005p0086...
). Small-scale models can be reproduced through ideal two-dimensional geometries, in which waves are generated by the vertical fall of a solid block (Wiegel, 1955Wiegel, R. L. (1955). Laboratory studies of gravity waves generated by the movement of a submerged body. Eos (Washington, D.C.), 36(5), 759-774. http://dx.doi.org/10.1029/TR036i005p00759.
http://dx.doi.org/10.1029/TR036i005p0075...
) or by sliding a deformable/non-deformable material over an inclined plane partially submerged in water (Mohammed & Fritz, 2012Mohammed, F., & Fritz, H. M. (2012). Physical modeling of tsunamis generated by three-dimensional deformable granular landslides. Journal of Geophysical Research, 117, C11015. http://dx.doi.org/10.1029/2011JC007850.
http://dx.doi.org/10.1029/2011JC007850...
; Meng & Ancey, 2019Meng, Z., & Ancey, C. (2019). The effects of slide cohesion on impulse-wave formation. Experiments in Fluids, 60, 151. http://dx.doi.org/10.1007/s00348-019-2800-8.
http://dx.doi.org/10.1007/s00348-019-280...
; Heller, 2007Heller, V. (2007). Landslide generated impulse waves - Prediction of near field characteristics (Ph.D. thesis), ETH Zurich, Zürich, Switzerland.). For instance, Han et al. (2022)Han, L., Wang, P., & Yu, T. (2022). Wave types and energy conversion of impulse waves generated by landslides into mountain reservoirs. Scientific Reports, 12, 4035. http://dx.doi.org/10.1038/s41598-022-07993-9.
http://dx.doi.org/10.1038/s41598-022-079...
carried out laboratory experiments by producing waves through the impact of fragmented material (concrete blocks) in a reservoir, as depicted in Figure 1. The authors observed highly non-linear impulse waves (large amplitude-depth ratio), which presented a large splash zone. The experiments also showed three types of waves: non-linear oscillatory waves, non-linear transitory waves and shallow-water bore waves. Combining experimental results with dimensional analysis, empirical and semi-empiric laws were formulated and vastly discussed in the literature (Kamphuis & Bowering, 1970Kamphuis, K., & Bowering, R. (1970). Impulse waves generated by landslides. In: Proceedings of the 12th Coastal Engineering Conference (pp. 575-588). Washington: Coastal Engineering. https://doi.org/10.1061/9780872620285.035.
https://doi.org/10.1061/9780872620285.03...
; Slingerland & Voight, 1979Slingerland, R. L. and Voight, B. (1979). Occurrences, properties, and predictive models of landslide-generated water waves. Developments in Geotechnical Engineering, 14 (part B), 317-394. https://doi.org/10.1016/B978-0-444-41508-0.50017-X
https://doi.org/10.1016/B978-0-444-41508...
,1982Slingerland, R., & Voight, B. (1982). Evaluating hazard of landslide-induced water waves. Journal of the Waterways, Port, Coastal and Ocean Division, 108(WW4), 504-512.; Huber, 1980Huber, A. (1980). Schwallwellen in seen als folge von felssturze. Zurich, Switzerland: ETHZurich. ; Sabatier, 1983Sabatier, P. C. (1983). On water waves produced by ground motions. Journal of Fluid Mechanics, Cambridge, 126(1), 27-58. http://dx.doi.org/10.1017/S0022112083000038.
http://dx.doi.org/10.1017/S0022112083000...
; Maciel, 1991Maciel, G. F. (1991). Contribution expérimentale et théorique à létude des ondes produites par des glissements solides dans des retenues de barrages (PhD thesis). Université Joseph Fourier, French. (in French).; Watts, 1997Watts, P. (1997). Water waves generated by underwater landslides (Ph.D thesis). California Institute of Technology, California. Retrieved in 2023, April 12, from https://resolver.caltech.edu/CaltechETD:etd-10132005-133022
https://resolver.caltech.edu/CaltechETD:...
, 2000Watts, P. (2000). Tsunami features of solid block underwater landslides. Journal of Waterway, Port, Coastal, and Ocean Engineering, 126(3), 144-152. http://dx.doi.org/10.1061/(ASCE)0733-950X(2000)126:3(144).
http://dx.doi.org/10.1061/(ASCE)0733-950...
; Maciel et al., 1990Maciel, G., Naaim, M., & Vila, J. P. (1990). Analyse des effets provoques par la chute d'avalanches dans une retenue: Rapport final. France: Convention EDF-CEMAGREF. (in French). ; Maciel & Nascimento, 2002aMaciel, G. F., & Nascimento, M. F. (2002a). Validação do modelo de serre para descrever ondas de submersão geradas pela intrusão de massa sólida em meio líquido. Revista Brasileira de Recursos Hídricos, 7, 25-32. http://dx.doi.org/10.21168/rbrh.v7n3.p25-32.
http://dx.doi.org/10.21168/rbrh.v7n3.p25...
, 2002bMaciel, G. F., & Nascimento, M. F. (2002b). Modelagem numérica de ondas de submersão utilizando o modelo de serre. Revista Brasileira de Recursos Hídricos, 7, 19-24. http://dx.doi.org/10.21168/rbrh.v7n3.p19-24.
http://dx.doi.org/10.21168/rbrh.v7n3.p19...
; Watts & Grilli, 2003Watts, P., & Grilli, S. T. (2003). Underwater landslide shape, motion, deformation, and tsunami generation. In Proc. 13th Int. Offshore and Polar Engineering Conference (pp. 364-371). Mountain View, CA: International Society of Offshore and Polar Engineers.; Walder et al., 2003Walder, J. S., Watts, P., Sorensen, O. E., & Janssen, K. (2003). Tsunamis generated by subaerial mass flows. Journal of Geophysical Research. Oceans, 108(B5), http://dx.doi.org/10.1029/2001JB000707.
http://dx.doi.org/10.1029/2001JB000707...
; Fritz et al., 2004Fritz, H. M., Hager, W. H., & Minor, H. E. (2004). Near field characteristics of landslide generated impulse waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 139(6), 287-302. http://dx.doi.org/10.1061/(ASCE)0733-950X(2004)130:6(287).
http://dx.doi.org/10.1061/(ASCE)0733-950...
; Zweifel, 2004Zweifel, A. (2004). Impulse waves: effects of slide density and water depth (Ph.D. thesis). ETH Zurich, Zürich, Switzerland. (in German).; Watts et al., 2005Watts, P., Grilli, S. T., Tappin, D. R., & Fryer, G. J. (2005). Tsunami generation by submarine mass failure. II: predictive equations and case studies. Journal of Waterway, Port, Coastal, and Ocean Engineering, 131(6), 298-310. http://dx.doi.org/10.1061/(ASCE)0733-950X(2005)131:6(298).
https://doi.org/. http://dx.doi.org/10.1...
; Ataie-Ashtiani & Malek-Mohammadi, 2007Ataie-Ashtiani, B., & Malek-Mohammadi, S. (2007). Near field amplitude of subaerial landslide generated waves in dam reservoirs. Dam Engineering, XVII(4), 197-222.; Heller, 2007Heller, V. (2007). Landslide generated impulse waves - Prediction of near field characteristics (Ph.D. thesis), ETH Zurich, Zürich, Switzerland.; Ataie-Ashtiani & Najafi-Jilani, 2008Ataie-Ashtiani, B., & Najafi-Jilani, A. (2008). Laboratory investigations on impulsive waves caused by underwater landslide. Coastal Engineering, 55(12), 989-1004. http://dx.doi.org/10.1016/j.coastaleng.2008.03.003.
http://dx.doi.org/10.1016/j.coastaleng.2...
; Di Risio & Sammarco, 2008Di Risio, M., & Sammarco, P. (2008). Analytical modeling of landslide-generated waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 134(1), 53-60. http://dx.doi.org/10.1061/(ASCE)0733-950X(2008)134:1(53).
http://dx.doi.org/10.1061/(ASCE)0733-950...
; Heller & Hager, 2010Heller, V., & Hager, W. H. (2010). Impulse product parameter in landslide generated impulse waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 136(3), 145-155. http://dx.doi.org/10.1061/(ASCE)WW.1943-5460.0000037.
http://dx.doi.org/10.1061/(ASCE)WW.1943-...
; Heller & Spinneken, 2013Heller, V., & Spinneken, J. (2013). Improved landslide-tsunami prediction: effects of block model parameters and slide model. Journal of Geophysical Research. Oceans, 118, 1489-1507. http://dx.doi.org/10.1002/jgrc.20099.
http://dx.doi.org/10.1002/jgrc.20099...
; Bolin et al., 2014Bolin, H., Yueping, Y., Xiaoting, C., Guangning, L., Sichang, W., & Zhibing, J. (2014). Experimental modeling of tsunamis generated by subaerial landslides: two case studies of the Three Gorges Reservoir, China. Environmental Earth Sciences, 71, 3813-3825. http://dx.doi.org/10.1007/s12665-013-2765-5.
http://dx.doi.org/10.1007/s12665-013-276...
; Fuchs & Hager, 2015Fuchs, H., & Hager, W. H. (2015). Solitary impulse wave transformation to overland flow. Journal of Waterway, Port, Coastal, and Ocean Engineering, 141(5), 04015004. http://dx.doi.org/10.1061/(ASCE)WW.1943-5460.0000294.
http://dx.doi.org/10.1061/(ASCE)WW.1943-...
; Heller & Spinneken, 2015Heller, V., & Spinneken, J. (2015). On the effect of the water body geometry on landslide–tsunamis: physical insight from laboratory tests and 2D to 3D wave parameter transformation. Coastal Engineering, 104, 113-134. http://dx.doi.org/10.1016/j.coastaleng.2015.06.006.
http://dx.doi.org/10.1016/j.coastaleng.2...
; Evers & Hager, 2016Evers, F. M., & Hager, W. H. (2016). Spatial impulse waves: wave height decay experiments at laboratory scale. Landslides, 13(6), 1395-1403. http://dx.doi.org/10.1007/s10346-016-0719-1.
http://dx.doi.org/10.1007/s10346-016-071...
; McFall & Fritz, 2016McFall, B. C., & Fritz, H. M. (2016). Physical modelling of tsunamis generated by three-dimensional deformable granular landslides on planar and conical island slopes. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 472 (2188), 20160052. http://dx.doi.org/10.1098/rspa.2016.0052.
http://dx.doi.org/10.1098/rspa.2016.0052...
; Bullard et al., 2019Bullard, G. K., Mulligan, R. P., Carreira, A., & Take, W. A. (2019). Experimental analysis of tsunamis generated by the impact of landslides with high mobility. Coastal Engineering, 152, 103538. http://dx.doi.org/10.1016/j.coastaleng.2019.103538.
http://dx.doi.org/10.1016/j.coastaleng.2...
; Evers et al., 2019Evers, F. M., Hager, W. H., & Boes, R. M. (2019). Spatial impulse wave generation and propagation. Journal of Waterway, Port, Coastal, and Ocean Engineering, 145(3), 04019011. http://dx.doi.org/10.1061/(ASCE)WW.1943-5460.0000514.
http://dx.doi.org/10.1061/(ASCE)WW.1943-...
), being useful for general estimation of impact-wave properties.

In this context, and taking into account the repercussion of the accident in Capitólio (2022), the aim of this manuscript is to employ the Noda’s semi-empiric approach (Noda, 1970Noda, E. K. (1970). Water waves generated by landslides. Journal of Waterways, Harbors and Coastal Engineering Division, 96(4), 835-855. http://dx.doi.org/10.1061/AWHCAR.0000045.
http://dx.doi.org/10.1061/AWHCAR.0000045...
) to estimate properties of the wave in a first approximation. Although other empirical and semi-empirical methods are available to assess this case, the specificity of the Capitólio event, described in Subsection 2.1, rule out these methods with exception of the Noda’s method (please see Subsection 2.2). The application of the Noda’s method allowed the estimation of the maximum wave amplitude generated near the rock impact onto the body of water.

METHODOLOGY

The methodology employed in this work is divided in two subsections. Subsection 2.1 describes the specificity of the Capitólio event and establishes hypotheses to assess the wave properties and Subsection 2.2 describes the Noda’s method and details its application to the Capitólio event.

Hypotheses, considerations and idealization of the fall kinematics related to the accident in capitólio

Even though the focus of this manuscript is to estimate the maximum wave amplitude generated by the rock impact onto the body of water, some aspects of the accident are too specific for a first approximation. Nonetheless, the following characteristics could be observed from the falling of a porous rock, saturated with water after a rainy period:

  • Falling dynamics – a solid rock detaches from a cliff (Figures 2a and 2b), progressively (from the base to the “peak”) hitting the lake 5 to 6 seconds after the detachment. The rock fell unbroken, with a 90° rotation in the vertical plane (normal to cliff), colliding with the water plane (of approximately d=4 m depth). Immediately after the impact, the rock shattered to pieces, under a sort of effect of a “progressive detonation” along its length, generating a strong splash (Figure 3).

    Figure 2
    Solid rock: (a) before (Source: Brisa, 2022Brisa, M. (2022). Tragédia em Capitólio: saiba quem são as 10 vítimas do acidente em MG. O Povo. Retrieved in 2022, June 28, from https://www.opovo.com.br/noticias/brasil/2022/01/10/tragedia-em-capitolio-saiba-quem-sao-as-10-vitimas-do-acidente-em-mg.html.
    https://www.opovo.com.br/noticias/brasil...
    ) and (b) after detaching from the Cliff (Source: Correio do Povo, 2022Correio do Povo. (2022). Comissão da câmara aprova projeto de controle de erosões. In:. Retrieved in 2022, June 28, from https://www.correiodopovo.com.br/not%C3%ADcias/pol%C3%ADtica/comiss%C3%A3o-da-c%C3%A2mara-aprova-projeto-de-controle-de-eros%C3%B5es-1.754079.
    https://www.correiodopovo.com.br/not%C3%...
    )
    Figure 3
    Videography of the event (Source: CNN BRASIL, 2022CNN BRASIL. (2022). Lanchas são atingidas por desabamento de pedras em Capitólio (MG). Retrieved in 2022, March 28, from https://www.youtube.com/watch?v=eIpqV0ibo1M.
    https://www.youtube.com/watch?v=eIpqV0ib...
    - Public domain)

  • Solid geometry – the block’s geometry is irregular, tending to a pyramidal shape with triangular base and straight posterior face. Basically, the solid block could be circumscribed by a triangular-based prism, 30 m high, 4 m thick, with a base width of 8 m. Figure 4 illustrates the described geometry.

    Figure 4
    Block resemblance towards a triangular-based prism and its respective dimensions (Source: Brisa, 2022Brisa, M. (2022). Tragédia em Capitólio: saiba quem são as 10 vítimas do acidente em MG. O Povo. Retrieved in 2022, June 28, from https://www.opovo.com.br/noticias/brasil/2022/01/10/tragedia-em-capitolio-saiba-quem-sao-as-10-vitimas-do-acidente-em-mg.html.
    https://www.opovo.com.br/noticias/brasil...
    - Public domain)

  • Physical modelling of the rockfall: an analysis comprising the falling dynamics, the impact exerted by the block on the water, and its subsequent fragmentation, indicates the occurrence of a mixed rockfall (fragmented blocks of distinct sizes). Such model has already been reported in the literature as a possible mechanism that amplifies wave amplitudes (McFall & Fritz, 2016McFall, B. C., & Fritz, H. M. (2016). Physical modelling of tsunamis generated by three-dimensional deformable granular landslides on planar and conical island slopes. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 472 (2188), 20160052. http://dx.doi.org/10.1098/rspa.2016.0052.
    http://dx.doi.org/10.1098/rspa.2016.0052...
    ). At this stage of the study, though, semi-empiric approaches would still be able to estimate the wave amplitude (while considering a non-fragmented rockfall).

Definitely, the analysis of this specific impulse-wave event would require further two-dimensional and three-dimensional simulations in order to more accurately determine the velocity field and the wave amplitude in a chaotic zone. Nonetheless, based on the established hypotheses and on the data collected from those involved in the accident (rescuers and tourists), the wave amplitude was objectively estimated in this work. From an engineering perspective and considering the aforementioned analysis of the case, the method explored by Noda (1970)Noda, E. K. (1970). Water waves generated by landslides. Journal of Waterways, Harbors and Coastal Engineering Division, 96(4), 835-855. http://dx.doi.org/10.1061/AWHCAR.0000045.
http://dx.doi.org/10.1061/AWHCAR.0000045...
, referred as Noda Method (1970) in this work, was chosen to estimate the impulse-wave event of Capitólio, admitting some technical-scientific reservations and simplified hypotheses (please see subsection 2.2).

Description of the Noda method (1970) and its application to the capitólio event

Noda (1970)Noda, E. K. (1970). Water waves generated by landslides. Journal of Waterways, Harbors and Coastal Engineering Division, 96(4), 835-855. http://dx.doi.org/10.1061/AWHCAR.0000045.
http://dx.doi.org/10.1061/AWHCAR.0000045...
modeled a landslide by considering a vertically falling box of λ width and height greater than the still water depth d being released onto a rectangular channel. Some assumptions were made to assess the resulting waves: 1) the volume of the box is small compared to the water volume within the channel; 2) the displacement over time of the box is known; 3) incompressible fluid and irrotational flow, allowing the usage of linearized equations of gravity waves; 4) the horizontal fluid velocity under the box is not a function of the vertical direction; and 5) impact phenomena can be ignored. Impulsive wave theory was used and expressions for wave amplitude both in the near-field (maximum wave amplitude ηmax) and in the far-field regions of the impact were obtained (Equation 1).

η x , t / λ = f V / g d , x / d (1)

where ηx,t/λ is the relative wave amplitude, V/gd is the impact Froude number Frimp with the slide impact velocity V and x/d is the relative horizontal distance from the box.

Experiments were also carried out with a series of boxes of λ width being released vertically onto a rectangular channel of d depth and the same width of the boxes. The free-fall velocity of the box, the impact velocity of the boxes in the water and the water depths in different distances from the disturbance were measured. These measurements allowed to establish wave patterns in function of the impact Froude number Frimp and the relative width of the box λ/d. Based on the model tests, Noda (1970)Noda, E. K. (1970). Water waves generated by landslides. Journal of Waterways, Harbors and Coastal Engineering Division, 96(4), 835-855. http://dx.doi.org/10.1061/AWHCAR.0000045.
http://dx.doi.org/10.1061/AWHCAR.0000045...
found four waves types as a function of Frimp and the relative slide thickness λ/d, namely the oscillatory, the non-linear transition, the solitary wave, and the bore regions.

In order to apply the Noda’s method to the Capitólio event, the prism resulting from the block adaptation (Figure 4b) was assumed as a parallelepiped with the same volume, readjusting its geometry to that of the boxes used by Noda (1970)Noda, E. K. (1970). Water waves generated by landslides. Journal of Waterways, Harbors and Coastal Engineering Division, 96(4), 835-855. http://dx.doi.org/10.1061/AWHCAR.0000045.
http://dx.doi.org/10.1061/AWHCAR.0000045...
. Figure 5 shows the approximation to apply Noda’s method. By making this approximation, Noda’s method hypotheses are considered to be valid, especially the vertically-falling block condition. Other empirical/semi-empirical methods, such as Kamphuis & Bowerin, 1970, Huber, 1980, Fritz et al., 2009, Heller & Spinneken, 2015, Hager & Evens, 2020, Han et al., 2022, consider the slide slope, whereas Noda’s method is not associated with a slide slope, just as the approximation made in this work. Furthermore, Noda’s method is capable of predicting the maximum wave amplitude near the fall; thus, the method is chosen to evaluate the Capitólio event.

Figure 5
Approximation of the block fall in the Capitólio event: (a) real case – rotation of the block around its own base and consequent fall; (b) alteration of the block’s position, from vertical to horizontal; and (c) parameterized block in an horizontal position impacts with known velocity, identical to experiments of Noda (1970)Noda, E. K. (1970). Water waves generated by landslides. Journal of Waterways, Harbors and Coastal Engineering Division, 96(4), 835-855. http://dx.doi.org/10.1061/AWHCAR.0000045.
http://dx.doi.org/10.1061/AWHCAR.0000045...
.

Throughout the study, important parameters like the impact Froude number Frimp, the relative maximum wave amplitude ηmax/λ^ and the maximum wave amplitude ηmax were obtained for the assumed box width λ^, the mean water depth d, and the box/block impact velocity V. To that end, two situations concerning the impact velocity were taken into account: 1) a velocity Vmin resulting from a free-fall time of 6 s; and 2) a velocity Vmax resulting from a free-fall time of 5 s. Table 1 presents the acquired data, whereas Figures 6a and 6b exhibit the graphical representation of the results obtained along with the conclusions presented by Noda (1970)Noda, E. K. (1970). Water waves generated by landslides. Journal of Waterways, Harbors and Coastal Engineering Division, 96(4), 835-855. http://dx.doi.org/10.1061/AWHCAR.0000045.
http://dx.doi.org/10.1061/AWHCAR.0000045...
.

Table 1
Geometric characteristics, falling dynamics and wave amplitudes for two velocity situations: 1) Vmin, resulting from a free-fall time of 6 s; and 2) Vmax, resulting from a free-fall time of 5 s. Absolut and relative uncertainty are defined from estimates of the employed parameters.
Figure 6
(a) Wave classification based on Noda’s results (1970), in function of the relative width of the box λ/d and the impact Froude number. Four distinct regions for wave generation were identified in the domain: one oscillatory, one non-linear transitory, one appropriate for solitary waves and one suitable for bores. Estimate results obtained during the analyses pertaining this manuscript are highlighted by purple dots and the green region around the purple dots refers to the uncertainty region. (b) Noda’s result (1970) for a wave generated near the impact (x=0). The graph represents the ratio between the maximum wave amplitude and the box width ηmax/λ in function of the impact Froude number. Estimate results obtained during the analyses pertaining this manuscript are highlighted by purple dots.

Absolute and relative errors of the employed parameters were defined under some considerations. The only error explicitly obtained is referred to the falling velocity of the block, provided by the timeframe of the accident’s footage. Other parameters, such as dimensions of the block and its density, were estimated by defining their characteristic values and their errors were estimated by fixing a deviation of ±10% from the correspondent characteristic value. Following the procedure of Heller et al. (2019)Heller, V., Chen, F., Brühl, M., Gabl, R., Chen, X., Wolters, G., & Fuchs, H. (2019). Large-scale experiments into the tsunamigenic potential of different iceberg calving mechanisms. Scientific Reports, 9(1), 861. PMid:30696837. http://dx.doi.org/10.1038/s41598-018-36634-3.
http://dx.doi.org/10.1038/s41598-018-366...
, an absolute error of 0.034 s for the free-fall time was obtained, resulting in relative error of 10% for impact velocity V, 11% for the impact Froude number Frimp and 14% for the relative width of the box λ/d.

RESULTS AND DISCUSSIONS

When it comes to describing the generated-wave profile, Figure 6a exhibits impact Froude numbers higher than 1, indicating non-linearity, even when considering their uncertainties. Moreover, as far as the geometrical characteristics of the block are concerned, its relative width λ^/d was estimated as 1. Under these specific approximate conditions, the impulse wave produced in the disaster of Capitólio could be treated as a solitary wave. However, the parameter λ^/d presents uncertainties concerning both the block geometry, and the lake local depth, which could alter the oscillatory profile and produce a non-linear wave or even a bore. Notwithstanding, through the analysis of the event’s videography, it is possible to observe a turbulent-dissipating wave-front, typical of bore waves. Noda (1970)Noda, E. K. (1970). Water waves generated by landslides. Journal of Waterways, Harbors and Coastal Engineering Division, 96(4), 835-855. http://dx.doi.org/10.1061/AWHCAR.0000045.
http://dx.doi.org/10.1061/AWHCAR.0000045...
reported a similar effect in the experiments where the box was dropped from higher altitudes, where the ratio of height above the water to local depth was over 4.

In this scenario, the impulse wave of Capitólio would resemble a bore of high energy dissipation, with a maximum amplitude of 3.75 m. A lower amplitude could be predicted, if the local energy dissipation between the block and the water was taken into account. Ultimately, based on the data presented in Table 1, it was possible to estimate a transfer of mechanical energy from the block to the lake of 15%, which is in agreement with the results observed in the literature (Nascimento, 2001Nascimento, M. F. (2001). Aproximação das equações da classe Boussinesq no processo de geração da onda na interface sólido-líquido: uma abordagem numérico-experimental com compromissos de engenharia (Master dissertation). Faculdade de Engenharia, Universidade Estadual Paulista, Ilha Solteira. (in Portuguese). ; Souza, 2007Souza, A. L. O. (2007). Métodos analíticos, numéricos e experimentais para o cálculo de ondas de impacto em meios líquidos (Master dissertation). Faculdade de Engenharia, Universidade Estadual Paulista, Ilha Solteira. (in Portuguese).; Maciel & Nascimento, 2002aMaciel, G. F., & Nascimento, M. F. (2002a). Validação do modelo de serre para descrever ondas de submersão geradas pela intrusão de massa sólida em meio líquido. Revista Brasileira de Recursos Hídricos, 7, 25-32. http://dx.doi.org/10.21168/rbrh.v7n3.p25-32.
http://dx.doi.org/10.21168/rbrh.v7n3.p25...
, 2002bMaciel, G. F., & Nascimento, M. F. (2002b). Modelagem numérica de ondas de submersão utilizando o modelo de serre. Revista Brasileira de Recursos Hídricos, 7, 19-24. http://dx.doi.org/10.21168/rbrh.v7n3.p19-24.
http://dx.doi.org/10.21168/rbrh.v7n3.p19...
; Souza & Maciel, 2005Souza, A. L. O., & Maciel, G. F. (2005). Ondas de impacto geradas pelo deslizamento de material fragmentado em meio líquido. In J. N. B. Campos (Org.). Recursos Hídricos: Jovem Pesquisador 2005 (pp. 55-78). Fortaleza: ABRH.; Han et al, 2022Han, L., Wang, P., & Yu, T. (2022). Wave types and energy conversion of impulse waves generated by landslides into mountain reservoirs. Scientific Reports, 12, 4035. http://dx.doi.org/10.1038/s41598-022-07993-9.
http://dx.doi.org/10.1038/s41598-022-079...
).

Considering the Capitólio event and using the wave amplitude obtained by Equation 1 as reference, Table 2 presents a comparison of two other empirical and semi-empirical models that also satisfy the condition of block falling vertically on the lake, i.e. Noda’s 2D piston-type model (1970) and Heller’s 2D granular slide model (2007). Deviations from the maximum wave amplitude reference (Δηmax) and energy transfer coefficients are also presented in Table 2.

Table 2
Comparison between the three empirical/semi-empirical models considering wave amplitude and energy transfer coefficients for the maximum velocity.

Parameter P, known as impulse product and defined by Equation 2, is considered as the governing non-dimensional parameter, both to analyse sliding impact and to evaluate wave propagation zones (Heller, 2007Heller, V. (2007). Landslide generated impulse waves - Prediction of near field characteristics (Ph.D. thesis), ETH Zurich, Zürich, Switzerland.).

P = F r i m p S 1 / 2 M 1 / 4 c o s 6 7 α 1 / 2 (2)

where Frimp is the impact Froude number, S=λ^/d is the relative slide thickness, M=ms/ρwbd2 is the relative slide mass with the slide mass ms, the water density ρw and the slide length b, and α is the hill slope angle.

The following values are computed using Equation 2 and Heller’s method, considering the two scenarios of impact velocity (maximum and minimum) and erro from each parameter (Table 1): 1.11Frimp1.67, 0.86S1.14, 2.15M2.85, α=90° and 0.74P0.89. The Noda’s piston-like model overestimates the maximum wave amplitude in 110%, with ηmax=7.94±1.19 m when compared to the Noda’s block model. On the other hand, Heller’s method underestimates the maximum wave amplitude in 57%, with ηmax=1.62±0.42 m.

Input values of the model showed to be naturally very uncertain, such as the exact water depth, bathymetry, block characteristics (e.g. material, geometry and dimensions) and falling characteristics (e.g. time history). Even though Noda’s method and other semi-empirical methods are conservative, the obtained estimations show that these models can provide useful information in an engineering point-of-view, due to the simplicity of their application.

The Noda’s methods, i.e. vertical fall model and piston-like model, represent the extreme cases for the event and they result in maximum wave amplitude of 3.75±0.06 η max 7.94±1.19 m, providing a ratio of 1 to 2 in wave amplitude. It is worth noting that the horizontal displacement effect (piston-like effect) can be applied in this case, since the scale of λ is in the order of d. Regarding wave energy, considering a soliton of same amplitude with the same range of ηmax, the energy dissipation rate would be in the range of 14% Ewave/Emechanical 46% for the classical Boussinesq model.

LIMITATIONS OF THE THEORETICAL AND SEMI-EMPIRICAL APPROACHES / SUGGESTIONS FOR FUTURE RESEARCH

All analytical / semi-empirical techniques employed in the literature over the last 70 years for the prediction of impulse waves were grounded on mathematical models assuming a number of consolidated hypotheses (potential flows, impact of non-deformable or fragmented materials onto wave channels, among others). Additionally, many of these studies were based on two-dimensional analyses supported by validating physical experiments (carried out in laboratories or through fieldwork practices). In the theoretical approach, there are attempts to model impact waves by prescribing a bottom movement through a function and obtaining the response on the free surface. This attempt produces almost-analytical solutions using Fourier and Laplace transforms, quadrature integrations and asymptotic expansions. However, even though these attempts are frequently employed to study, e. g. tsunamis, almost all of the models described in the literature are based on potential flow and linear theories (Ursell, 1953Ursell, F. (1953). The long-wave paradox in the theory of gravity waves. Cambridge Philosophical Society, 49, 685-694. ; Press, 1965Press, F. (1965). Displacements, strains and tilts at tele-seismic distances. Journal of Geophysical Research, 70, 2395-2412.; Podyapolsky, 1968Podyapolsky, G. S. (1968). The generation of linear gravitational waves in the ocean by seismic sources in the crust. Earth Physics. Akademia Nauk SSSR, 1, 4-12.; Thomson, 1887Thomson, W. (1887). On the waves produced by a single impulse in water of any depth, or in a dispersive medium. Philosophical Magazine, 23(5), 252-255., Dutykh & Dias, 2007Dutykh, D., & Dias, F. (2007). Water waves generated by a moving bottom. In: Kundu A., editor. Tsunami and Nonlinear Waves (pp. 65-95). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-71256-5_4.
https://doi.org/10.1007/978-3-540-71256-...
).

Due to scarce available data, the analysis of the Capitólio’s accident is still established over approximated parameters. In fact, there are many uncertainties related to the event and its parameters, since it not only involves a 90-degree impact, with high energy dissipation and momentum transfer between solid masses and a body of water, but also a specific fragmentation process under a globally 3-phase regime (water, air, solid). Moreover, the phenomenon also presents strong turbulence and a remarkable splash effect on impact produced by the sudden approximation of the solid (see Figure 1). Lastly, aggravating the situation, the characteristic time of the event is actually shorter than the characteristic time necessary for wave generation and propagation, which places it in the category of sudden approximation and, therefore, greater modeling difficulties.

Even with the help of state-of-the-art measuring transducers, usually employed to characterize velocity fields (ADVs, UDS, STIV, PIV) and free surfaces (ultrasonic/photonic techniques, ultrafast imaging), the specificity of Capitólio’s accident brings about an unprecedented scenario with complex elements. When it comes to diagnosing the problem and producing technical solutions for it, under an engineering point of view, a more complete mathematical model should be considered and validated by numerical codes from Computational Fluid Dynamics, such as Mike21, Flow3D, ANSYS Fluent and DualSPHysics. In essence, the methodological path to describe the phenomenon must consist of a complete non-linear numerical model able to simulate impulse waves, taking in account also the viscosity of fluid coupled with turbulence modelling. This way, it would be possible to not only analyze in detail and more accurately the generation zone (near field), but also assess disturbances in the far-field regions of the impact.

FINAL CONSIDERATIONS

Although the impact wave may have potentiated the accident, it should be clear that all 10 deaths were due to the direct impact of the rock on boat. Additionally, the Capitólio’s episode presented a very short characteristic time, typical of sudden-approximation phenomena. In these short-time phenomena, the impulse wave cannot even leave its own generation zone before the phenomenon breaks off, as opposed to the slower phenomenon (creeping approximation phenomena), which usually occurs in slopes significantly inferior to ninety degrees and the sliding material is already fragmented at the impact on the body of water. In order to precisely obtain the wave profile and energy dissipation during the impact, just numerical simulations based on complete mathematical models could provide reliable data (e.g. velocity fields, vorticities and momentum-transfer rate between solid and body of water). Lastly, despite the specificity level of the accident, the uncertainty pertaining the data input, the limitations of the employed semi-empirical approaches and the simplified hypotheses used in the analysis (Noda’s Method), the wave-amplitude estimate near the impact was remarkably promising from an engineering point of view. Moreover, it serves as the basis for a comparative future study comprising its numerical simulation.

DATA AVAILABILITY STATEMENT

All data, models, and code generated or used during the study appear in the submitted article.

ACKNOWLEDGEMENTS

The authors would wish to thank the athlete, professional diver and local instructor for all information supplied to this study. Likewise, the authors salute the rescuers, who heroically provided immediate assistance, support and relief to the local victims.

REFERENCES

  • Abadie, S., Morichon, D., Grilli, S., & Glockner, S. (2010). Numerical simulation of waves generated by landslides using a multiple-fluid Navier-Stokes model. Coastal Engineering, 57(9), 779-794. http://dx.doi.org/10.1016/j.coastaleng.2010.03.003
    » http://dx.doi.org/10.1016/j.coastaleng.2010.03.003
  • Amaro, R. A., Mellado, C. A., Shakibaeinia, A., & Cheng, L. Y. (2021). A fully Lagrangian DEM-MPS mesh-free model for ice-wave dynamics. Cold Regions Science and Technology, 186, 103266. http://dx.doi.org/10.1016/j.coldregions.2021.103266
    » http://dx.doi.org/10.1016/j.coldregions.2021.103266
  • Ataie-Ashtiani, B., & Malek-Mohammadi, S. (2007). Near field amplitude of subaerial landslide generated waves in dam reservoirs. Dam Engineering, XVII(4), 197-222.
  • Ataie-Ashtiani, B., & Najafi-Jilani, A. (2008). Laboratory investigations on impulsive waves caused by underwater landslide. Coastal Engineering, 55(12), 989-1004. http://dx.doi.org/10.1016/j.coastaleng.2008.03.003
    » http://dx.doi.org/10.1016/j.coastaleng.2008.03.003
  • Bolin, H., Yueping, Y., Xiaoting, C., Guangning, L., Sichang, W., & Zhibing, J. (2014). Experimental modeling of tsunamis generated by subaerial landslides: two case studies of the Three Gorges Reservoir, China. Environmental Earth Sciences, 71, 3813-3825. http://dx.doi.org/10.1007/s12665-013-2765-5
    » http://dx.doi.org/10.1007/s12665-013-2765-5
  • Bosa, S., & Petti, M. (2011). Shallow water numerical model of the wave generated by the Vajont landslide. Environmental Modelling & Software, 26(4), 406-418. http://dx.doi.org/10.1016/j.envsoft.2010.10.001
    » http://dx.doi.org/10.1016/j.envsoft.2010.10.001
  • Brisa, M. (2022). Tragédia em Capitólio: saiba quem são as 10 vítimas do acidente em MG O Povo. Retrieved in 2022, June 28, from https://www.opovo.com.br/noticias/brasil/2022/01/10/tragedia-em-capitolio-saiba-quem-sao-as-10-vitimas-do-acidente-em-mg.html
    » https://www.opovo.com.br/noticias/brasil/2022/01/10/tragedia-em-capitolio-saiba-quem-sao-as-10-vitimas-do-acidente-em-mg.html
  • Bullard, G. K., Mulligan, R. P., Carreira, A., & Take, W. A. (2019). Experimental analysis of tsunamis generated by the impact of landslides with high mobility. Coastal Engineering, 152, 103538. http://dx.doi.org/10.1016/j.coastaleng.2019.103538
    » http://dx.doi.org/10.1016/j.coastaleng.2019.103538
  • Chen, F., Heller, V., & Briganti, R. (2020). Numerical modelling of tsunamis generated by iceberg calving validated with large-scale laboratory experiments. Advances in Water Resources, 142, 103647. http://dx.doi.org/10.1016/j.advwatres.2020.103647
    » http://dx.doi.org/10.1016/j.advwatres.2020.103647
  • Cheng, L. Y., Amaro, J. R. A., & Henrique, F. E. (2021). Improving stability of moving particle semi-implicit method by source terms based on time-scale correction of particle-level impulses. Engineering Analysis with Boundary Elements, 131, 118-145.
  • Choi, B. H., Kim, D. C., Pelinovsky, E., & Woo, S. B. (2007). Three‐dimensional simulation of tsunami run‐up around conical island. Coastal Engineering, 54(8), 618-629. http://dx.doi.org/10.1016/j.coastaleng.2007.02.001
    » http://dx.doi.org/10.1016/j.coastaleng.2007.02.001
  • CNN BRASIL. (2022). Lanchas são atingidas por desabamento de pedras em Capitólio (MG) Retrieved in 2022, March 28, from https://www.youtube.com/watch?v=eIpqV0ibo1M
    » https://www.youtube.com/watch?v=eIpqV0ibo1M
  • Correio do Povo. (2022). Comissão da câmara aprova projeto de controle de erosões In:. Retrieved in 2022, June 28, from https://www.correiodopovo.com.br/not%C3%ADcias/pol%C3%ADtica/comiss%C3%A3o-da-c%C3%A2mara-aprova-projeto-de-controle-de-eros%C3%B5es-1.754079
    » https://www.correiodopovo.com.br/not%C3%ADcias/pol%C3%ADtica/comiss%C3%A3o-da-c%C3%A2mara-aprova-projeto-de-controle-de-eros%C3%B5es-1.754079
  • Cremonesi, M., Frangi, A., & Perego, U. (2011). A Lagrangian finite element approach for the simulation of water-waves induced by landslides. Computers & Structures, 89(11-12), 1086-1093. http://dx.doi.org/10.1016/j.compstruc.2010.12.005
    » http://dx.doi.org/10.1016/j.compstruc.2010.12.005
  • Crosta, G. B., Imposimato, S., & Roddeman, D. (2015). Landslide spreading, impulse water waves and modelling of the vajont rockslide. Rock Mechanics and Rock Engineering, 49, 2413-2436. http://dx.doi.org/10.1007/s00603-015-0769-z
    » http://dx.doi.org/10.1007/s00603-015-0769-z
  • Di Risio, M., & Sammarco, P. (2008). Analytical modeling of landslide-generated waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 134(1), 53-60. http://dx.doi.org/10.1061/(ASCE)0733-950X(2008)134:1(53)
    » http://dx.doi.org/10.1061/(ASCE)0733-950X(2008)134:1(53)
  • Dutykh, D., & Dias, F. (2007). Water waves generated by a moving bottom. In: Kundu A., editor. Tsunami and Nonlinear Waves (pp. 65-95). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-71256-5_4.
    » https://doi.org/10.1007/978-3-540-71256-5_4
  • Evers, F. M., & Hager, W. H. (2016). Spatial impulse waves: wave height decay experiments at laboratory scale. Landslides, 13(6), 1395-1403. http://dx.doi.org/10.1007/s10346-016-0719-1
    » http://dx.doi.org/10.1007/s10346-016-0719-1
  • Evers, F. M., Hager, W. H., & Boes, R. M. (2019). Spatial impulse wave generation and propagation. Journal of Waterway, Port, Coastal, and Ocean Engineering, 145(3), 04019011. http://dx.doi.org/10.1061/(ASCE)WW.1943-5460.0000514
    » http://dx.doi.org/10.1061/(ASCE)WW.1943-5460.0000514
  • Fritz, H. M., Hager, W. H., & Minor, H. E. (2004). Near field characteristics of landslide generated impulse waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 139(6), 287-302. http://dx.doi.org/10.1061/(ASCE)0733-950X(2004)130:6(287)
    » http://dx.doi.org/10.1061/(ASCE)0733-950X(2004)130:6(287)
  • Fritz, H. M., Mohammed, F., & Yoo, J. (2009). Lituya bay landslide impact generated mega-tsunami 50th anniversary. Pure and Applied Geophysics, 166, 153-175. http://dx.doi.org/10.1007/s00024-008-0435-4
    » http://dx.doi.org/10.1007/s00024-008-0435-4
  • Fuchs, H., & Hager, W. H. (2015). Solitary impulse wave transformation to overland flow. Journal of Waterway, Port, Coastal, and Ocean Engineering, 141(5), 04015004. http://dx.doi.org/10.1061/(ASCE)WW.1943-5460.0000294
    » http://dx.doi.org/10.1061/(ASCE)WW.1943-5460.0000294
  • Hager, W. H., & Evers, F. M. (2020). Impulse Waves Reservoirs: research uo to 1990. Journal of Hydraulic Engineering (New York, N.Y.), 146(10), 03120002. http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0001770
    » http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0001770
  • Han, L., Wang, P., & Yu, T. (2022). Wave types and energy conversion of impulse waves generated by landslides into mountain reservoirs. Scientific Reports, 12, 4035. http://dx.doi.org/10.1038/s41598-022-07993-9
    » http://dx.doi.org/10.1038/s41598-022-07993-9
  • Heinrich, P. (1992). Nonlinear water waves generated by Submarine and Aerial Landslides. Journal of Waterway, Port, Coastal, and Ocean Engineering, 118(3), 249-266. http://dx.doi.org/10.1061/(ASCE)0733-950X(1992)118:3(249)
    » http://dx.doi.org/10.1061/(ASCE)0733-950X(1992)118:3(249)
  • Heller, V. (2007). Landslide generated impulse waves - Prediction of near field characteristics (Ph.D. thesis), ETH Zurich, Zürich, Switzerland.
  • Heller, V., & Hager, W. H. (2010). Impulse product parameter in landslide generated impulse waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 136(3), 145-155. http://dx.doi.org/10.1061/(ASCE)WW.1943-5460.0000037
    » http://dx.doi.org/10.1061/(ASCE)WW.1943-5460.0000037
  • Heller, V., & Spinneken, J. (2013). Improved landslide-tsunami prediction: effects of block model parameters and slide model. Journal of Geophysical Research. Oceans, 118, 1489-1507. http://dx.doi.org/10.1002/jgrc.20099
    » http://dx.doi.org/10.1002/jgrc.20099
  • Heller, V., & Spinneken, J. (2015). On the effect of the water body geometry on landslide–tsunamis: physical insight from laboratory tests and 2D to 3D wave parameter transformation. Coastal Engineering, 104, 113-134. http://dx.doi.org/10.1016/j.coastaleng.2015.06.006
    » http://dx.doi.org/10.1016/j.coastaleng.2015.06.006
  • Heller, V., Chen, F., Brühl, M., Gabl, R., Chen, X., Wolters, G., & Fuchs, H. (2019). Large-scale experiments into the tsunamigenic potential of different iceberg calving mechanisms. Scientific Reports, 9(1), 861. PMid:30696837. http://dx.doi.org/10.1038/s41598-018-36634-3
    » http://dx.doi.org/10.1038/s41598-018-36634-3
  • Huber, A. (1980). Schwallwellen in seen als folge von felssturze Zurich, Switzerland: ETHZurich.
  • Jansen, R. B. (2012). Advanced dam engineering for design, construction, and rehabilitation (p. 811). Springer Science & Business Media Retrieved in 2022, June 1, from https://books.google.com.br/books?id=xdZ5BgAAQBAJ&printsec=frontcover&hl=pt-BR&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
    » https://books.google.com.br/books?id=xdZ5BgAAQBAJ&printsec=frontcover&hl=pt-BR&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
  • Kamphuis, K., & Bowering, R. (1970). Impulse waves generated by landslides. In: Proceedings of the 12th Coastal Engineering Conference (pp. 575-588). Washington: Coastal Engineering. https://doi.org/10.1061/9780872620285.035
    » https://doi.org/10.1061/9780872620285.035
  • Kranzer, H. C., & Keller, J. B. (1959). Water waves produced by explosions. Journal of Applied Physics, 30(398), http://dx.doi.org/10.1063/1.1735176
    » http://dx.doi.org/10.1063/1.1735176
  • Maciel, G. F. (1991). Contribution expérimentale et théorique à létude des ondes produites par des glissements solides dans des retenues de barrages (PhD thesis). Université Joseph Fourier, French. (in French).
  • Maciel, G. F., & Nascimento, M. F. (2002a). Validação do modelo de serre para descrever ondas de submersão geradas pela intrusão de massa sólida em meio líquido. Revista Brasileira de Recursos Hídricos, 7, 25-32. http://dx.doi.org/10.21168/rbrh.v7n3.p25-32
    » http://dx.doi.org/10.21168/rbrh.v7n3.p25-32
  • Maciel, G. F., & Nascimento, M. F. (2002b). Modelagem numérica de ondas de submersão utilizando o modelo de serre. Revista Brasileira de Recursos Hídricos, 7, 19-24. http://dx.doi.org/10.21168/rbrh.v7n3.p19-24
    » http://dx.doi.org/10.21168/rbrh.v7n3.p19-24
  • Maciel, G., Naaim, M., & Vila, J. P. (1990). Analyse des effets provoques par la chute d'avalanches dans une retenue: Rapport final France: Convention EDF-CEMAGREF. (in French).
  • Mao, M., Van der Westhuysen, A. J., Xia, M., Schwab, D. J., & Chawla, A. (2016). Modeling wind waves from deep to shallow waters in Lake Michigan using unstructured SWAN. Journal of Geophysical Research. Oceans, 121, 3836-3865. http://dx.doi.org/10.1002/2015JC011340.
    » https://doi.org/ http://dx.doi.org/10.1002/2015JC011340
  • Mattosinho, G. O., Maciel, G. F., Ferreira, F. O., Vieira, S. A., & Sáo, T. Y. (2022). Meteorological-hydrodynamic model coupling for safe inland navigation of waterway stretches in dam reservoirs, using a scarce database. Brazilian Journal of Water Resources, 27, 1. http://dx.doi.org/10.1590/2318-0331.272220210107
    » http://dx.doi.org/10.1590/2318-0331.272220210107
  • McFall, B. C., & Fritz, H. M. (2016). Physical modelling of tsunamis generated by three-dimensional deformable granular landslides on planar and conical island slopes. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 472 (2188), 20160052. http://dx.doi.org/10.1098/rspa.2016.0052
    » http://dx.doi.org/10.1098/rspa.2016.0052
  • Meng, Z., & Ancey, C. (2019). The effects of slide cohesion on impulse-wave formation. Experiments in Fluids, 60, 151. http://dx.doi.org/10.1007/s00348-019-2800-8
    » http://dx.doi.org/10.1007/s00348-019-2800-8
  • Mohammed, F., & Fritz, H. M. (2012). Physical modeling of tsunamis generated by three-dimensional deformable granular landslides. Journal of Geophysical Research, 117, C11015. http://dx.doi.org/10.1029/2011JC007850
    » http://dx.doi.org/10.1029/2011JC007850
  • Monaghan, J. J., & Kos, A. (2000). Scott Russells wave generator. Physics of Fluids, 12, 622-630. http://dx.doi.org/10.1063/1.870269
    » http://dx.doi.org/10.1063/1.870269
  • Nascimento, M. F. (2001). Aproximação das equações da classe Boussinesq no processo de geração da onda na interface sólido-líquido: uma abordagem numérico-experimental com compromissos de engenharia (Master dissertation). Faculdade de Engenharia, Universidade Estadual Paulista, Ilha Solteira. (in Portuguese).
  • Noda, E. K. (1970). Water waves generated by landslides. Journal of Waterways, Harbors and Coastal Engineering Division, 96(4), 835-855. http://dx.doi.org/10.1061/AWHCAR.0000045
    » http://dx.doi.org/10.1061/AWHCAR.0000045
  • Oliveira, J. J., Teixeira, B. L., & Augusto, T. (2022). Capitólio: Bombeiros confirmam 10 mortos após rocha desabar sobre lanchas Uol (SP), Retrieved in 2022, June 28, from https://noticias.uol.com.br/cotidiano/ultimas-noticias/2022/01/09/mergulhadores-retomam-buscas-por-3-desaparecidos-em-capitolio-mg.htm
    » https://noticias.uol.com.br/cotidiano/ultimas-noticias/2022/01/09/mergulhadores-retomam-buscas-por-3-desaparecidos-em-capitolio-mg.htm
  • Panizzo, A., Girolamo, P., & Petaccia, A. (2005). Forecasting impulse waves generated by subaerial landslides. Journal of Geophysical Research, 110(C12), C12025. http://dx.doi.org/10.1029/2004JC002778
    » http://dx.doi.org/10.1029/2004JC002778
  • Pastor, M., Herreros, I., Merodo, J. A. F., Mira, P., Haddad, B., Quecedo, M., González, E., Alvarez-Cedrón, C., & Drempetic, V. (2009). Modelling of fast catastrophic landslides and impulse waves induced by them in fjords, lakes and reservoirs. Engineering Geology, 109(1-2), 124-134. http://dx.doi.org/10.1016/j.enggeo.2008.10.006
    » http://dx.doi.org/10.1016/j.enggeo.2008.10.006
  • Podyapolsky, G. S. (1968). The generation of linear gravitational waves in the ocean by seismic sources in the crust. Earth Physics. Akademia Nauk SSSR, 1, 4-12.
  • Prasad, D., & Kumar, N. (2014). Coastal erosion studies: a review. International Journal of Geosciences, 5, 341-345. http://dx.doi.org/10.4236/ijg.2014.53033
    » http://dx.doi.org/10.4236/ijg.2014.53033
  • Press, F. (1965). Displacements, strains and tilts at tele-seismic distances. Journal of Geophysical Research, 70, 2395-2412.
  • Prins, J. E. (1958). Characteristics of waves generated by a local disturbance. Eos (Washington, D.C.), 39(5), 865-874. http://dx.doi.org/10.1029/TR039i005p00865
    » http://dx.doi.org/10.1029/TR039i005p00865
  • Quecedo, M., Pastor, M., & Herreros, M. I. (2004). Numerical modelling of impulse wave generated by fast landslides. International Journal for Numerical Methods in Engineering, 59(12), 1633-1656. http://dx.doi.org/10.1002/nme.934
    » http://dx.doi.org/10.1002/nme.934
  • Raney, D., & Butler, H. L. (1976). Landslide generated water wave model. Journal of Hydraulic Engineering (New York, N.Y.), 102, 1269-1282.
  • Rauter, M., Hoße, M. L., Mulligan, R. P., Take, W. A., & Løvholt, F. (2021). Numerical simulation of impulse wave generation by idealized landslides with OpenFOAM. Coastal Engineering, 165, 103815. http://dx.doi.org/10.1016/j.coastaleng.2020.103815
    » http://dx.doi.org/10.1016/j.coastaleng.2020.103815
  • Romano, A., Lara, J. L., Barajas, G., Di Paolo, B., Bellotti, G., Di Risio, M., Losada, I. J., & Girolamo, P. (2020). Tsunamis generated by submerged landslides: numerical analysis of the near-field wave characteristics. Journal of Geophysical Research. Oceans, 125(7), e2020JC016157. http://dx.doi.org/10.1029/2020JC016157
    » http://dx.doi.org/10.1029/2020JC016157
  • Sabatier, P. C. (1983). On water waves produced by ground motions. Journal of Fluid Mechanics, Cambridge, 126(1), 27-58. http://dx.doi.org/10.1017/S0022112083000038
    » http://dx.doi.org/10.1017/S0022112083000038
  • Sabeti, R., & Heidarzadeh, M. (2022). Numerical simulations of tsunami wave generation by submarine landslides: validation and sensitivity analysis to landslide parameters. Journal of Waterway, Port, Coastal, and Ocean Engineering, 148(2), 05021016. http://dx.doi.org/10.1061/(ASCE)WW.1943-5460.0000694
    » http://dx.doi.org/10.1061/(ASCE)WW.1943-5460.0000694
  • Shi, C., An, Y., Wu, Q., Liu, Q., & Cao, Z. (2016). Numerical simulation of landslide-generated waves using a soil–water coupling smoothed particle hydrodynamics model. Advances in Water Resources, 92, 130-141. http://dx.doi.org/10.1016/j.advwatres.2016.04.002
    » http://dx.doi.org/10.1016/j.advwatres.2016.04.002
  • Si, P., Shi, H., & Yu, X. (2018). A general numerical model for surface waves generated by granular material intruding into a water body. Coastal Engineering, 142, 42-51. http://dx.doi.org/10.1016/j.coastaleng.2018.09.001
    » http://dx.doi.org/10.1016/j.coastaleng.2018.09.001
  • Slingerland, R. L. and Voight, B. (1979). Occurrences, properties, and predictive models of landslide-generated water waves. Developments in Geotechnical Engineering, 14 (part B), 317-394. https://doi.org/10.1016/B978-0-444-41508-0.50017-X
    » https://doi.org/10.1016/B978-0-444-41508-0.50017-X
  • Slingerland, R., & Voight, B. (1982). Evaluating hazard of landslide-induced water waves. Journal of the Waterways, Port, Coastal and Ocean Division, 108(WW4), 504-512.
  • Souza, A. L. O. (2007). Métodos analíticos, numéricos e experimentais para o cálculo de ondas de impacto em meios líquidos (Master dissertation). Faculdade de Engenharia, Universidade Estadual Paulista, Ilha Solteira. (in Portuguese).
  • Souza, A. L. O., & Maciel, G. F. (2005). Ondas de impacto geradas pelo deslizamento de material fragmentado em meio líquido. In J. N. B. Campos (Org.). Recursos Hídricos: Jovem Pesquisador 2005 (pp. 55-78). Fortaleza: ABRH.
  • Takabatake, T., Mäll, M., Han, D. C., Inagaki, N., Kisizaki, D., Esteban, M., & Shibayama, T. (2020). Physical modeling of tsunamis generated by subaerial, partially submerged, and submarine landslides. Coastal Engineering Journal, 62(4), 582-601. http://dx.doi.org/10.1080/21664250.2020.1824329
    » http://dx.doi.org/10.1080/21664250.2020.1824329
  • Tessema, N. N., Sigtryggsdóttir, F. G., Lia, L., & Jabir, A. K. (2019). Case study of dam overtopping from waves generated by landslides impinging perpendicular to a Reservoirs Longitudinal Axis. Journal of Marine Science and Engineering, 7(7), 221. http://dx.doi.org/10.3390/jmse7070221
    » http://dx.doi.org/10.3390/jmse7070221
  • Thomson, W. (1887). On the waves produced by a single impulse in water of any depth, or in a dispersive medium. Philosophical Magazine, 23(5), 252-255.
  • Thuro, K., & Hatem, M. (2010). The 1806 Goldau landslide event: analysis of a large rock slide in geologically active. In Proceedings of the 11th IAEG Congress, Auckland, New Zealand. Retrieved in 2023, April 12, from https://www.yumpu.com/en/document/view/15706652/the-1806-goldau-landslide-event-analysis-of-a-large-rock-slide
    » https://www.yumpu.com/en/document/view/15706652/the-1806-goldau-landslide-event-analysis-of-a-large-rock-slide
  • Tinti, S., Chiocci, F. L., Zaniboni, F., Pagnoni, G., & Alteriis, G. (2011). Numerical simulation of the tsunami generated by a past catastrophic landslide on the volcanic island of Ischia, Italy. Marine Geophysical Researches, 32, 287-297. http://dx.doi.org/10.1007/s11001-010-9109-6
    » http://dx.doi.org/10.1007/s11001-010-9109-6
  • Unoki, S., & Nakano, M. (1953). On the Cauchy- Potsson waves caused by the eruption of a sub- marine volcano. Oceanographical Magazine, 4, 119-141.
  • Ursell, F. (1953). The long-wave paradox in the theory of gravity waves. Cambridge Philosophical Society, 49, 685-694.
  • Vasco, J. R. G., Maciel, G. F., & Minussi, C. R. (2011). Uma introdução às técnicas lagrangeanas: uma aplicação do Método SPH a problemas de engenharia. Revista Brasileira de Recursos Hídricos, 16, 67-82. http://dx.doi.org/10.21168/rbrh.v16n1.p67-82
    » http://dx.doi.org/10.21168/rbrh.v16n1.p67-82
  • Walder, J. S., Watts, P., Sorensen, O. E., & Janssen, K. (2003). Tsunamis generated by subaerial mass flows. Journal of Geophysical Research. Oceans, 108(B5), http://dx.doi.org/10.1029/2001JB000707
    » http://dx.doi.org/10.1029/2001JB000707
  • Wang, Z. F., Cao, X. D., Li, Q. J., & Liu, Y. L. (2019a). The Impact of surface wave on the sediment erosion and deposition near the Wellow Rivermouth, China. Applied Ecology and Environmental Research, 17(6), http://dx.doi.org/10.15666/aeer/1706_1491114926
    » http://dx.doi.org/10.15666/aeer/1706_1491114926
  • Wang, J., Ward, S. N., & Xiao, L. (2019b). Tsunami Squares modeling of landslide generated impulsive waves and its application to the 1792 Unzen-Mayuyama mega-slide in Japan. Engineering Geology, 256, 121-137. http://dx.doi.org/10.1016/j.enggeo.2019.04.020
    » http://dx.doi.org/10.1016/j.enggeo.2019.04.020
  • Wang, L., Jiang, Q., & Zhang, C. (2017). Improvement of moving particle semi-implicit method for simulation of progressive water waves. International Journal for Numerical Methods in Fluids, 85(2), 69-89. http://dx.doi.org/10.1002/fld.4373
    » http://dx.doi.org/10.1002/fld.4373
  • Watts, P. (1997). Water waves generated by underwater landslides (Ph.D thesis). California Institute of Technology, California. Retrieved in 2023, April 12, from https://resolver.caltech.edu/CaltechETD:etd-10132005-133022
    » https://resolver.caltech.edu/CaltechETD:etd-10132005-133022
  • Watts, P. (2000). Tsunami features of solid block underwater landslides. Journal of Waterway, Port, Coastal, and Ocean Engineering, 126(3), 144-152. http://dx.doi.org/10.1061/(ASCE)0733-950X(2000)126:3(144)
    » http://dx.doi.org/10.1061/(ASCE)0733-950X(2000)126:3(144)
  • Watts, P., & Grilli, S. T. (2003). Underwater landslide shape, motion, deformation, and tsunami generation. In Proc. 13th Int. Offshore and Polar Engineering Conference (pp. 364-371). Mountain View, CA: International Society of Offshore and Polar Engineers.
  • Watts, P., Grilli, S. T., Tappin, D. R., & Fryer, G. J. (2005). Tsunami generation by submarine mass failure. II: predictive equations and case studies. Journal of Waterway, Port, Coastal, and Ocean Engineering, 131(6), 298-310. http://dx.doi.org/10.1061/(ASCE)0733-950X(2005)131:6(298).
    » https://doi.org/. http://dx.doi.org/10.1061/(ASCE)0733-950X(2005)131:6(298)
  • Wiegel, R. L. (1955). Laboratory studies of gravity waves generated by the movement of a submerged body. Eos (Washington, D.C.), 36(5), 759-774. http://dx.doi.org/10.1029/TR036i005p00759
    » http://dx.doi.org/10.1029/TR036i005p00759
  • Yin, Yp., Huang, B., Chen, X., Liu, G., & Wang, S. (2015). Numerical analysis on wave generated by the Qianjiangping landslide in Three Gorges Reservoir, China. Landslides, 12, 355-364. http://dx.doi.org/10.1007/s10346-015-0564-7
    » http://dx.doi.org/10.1007/s10346-015-0564-7
  • Zhang, G., Chen, J., Qi, Y., Li, J., & Xu, Q. (2021). Numerical simulation of landslide generated impulse waves using a δ+ LES-SPH model. Advances in Water Resources, 151, 103890. http://dx.doi.org/10.1016/j.advwatres.2021.103890.
    » https://doi.org/. http://dx.doi.org/10.1016/j.advwatres.2021.103890
  • Zweifel, A. (2004). Impulse waves: effects of slide density and water depth (Ph.D. thesis). ETH Zurich, Zürich, Switzerland. (in German).
  • Zweifel, A., Zuccala, D., & Gatti, D. (2007). Comparison between computed and experimentally generated impulse wave. Journal of Hydraulic Engineering (New York, N.Y.), 133(2), 208-216. http://dx.doi.org/10.1061/(ASCE)0733-9429(2007)133:2(208)
    » http://dx.doi.org/10.1061/(ASCE)0733-9429(2007)133:2(208)

Edited by

Editor in-Chief: Adilson Pinheiro
Associated Editor: Michael Mannich

Publication Dates

  • Publication in this collection
    01 Dec 2023
  • Date of issue
    2023

History

  • Received
    12 Apr 2023
  • Reviewed
    19 June 2023
  • Accepted
    24 July 2023
Associação Brasileira de Recursos Hídricos Av. Bento Gonçalves, 9500, CEP: 91501-970, Tel: (51) 3493 2233, Fax: (51) 3308 6652 - Porto Alegre - RS - Brazil
E-mail: rbrh@abrh.org.br