
Revista Brasileira de Recursos Hídricos
Brazilian Journal of Water Resources
Versão On-line ISSN 2318-0331
RBRH, Porto Alegre, v. 28, e19, 2023
Technical Note

https://doi.org/10.1590/2318-0331.282320230005

1/12

This is an Open Access article distributed under the terms of  the Creative Commons Attribution License, which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited.

Evaluation of  shear rate formulations through steady uniform non-Newtonian 
fluid flows in the context of  shallow-water equations

Avaliação de formulações de taxa de deformação através de escoamentos permanentes 
e uniformes de fluidos não-Newtonianos no contexto de equações de águas rasas

Yuri Taglieri Sáo1 , João Batista Pereira1  & Geraldo de Freitas Maciel1 

1Universidade Estadual Paulista “Júlio de Mesquita Filho”, Ilha Solteira, SP, Brasil
E-mails: yuri.sao@unesp.br (YTS), jbpereira.eng@gmail.com (JBP), geraldo.f.maciel@unesp.br (GFM)

Received: January 13, 2023 - Revised: April 26, 2023 - Accepted: May 09, 2023

ABSTRACT

Non-Newtonian rheology effects, such as pseudoplasticity and viscoplasticity, are understood as shear stresses, incorporated to the 
energy slope term in the Shallow-Water Equations (SWE). However, non-Newtonian shear stresses are dependent of  the shear 
rate, whose formulation is a function of  the gradient of  the velocity profile in the bottom. This study investigated two shear rate 
formulations that are commonly applied in the SWE literature: 1) a non-parameterized function; and 2) a function based on the 
Herschel-Bulkley rheological model. Their influence in steady uniform flows of  non-Newtonian fluids was evaluated through 
numerical-theoretical comparisons. A Lax-Friedrichs scheme was implemented to solve the SWE system and allowed employing 
the shear rate formulations. Experimental tests were carried out and numerical simulations of  hypothetical scenarios were 
performed. It was found that the non-parameterized formulation presented deviation in normal depth up to 14% in comparison 
with theoretical solution, while the formulation based on the Herschel-Bulkley model provided a good agreement, corroborated 
by punctual Computational Fluid Dynamics simulations (deviation less than 2%) and experimental data. The ratio of  both shear 
rate formulations is strongly correlated to the deviation of  normal depth, indicating that the non-parameterized shear rate function 
does not provide an acceptable result in the steady uniform flow.
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RESUMO

Efeitos de reologia não-Newtoniana, como pseudoplasticidade e viscoplasticidade, são interpretados como tensões cisalhantes, 
incorporados à declividade da linha de energia nas Equações de Águas Rasas. Entretanto, tensões de cisalhamento devido a efeitos 
não-Newtonianos são dependentes da taxa de deformação, cuja formulação é função do gradiente do perfil de velocidade no fundo 
do canal. No contexto do sistema de Equações de Águas Rasas, este estudo investigou duas formulações de taxa de deformação 
comumente empregadas na literatura: a primeira é uma função não-parametrizada e a segunda é uma função baseada no modelo 
reológico de Herschel-Bulkley. A influência dessas formulações em escoamentos permanentes e uniformes idealizados de fluidos 
não-Newtonianos foi avaliada através de comparações numéricas e teóricas. O esquema Lax-Friedrichs de diferenças finitas foi 
implementado para resolver o sistema de Equações de Águas Rasas e permitiu empregar as formulações de taxa de deformação. 
Várias simulações numéricas de cenários hipotéticos e casos experimentais foram executadas. Observou-se que a formulação 
não-parametrizada apresentou desvios na solução da lâmina normal até 14% em comparação com a solução teórica, enquanto que 
a formulação baseada no modelo de Herschel-Bulkley forneceu uma boa confrontação, corroborada por simulações pontuais de 
Fluidodinâmica Computacional (desvio de menos de 2%) e dados experimentais. A razão entre ambas formulações está fortemente 
correlacionada com o desvio na solução da lâmina normal, o que indica que a formulação não-parametrizada de taxa de deformação 
não produz resultados aceitáveis em escoamentos permanentes e uniformes.

Palavras-chave: Equações de águas rasas; HEC-RAS; Fluido não-Newtoniano.
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INTRODUCTION

Natural hazards and disasters, such as mudflows, debris 
flows and tailings dam-breaks, are capable of  transporting highly 
concentrated materials, whose physical properties are considered to 
be non-Newtonian in a hydraulics point-of-view (Jing et al., 2018; 
Coussot & Piau, 1994; Coussot  et  al., 1998). Disasters such as 
occurred in Mount Polley-BC (Canada/2014), Mariana-MG 
(Brazil/2015) and Brumadinho-MG (Brazil/2019) made the 
stakeholders (government, mining companies and engineers) 
take action and study methods to prevent, mitigate and elaborate 
better emergency plans (Martin et al., 2019; Gildeh et al., 2021). 
In Brazil, new legislations, such as the Resolution number 95, from 
February 7th 2022, were approved by the Agência Nacional de 
Mineração (ANM) to improve the emergency plans in dam-break 
cases, demanding the inclusion of  studies such as geotechnical and 
rheological characterization of  tailings. Thus, the scientific community 
has been increasing its interest to study non-Newtonian hydraulics.

Commonly, these hazardous flows are modelled by the 
Shallow-Water Equations (SWE) system, which applies both to 
Newtonian and non-Newtonian flows (Tan, 1992; Castro-Orgaz 
& Hager, 2019). In classical hydraulics, the SWE system is used to 
study flood routing, water dam-break, wave propagation, among 
many other applications (Tsakiris & Bellos, 2014; Fraccarollo & 
Toro, 1995; Liang et al., 2006; Hu et al., 2000). The literature and 
engineering practice often use widely recognized numerical codes 
that solve the SWE system, such as FLO-2D and HEC-RAS, 
due to their capability of  working along with topographic data, 
to optimized computational performance and tools able to solve 
many engineering problems (Hicks & Peacock, 2005; Yi, 2011; 
Wu et al., 2013; O’Brien et al., 1993). A documental analysis of  
tailings dam-break studies for emergency plans in the state of  
Minas Gerais, Brazil, for example, stated that almost all studies 
were carried out with either one of  these numerical codes 
(Paiva et al., 2020).

To include non-Newtonian effects into the SWE system, the 
most common approach is to add non-Newtonian shear stresses to 
the friction term (Ancey et al., 2012) along with other sources of  
stresses, such as turbulence and grain interaction (O’Brien et al., 1993). 
While non-Newtonian effect of  viscoplasticity (yield stress) is included 
straightforwardly, the viscous shear stress is dependent on the shear 
rate. The shear rate formulation is obtained through estimates from 
the vertical velocity profile (Iverson, 1997) and two approaches 
are found in the literature. One considers a non-parameterized 
parabolic velocity profile in the vertical direction, resulting in a simple 
function of  mean velocity and flow depth (O’Brien et al., 1993; 
Gibson et al., 2021; Gibson et al., 2022). The other considers the 
analytical solution of  the velocity profile in the vertical direction, 
resulting in shear rate dependent of  rheological parameters 
of  the fluid, mean velocity and depth (Boutounet  et  al., 2016; 
Huang & Garcia, 1998; Di Cristo et al., 2013).

This study aims to investigate both shear rate formulations 
employed in literature through the steady uniform flow over an 
inclined rectangular open channel for Newtonian and non-Newtonian 
fluids, limiting itself  to fluids without thermal and viscoelasticity 
dependencies. This case has a well-established theoretical solution 
based on Shallow-Water hypothesis (Coussot, 1994), thus it can 
be used as a reference to evaluate numerical simulations results.

It is important to notice that the steady uniform flow is used 
only as a reference case, since geophysical and hazardous flows are 
commonly unsteady and non-uniform (Coussot & Meunier, 1996). 
However, this case is useful to investigate the aforementioned 
shear rate formulations, since it presents a theoretical solution 
and there are experimental data available. Moreover, it is part of  
basic scientific research of  numerical models, functioning as a 
benchmark test before simulating cases of  non-Newtonian flows 
that are more complex, such as tailings dam-breaks and debris flows.

MATERIALS AND METHODS

In this work, the normal depth and shear rate of  steady 
uniform flows are the main properties to be evaluated through 
theoretical, numerical and experimental tests. First, Subsection 
“Theoretical solution of  steady and uniform flow over an 
inclined rectangular channel of  non-Newtonian fluids” shows 
the deduction of  theoretical solutions for those properties. Then, 
three numerical methods (Lax-Friedrichs scheme, HEC-RAS 6.3 
and ANSYS Fluent 14.5) are described in Subsection “Numerical 
methods”, followed by the description of  experimental methods 
employed in this work in Subsection “Experimental methods”. 
Finally, Subsection “Test scenarios” define the test scenarios to 
be evaluated in this study.

Theoretical solution of  steady and uniform flow over an 
inclined rectangular channel of  non-Newtonian fluids

The coordinate system is oriented as ( ),x z , where x  is the 
longitudinal direction and z  is the flow height direction, and the 
velocity field is given by ( ),u w  components. The fluid is considered 
to be incompressible, within an isothermal flow, does not present 
viscoelastic effects and its rheological behavior follows the Herschel-
Bulkley constitutive law. Considering steady-state regime, simple 
shear conditions and shallow fluid layer, the shear stress is dominated 
by its vertical component xzτ , being exclusively dependent of  
the shear rate /u zγ = ∂ ∂ . Then, the Herschel-Bulkley constitutive 
law reduces to Equation 1, which depends on the yield stress cτ , 
consistency index nK  and flow index n  (Balmforth et al., 2007). 
Moreover, the Herschel-Bulkley model can recover the Bingham 
model ( 1n =  and 0>cτ ), the Power-Law model ( 1n ≠  and 0cτ = ) 
and the Newtonian model ( 1n =  and 0cτ = ).

1
 

n

xz n c
u u uK sgn
z z z

τ τ
−∂ ∂ ∂ = +  ∂ ∂ ∂ 

	 (1)

Where / 0u z∂ ∂ =  if  xz cτ τ< .
Note that materials transported by geophysical flows 

present a very complex nature, especially due to the variety of  
grain sizes and, consequently, to particle and interstitial fluid 
interactions (Iverson, 1997). A common approach is to characterize 
these mesoscopic-scale interactions in a macroscopic-scale 
point-of-view, resulting in the rheological characterization of  
the material (Coussot, 2017). Once the fluid is characterized 
adequately and carefully through rheometry techniques, the fluid 
mechanics/hydraulics approach can be applied, as this work does.
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The governing equations are integrated considering the 
aforementioned hypotheses, under uniform flow and fully developed 
flow conditions in a rectangular and wide channel. Using the 
zero-shear stress at the free surface and no-slip condition at the 
bottom as boundary conditions, the velocity profile is given by 
Equation 2, which corresponds to an idealized version for mud, 
debris and tailings steady uniform flows (Coussot, 1994).
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Where 0h  is the normal depth of  the flow, ( )0 0 / sincz h gτ ρ θ= −  
is the non-sheared region (plug flow) height and pu  is the 
non-sheared flow velocity.

The mean value theorem is applied to Equation 2 and 
provides the mean velocity of  the flow U , given by Equation 3 
(Coussot, 1994; Maciel  et  al., 2013). The volumetric flow rate 
Q  can be obtained by simply multiplying U  by the wetted area 

0A h b= , where b  is the channel width. The normal depth 0h  
can be implicitly calculated (e.g. a Newton-Raphson scheme) by 
defining the volumetric flow rate Q , Herschel-Bulkley parameters 
of  the fluid ( cτ , nK  and n ) and its density ρ , channel width b  
and slope θ .
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Where ( )*
0/ sincC ghτ ρ θ=  is the dimensionless yield stress.

Under steady, uniform and Shallow-Water conditions, the 
vertically averaged shear rate is equal to the bottom shear rate bγ . 
To obtain a shear rate in function of  the Herschel-Bulkley rheological 
parameters, mean velocity and normal depth, first the theoretical 
velocity profile ( )u z  (Equation 2) is differentiated along z-direction 
and then evaluated at the bottom ( 0z = ), resulting in Equation 4:
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Then, Equation 4 is inserted in Equation 3 and, after 
rearrangements, the depth-averaged non-Newtonian shear rate, 
now called HBγ , is given by Equation 5. This shear rate formulation 
includes relevant fluid properties, i.e. the pseudoplasticity and the 
viscoplasticity through the flow index n  and the yield stress cτ  
within *C , respectively. It should be noted that Equation 5 does 
not require additional parameters, aside from the rheological 
parameters, to be estimated by practitioners, since the flow 
index n  and yield stress within *C  (Equation 3) are expected to 
be known (e.g. from rheometry measurements) while modelling 
Herschel-Bulkley fluid flows.
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Similar developments were made by Ng & Mei (1994) 
and Di Cristo et al. (2013) for power-law fluids ( 1n ≠  and * 0C = ) 
and by Huang & Garcia (1998) and Boutounet et al. (2016) for 
Herschel-Bulkley fluids ( 1n ≠  and * 0C > ). Note that for a Newtonian 
fluid ( 1n =  and * 0C = ), the well-known expression for the 
non-parameterized shear rate Nγ , function of  only mean velocity 
and depth (O’Brien et al., 1993; Iverson, 1997; Gibson et al., 2021), 
is recovered, given by Equation 6. The subscript “N” refers to 
“Newtonian”. Other authors (Jeyapalan  et  al., 1983) use the 
constant “2” instead of  “3”, considering a parabolic distribution 
with maximum velocity.

0

3
N

U
h

γ = 	 (6)

Numerical methods

Mathematical model: the Shallow-Water Equations (SWE)

The Shallow-Water Equations (SWE) are widely used to 
model free surface flows where the vertical length scale is significantly 
smaller than the horizontal length scale (Castro-Orgaz & Hager, 2019). 
Physically, they express the conservation of  mass and momentum 
along the flow and can describe one or two-dimensional 
flows, since the SWE neglect the vertical velocity and assume 
that the distribution of  velocity in each section is uniform 
(Castro-Orgaz & Hager, 2019). To model a flow using the SWE, 
some hypotheses must be considered: pressure distribution is 
hydrostatic; the slope of  the channel is small; internal shear 
stresses are negligible in comparison of  friction at the bottom; and 
formulas from the steady uniform flow can be used to compute 
the friction stress (i.e. Manning-Chézy-Strickler, Hazen-Williams, 
among others) (Tan, 1992; Castro-Orgaz & Hager, 2019).

The one-dimensional SWE system can be written in 
conservative form (Garcia-Navarro et al., 1992; Gama et al., 2020) and 
in function of  wetted area A  and volumetric flow rate Q , as showed 
by Equation 7 and by its components in Equations 8a, 8b and 8c.

t x
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q f J 	 (7)
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0
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Where q  is the vector of  time-dependent terms, f  is the vector 
of  space-dependent terms, J  is the source term vector, h  is the 
depth of  the center of  gravity of  the cross section, 0S  is the 
channel slope and fS  the energy slope due to friction effects.
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Lax-Friedrichs finite difference scheme

The first numerical code used in this work to discretize the 
SWE system is the Lax-Friedrichs (LF) finite difference scheme 
(Gama  et  al., 2020). It allows implementing different bottom 
friction terms into the source term J  and solving numerically the 
one-dimensional SWE. This scheme is explicit and first order in 
both space and time. Even though it is a first order scheme, its 
accuracy is considered to be sufficient to the methodology of  
this work, since there are no shocks and/or discontinuities in the 
solution for steady uniform flow. A Total Variation Diminishing 
(TVD) second-order scheme, (e.g. TVD-MacCormack scheme 
(Garcia-Navarro et al., 1992), the MUSCL scheme (Van Leer, 1979), 
among others) would be required if  shock-capturing properties 
were necessary to the work.

The code was implemented in Python language, using the 
Jupyter Notebook interface. To solve numerically Equation 7 through 
the LF scheme, the domain is discretized as = ∆ix i x  in space and 

= ∆nt n t  in time, where ∆x  and ∆t  are the grid size and time step, 
respectively. The spatial domain 10 L m=  is discretized uniformly 
in 300 cells, whereas the time step is variable and calculated based 
on the Courant Number C , given by Equation 9. The Courant 
Number is used as stability criteria and must be lower than 1.0 to 
guarantee stability. Time step ∆t  is calculated for each cell fixing 
Courant Number as 0.25 and the smaller time step is chosen for the 
simulation. A constant flow rate is imposed as boundary condition 
for the first cell (upstream) and an order-zero extrapolation is 
applied to the last cell (downstream).

 
V gh

C t
x

+
= ∆

∆
	 (9)

Where V  is the velocity magnitude of  the cell and h  is the local 
depth in the cell.

The values of  vectors q  and f  can be computed in the 
subsequent time step for each internal cell through Equation 10.

( ) ( ) ( )1 1 1
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+∆  = + − − + ∆ ∆  
J Jq q q f q f q 	 (10)

Two equations of  fS  were implemented in the LF scheme. 
The first one (Equation 11) is based on the HEC-RAS 6.3 code 
(Gibson et al., 2021) and the work of  O’Brien et al. (1993). Its 
first term considers the roughness effect in turbulent flow and its 
last term uses Equation 6 to model the shear rate. In the context 
of  this work, this version of  the LF numerical code is called 
“LFN model”, where the subscript “N” refers to a Newtonian 
formulation of  the shear rate.

( )
2 2

2 4/3
1   n

f c n N
h

QS K
ghA R

η τ γ
ρ

 = + + 
 

 	 (11)

Where η  is the Manning coefficient and hR  is the hydraulic radius.
The second version employs Equation 12 and uses Equation 5, 

incorporating both the pseudoplasticity and viscoplasticity effects 
into the shear rate. This version of  the LF numerical code is called 
“LFHB”, where the subscript “HB” refers to a formulation of  the 
shear rate based on the Herschel-Bulkley rheological model.

( )1  n
f c n HBS K

gh
τ γ

ρ
 = + 
 

 	 (12)

In total, 159 hypothetical scenarios and 31 experimental 
cases were simulated by both LFN and LFHB models. The scenarios 
and cases are described in Subsection “Test scenarios”. The codes 
are available in .py format in the Supplementary Material.

Numerical setup employed by HEC-RAS 6.3

The second numerical code used in this work is the HEC-RAS 
6.3 and it is the benchmark code to verify the correct implementation 
of  the LF scheme. The code models one-dimensional (1D) or 
two-dimensional (2D) flows by solving the Shallow-Water Equations 
(SWE) using the Finite Volume Method [HEC-RAS Hydraulic 
Reference Manual 2022; US Army Corps of  Engineers (2022)]. 
Neglecting Coriolis effects, variation of  bottom topography and 
tangential stresses due to moving eddies, the code solves the SWE 
presented in Equations 7, 8a, 8b and 8c and employs Equation 11 
to model the friction term.

The attribution of  geometry, boundary conditions and 
mesh discretization was made in the HEC-RAS 6.3 environment 
through the Geometric Data editor and RAS Mapper, using the 
same procedure described in HEC-RAS Guides and Tutorials 
[HEC-RAS Guides and Tutorials, 2020; US Army Corps of  
Engineers (2020)]. A channel of  20 m  long and 0.3 m  wide was 
used as computational domain in order to establish a uniform 
flow, whose slope depends on the studied case. A constant flow 
rate is imposed as upstream boundary condition and the channel 
slope value is prescribed as downstream boundary condition.

The computational domain was discretized using a 
rectangular mesh of  0.03 0.03 m× , resulting in approximately 6660 
cells, validated by the Grid Convergence Index (GCI) procedure 
(Celik et al., 2008) with uncertainty of  0.41%  over the normal 
depth. Manning’s roughness coefficient was subjected to sensitivity 
tests and 1/30.001  n s m−=  was sufficiently low to avoid roughness 
effects and to enable the comparison with the theoretical model. 
Time-step size was governed by the Courant-Friedrichs-Lewy (CFL) 
condition, which must be less than one to guarantee numerical 
stability. No significant effects were observed in the CFL condition 
sensitivity tests. Simulation time was sufficient to establish steady 
regime (~ 5 minutes of  simulated time).

From the 159 hypothetical scenarios in total, 108 scenarios 
were simulated by the HEC-RAS 6.3 code. The results were then 
compared to results of  the LFN model in order to validate the 
implementation of  Lax-Friedrichs schemes. The scenarios are 
described in Subsection “Test scenarios”.

Mathematical model and numerical setup employed 
by ANSYS Fluent 14.5

The third numerical code used in this work is the 
ANSYS Fluent 14.5, a numerical code that employs the Finite 
Volume Method to solve Computational Fluid Dynamics 
problems. Differently from the LF scheme and HEC-RAS 
6.3, this numerical code solves the full-momentum equations 
(Equations 13 and 14) instead of  solving the SWE system. 
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Consequently, the shear rate calculation (Equation 15) is based 
on the complete velocity field, while SWE solvers use only mean 
velocity and flow depth to calculate the shear rate. Thus, it provides 
a third different approach to confront numerical results and 
evaluate the influence of  shear rate formulation of  SWE solvers. 
However, its computational cost prevents to simulate several cases, 
while SWE solvers, such as HEC-RAS 6.3, present significantly 
lower computational cost.

( ) 0V
t
ρ ρ∂
+∇ ⋅ =

∂

 

	 (13)

( ) ( )V VV g p
t
ρ ρ ρ τ∂

+∇ ⋅ = −∇ +∇ ⋅
∂

     

 	 (14)

Where ρ  is the fluid density, ( ),V u w=


 is the velocity field and 
its components, and p  is the pressure.

In these conditions, the shear rate γ  is given by Equation 15.

1  :   
2 ij ijD Dγ = 	 (15)

Where ji
ij

j i

uuD
x x

 ∂∂ = +
 ∂ ∂ 

.

The Volume-of-Fluid (VoF) method (Hirt & Nichols, 1981; 
ANSYS Fluent, 2012) is employed to track the free surface 
between phases (air and test-fluid), where the free surface is 
located at volume fraction variable 0.5a = . Due to discontinuity 
in the apparent viscosity function η  of  viscoplastic fluid flows, a 
bi-viscous viscosity regularization technique (Pereira et al., 2022) 
is employed (Equation 16), where the critical shear rate 10.01 c sγ −=  
is sufficiently low to adequately model the apparent viscosity 
function.
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	(16)

Inlet and outlet boundary conditions were modelled as 
prescribed velocity (theoretical mean velocity) and atmospheric 
pressure/free outlet, respectively. The mesh contains 32000 finite 
volume cells and a very fine refinement was employed from the 
bottom to the predicted free surface height; spatial discretization 
uncertainty of  1.86 %  was obtained from the GCI procedure. The 
SIMPLEC algorithm was employed to iteratively solve pressure 
and velocity variables. Unsteady regime was considered due to the 
usage of  VoF method, time-step size was governed by the CFL 
condition, which was kept at a maximum of  0.25 , and simulation 
time was sufficient to establish steady regime. Values of  normal 
depth and shear rate at the bottom were evaluated. The study 
cases are described in Subsection “Test scenarios”.

Experimental methods

An experimental apparatus consisting of  a rectangular channel 
of  width 0.3 b m=  coupled to a recirculation system was used to 
generate and to measure normal depth of  steady uniform flows. 

The experimental apparatus has been used in previous experimental 
runs (Fiorot et al., 2015; Maciel et al., 2017; Sáo et al., 2021) and is 
described in the references therein. Two samples of  carbopol gel1 were 
used as test-fluids and their rheological characterization was carried 
out using an R/S Brookfield rotational rheometer, also described 
in previous works (Minussi & Maciel, 2012; Pereira & Maciel, 2021; 
Pereira  et  al., 2022). In this work, eighteen (18) new results of  
steady uniform flows of  carbopol gels are reported. Rheological 
characterization was executed using coaxial geometry with CC-45 spindles. 
The rheometry protocol consisted of  imposing shear rate to the flow 
in two stages (an increasing phase from 0 to 1100 s−  for 200 seconds 
and a decreasing phase for 200 seconds) and measuring the resulting 
shear stress. The properties of  the flow (channel slope and flow rate) 
and of  the test-fluid (mass concentration, fluid rheology and density) 
are described in Subsection “Test scenarios”.

Test scenarios

First, the hypothetical scenarios are described and then the 
experimental cases are reported. The scenarios are characterized 
by the channel slope θ , flow rate Q , consistency index nK  
(viscosity µ  in the Newtonian case), flow index n  and dimensionless 
yield stress *C . Theoretical normal depth 0Th  was calculated 
by solving implicitly the Equation 3.

Hypothetical scenarios consisted of  fluids characterized 
by different rheological models: Newtonian ( 1n =  and * 0C = ), 
Power-Law ( 1n <  and * 0C = ), Bingham ( 1n =  and * 0C > ) and 
Herschel-Bulkley ( 1n <  and * 0C > ). Flow index was limited to 
0.1 1.0n≤ ≤  and dimensionless yield stress to *0 0.830C≤ ≤ , where 
each property was selected almost in a uniform manner within each 
correspondent range. These are the relevant properties to calculate 
the values of  shear rates (Equation 5) and cover almost entirely the 
physically possible ranges of  n  and *C , i.e. pseudoplastic fluids 
present 0 1n< <  and the flow of  viscoplastic fluids is only possible for 

* 1C < . Fluid density was fixed as 1000  3 kg m−  and the channel slope 
was limited to 4θ < ° . Constant inlet flow rates ( 10.2 5.0  Q L s−≤ ≤ ) 
and consistency index (0.01 40 . n

nK Pa s≤ ≤ ) were attributed in ad hoc 
manner in order to simulate flows with normal depths typical of  
prototype scales (up to 30 cm ) and relatively low Reynolds numbers 
( 700HRe < , laminar regime). In total, one hundred and fifty nine 
(159) hypothetical scenarios were simulated and all data is available 
in the Supplementary Material in form of  spreadsheet. All of  the 
159 hypothetical scenarios were simulated using the Lax-Friedrichs 
code, while 108 were simulated by HEC-RAS 6.3.

The experimental scenarios were based on the procedures 
described in Subsection “Experimental methods”. The tests were 
carried out using different channel slopes of  4 10θ° ≤ ≤ ° , flow rates 
of  0.2 0.9 /Q L s≤ ≤  and fluid rheology (carbopol gels with 0.15%  and 
0.17%  of  mass concentration). Experimental results from previous 
works in literature (Haldenwang et al., 2010; Fiorot et al., 2015; 
Maciel  et  al., 2018) were used to complement the experimental 
dataset. Thirty-one (31) experimental scenarios (see Table A1 from 
Annex A) were simulated through LFN and LFHB models.

1	 Carbopol gel is a polymeric solution that presents non-Newtonian effects, 
such as viscoplasticity and pseudoplasticity. It is commonly used as test-fluid 
for controlled experiments.
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For ANSYS Fluent simulations, Table 1 shows the input 
parameters and fluid characteristics. Since full-momentum 
simulations have expensive computational costs, four cases were 
simulated, one for each rheological model.

RESULTS AND DISCUSSION

From now on, the subscript “0” from normal depth 
0h  is dropped, so the nomenclature for normal depth is now 

“ h ”. Initially, the Lax-Friedrichs numerical implementation is 
validated by comparing the results of  the LFN model (

NLFh ) with 
HEC-RAS 6.3 results ( RASh ). For that, the same Equation 11, 
that contains Equation 6, was used for both codes. Figure  1 
shows the comparison in terms of  normal depth h . It is clear 
that the LFN model reproduces the HEC-RAS 6.3 results for 
any rheological model, since the same equation (Equation 11) 
for bottom friction is used. Thus, the Lax-Friedrichs scheme is 
considered to be implemented correctly. Now the LF scheme is 
validated, Equations 11 and 12 can be properly evaluated through 
LFN and LFHB models, respectively.

Figure 2 compares normal depth results obtained through 
LFN and LFHB models. Theoretical solution of  each scenario ( Th ) 
is used as reference, thus the normal depth of  each scenario is 
normalized by the each correspondent theoretical normal depth. 
It is observed that the ratios of  normal depth obtained by the LFHB 
model to theoretical normal depth (

HBLF  / Th h ) are close to unity, 
indicating a good agreement between numerical and theoretical results. 

On the other hand, the ratios of  normal depth obtained by the 
LFN model to the theoretical normal depth (

NLF  / Th h ) are between 
0.86 and 1.00. It means that the values of  normal depth obtained 
by LFN model can reach up to 14% deviation from the theoretical value.

The rheological model of  each data point must be observed. 
The Newtonian model is very close to unity on both axis, which 
shows a good numerical-theoretical agreement for both numerical 
models. However, by evaluating other rheological models, the 
deviation in normal depth for the LFN model becomes more 
significant. Although the three remaining rheological models have 
points in all range of  deviation, from 0.86 to 1.00, it is noted that 
the Herschel-Bulkley model presents a cluster of  higher-deviation 
points, around 

NLF  / 0.88Th h = .
To understand why the normal depths of  Herschel-Bulkley 

fluid flows are more susceptible to deviation using the 
LFN model, Figure 3 shows a theoretical analysis of  the shear 
rate formulations of  LFN and LFHB models in function of  flow 
index n  and dimensionless yield stress *C  for each scenario. 
It contains hypothetical data (please see Supplementary Material) and 
experimental data (please see Subsection “Experimental methods” 
and Annex A). The scattered points represent each scenario and 
show that a vast range of  n  and *C  was considered in the study. 
To construct the color map, the ratio of  shear rates /HB Nγ γ   
was calculated using Equations 5 and 6. It is clear that the more 
pseudoplastic ( 1n < ) or more viscoplastic ( * 0C > ) the fluid is, the 
higher is the ratio /HB Nγ γ  . If  both effects are combined, such as 
the case of  the Herschel-Bulkley rheological model, the ratio of  

Table 1. Input parameters for ANSYS Fluent simulations. Cases ‘N’, ‘PL’, ‘B’ and ‘HB’ refer to Newtonian, Power-Law, Bingham and 
Herschel-Bulkley models, respectively.

Case U  ( ) 1m s− 0h  ( )mm θ  ( )° cτ  ( )Pa nK  ( ) nPa s n ( )− ρ  ( ) 3kg m−  *C  ( )−

N 0.2558 9.83 8.00 0.00 0.212 1.000 1237.00 0.000
PL 0.2357 5.70 1.03 0.00 0.140 0.400 1120.00 0.000
B 0.0200 33.10 4.00 12.53 3.160 1.000 1000.00 0.553
HB 0.0220 29.83 4.00 11.13 4.260 0.430 1000.00 0.545

Figure 1. Comparison of  normal depth results obtained by the 
LFN and LFHB models.

Figure 2. Comparison between normal depths obtained by LFN 
and LFHB models using theoretical solution as reference.
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shear rates is sensibly affected. Such ratio can be understood as a 
deviation of  the Herschel-Bulkley based shear rate (Equation 5) 
from the Newtonian-based shear rate (Equation 6). Since the only 
difference between models LFN and LFHB is the friction term, this 
analysis indicates that the deviation in normal depths presented 
by Figure 2 is linked to the deviation in shear rate.

To observe the influence of  the shear rate deviation 
over the normal depth results, Figure 4 shows the relationship 
between ratios of  normal depth (

NLF  / Th h ) and the ratios of  
shear rate ( /HB Nγ γ  ). It is clear that the deviation in normal 
depth is very sensitive to the deviation in shear rate, especially for 

/ 2.5HB Nγ γ <  . The magnitude of  their correlation can be quantified 
through the Spearman’s rank correlation procedure (Zar, 1972). 
A Spearman correlation coefficient 0.79sr = −  is calculated from 
the 159 hypothetical simulated points. It shows a strong and 
monotonically decreasing correlation between both ratios. From 
this observation, it can be inferred that the deviation in normal 
depth is directly related to the shear rate formulation used by 
LFN model (Equation 5). Even if  the uncertainties in estimating 
rheological parameters could surpass the deviations in normal 
depth, this result means that using Equation 6 to model shear 
rates already yield these deviations even in hypothetical scenarios 
or very controlled experiments.

An inflection region can be observed in Figure  4 for 
/ 2.5HB Nγ γ ≈  , where the monotonically decreasing behavior of  

NLF  / Th h  changes to an increasing behavior. The points located 
at / 2.5HB Nγ γ >   are scenarios where dimensionless yield stress 

*C  is high and/or flow index n  is low, as Figure  3 indicates. 

For these scenarios, Equation 11 allows two analyses: 1) the contribution of  
yield stress cτ  surpasses significantly the contribution of  the viscous term 

n
nK γ ; or 2) lower flow indexes n  reduce significantly the contribution of  

the viscous term n
nK γ . The combination of  both analyses is also possible. 

Thus, these analyses mean that shear rate has less effect on the 
friction term for highly viscoplastic and/or pseudoplastic fluids, 
so the numerical normal depth is less affected by the shear rate 
deviation, as the tendency for / 2.5HB Nγ γ >   indicates.

In terms of  applicability in real events of  mudflows, debris 
flows and tailings flows, it is important to estimate the order of  
magnitude of  the shear rate within the flow. O’Brien & Julien 
(1988) report that typical shear rates for hyperconcentrated flows 
are on the order of  15 50 s−− , while Major & Pierson (1992) state 
that open-channel debris flows rarely exceed 120 s−  and maintain 
rheometry measurements below 150 s− . Sosio & Crosta (2009) 
also agree that these events present shear rates on the order 
of  110 15 s−− . Figure 4 shows the range of  shear rate values for 
each scenario, stablishing three ranges of  shear rate based on 
the discussed literature. The first range is 120 sγ −≤ , typical of  
these real events; the second range is 120 50 sγ −< ≤ , incorporating 
uncommon (however observable) values of  shear rates; and the 
third range is 150 sγ −>  for very uncommon values. From Figure 4, 
it is clear that most of  scenarios from the first and second ranges 
are located at / 2.5HB Nγ γ ≈  , where most of  the deviation occur. 
This observation means that the usage of  the Newtonian-based 
shear rate (Equation 6) instead of  the Herschel-Bulkley based shear 
rate (Equation 5) would provide higher deviations in situations 
typical of  real-event flows.

Finally, Table 2 shows results of  normal depth and bottom 
shear rate of  simulations carried out by ANSYS Fluent 14.5. Solutions 
of  the LFHB model are used as reference to calculate the deviation in 
normal depth ( h∈ ) and in bottom shear rate (

bγ∈  ), where both present 
low errors and, consequently, good numerical-theoretical agreement. 

Figure 3. Ratio of  shear rates /HB Nγ γ   in function of  dimensionless 
yield stress *C  and flow index n . Scattered points represent the 
hypothetical and experimental scenarios for every rheological 
model considered in the work. Newtonian fluids are represented 
by 0=*C  and 1=n , Power-Law fluids by 0=*C  and <n , 
Bingham fluids by 0>*C  and 1=n , and Herschel-Bulkley fluids 
by 0>*C  and 1<n .

Figure 4. Relationship between ratios of  normal depth (  /NLF Th h ) 
and the ratios of  shear rate ( / HB Nγ γ ). For experimental data, the 
reference is given by the experimental normal depth, so the ratio 
becomes  /NLF exph h . Shear rate values (γ ) are calculated through 
Equation 5.



RBRH, Porto Alegre, v. 28, e19, 20238/12

Evaluation of  shear rate formulations through steady uniform non-Newtonian fluid flows in the context of  shallow-water equations

Full-momentum CFD codes calculate bottom shear rate through the 
complete velocity field (see Equation 15), without the shallow-water 
hypothesis made by the LF models. Since a good agreement with 
theoretical shear rate (Equation 15) is obtained for any rheological 
model studied in this work, these results corroborate the usage of  
Equation 12, and consequently Equation 5, in the friction term 
of  SWE models. In this particular study, using SWE models is 
more advantageous than using CFD codes due to a significant 
difference in computational cost (order of  minutes to SWE solvers 
and hours to CFD solvers) and to the obtainment of, virtually, 
the same solution.

CONCLUSIONS

This work explored the steady uniform flow as a theoretical 
reference to investigate two equations of  shear rate (Equations 5 and 6) 
applied to the Shallow-Water Equations system. Three numerical 
codes were used (Lax-Friedrichs finite difference scheme, HEC-RAS 
6.3 and ANSYS Fluent 14.5) and experimental data were gathered to 
confront with theoretical solutions. Extensive simulations using the 
Lax-Friedrichs scheme were performed, employing four rheological 
models (Newtonian, Power-Law, Bingham and Herschel-Bulkley) 
and different conditions of  laminar flows. For hypothetical 
scenarios, it was shown that the shear rate formulation based 
on the Herschel-Bulkley model (Equation 5) presented good 
numerical-theoretical confrontation results, corroborated by the 
four simulations carried out by ANSYS Fluent 14.5. On the other 
hand, the Newtonian-based shear rate formulation (Equation 6) 
deviated from theoretical solution by 14% at maximum on a shear 
rate range typical of  real-event flows. A strong and monotonically 
decreasing correlation (Spearman rank’s correlation 0.79sr = − ) was 
found between the ratio of  shear rates and the ratio of  normal 
depths, indicating that the formulation of  Equation 11 is directly 
linked to the normal depth deviation from theoretical solution. 
Thus, for idealized cohesive mudflows, it is shown that a shear 
rate formulation based on a non-Newtonian model (Equation 5) 
performs better than the Newtonian-based shear rate approach 
(Equation 6) applied in most models. The steady uniform condition 
was evaluated in this work and further studies should be carried out 
for non-steady and non-uniform flows of  non-Newtonian fluids.
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ANNEX A. TABLE A1 PRESENTS RHEOMETRY DATA AND EXPERIMENTAL DATA FROM STEADY 
UNIFORM FLOWS IN RECTANGULAR AND INCLINED CHANNELS.

Table A1. Properties of  each experimental scenario.

cτ  (Pa) nK  ( . nPa s ) n (−) ρ  (  3Kg m− ) Q (  1L s− ) θ  (°) exph  (m) *C  (−)
Experimental obtained 
in this work

11.13 4.26 0.43 1000.00 0.2 4 0.0300 0.542
11.04 4.74 0.42 1000.67 0.61 4 0.0340 0.475
11.26 5.05 0.42 999.33 0.41 4 0.0366 0.450
10.75 5.32 0.41 1000.67 0.87 4 0.0388 0.405
10.87 4.47 0.44 1000.67 0.23 6 0.0229 0.463
10.61 4.24 0.49 998.67 0.41 6 0.0256 0.404
10.71 4.72 0.43 998.67 0.63 6 0.0274 0.382
10.83 5.09 0.42 1001.33 0.83 6 0.0288 0.367
11.54 5.03 0.42 1000.67 0.21 8 0.0229 0.369
11.62 5.08 0.42 999.33 0.42 8 0.0256 0.332
11.17 5.64 0.41 996.67 0.6 8 0.0274 0.299
11.05 5.93 0.4 1000.00 0.76 8 0.0288 0.281
11.09 4.81 0.43 999.33 0.21 10 0.0164 0.397
11.72 4.76 0.43 1000.67 0.41 10 0.0186 0.370
11.56 5.1 0.42 1000.67 0.6 10 0.0200 0.339
11.78 5.21 0.42 999.33 0.75 10 0.0210 0.329
32.49 12.94 0.37 1001.93 0.39 8 0.0358 0.665
32.88 19.93 0.36 1001.93 0.75 8 0.0449 0.537

Maciel et al. (2018) 0.40 0.171 0.71 1020.00 0.22 5 0.0055 0.082
0.40 0.172 0.71 1020.00 0.27 5 0.0057 0.080
0.40 0.172 0.71 1020.00 0.32 5 0.0058 0.079
0.40 0.176 0.71 1020.00 0.36 5 0.0061 0.075
0.40 0.165 0.71 1020.00 0.41 5 0.0063 0.072
0.40 0.169 0.71 1020.00 0.46 5 0.0066 0.069

Haldenwang et al. (2012) 0.00 0.92 0.69 1030.00 2.78 1 0.0438 0.000
0.00 0.92 0.69 1030.00 6.79 1 0.0587 0.000
2.80 0.008 1.00 1032.00 3.12 1 0.0226 0.701
2.80 0.008 1.00 1032.00 4.36 1 0.0243 0.652
2.80 0.008 1.00 1032.00 3.27 2 0.0136 0.583

Fiorot et al. (2015) 0.00 0.2111 1.00 1273.00 0.75 8 0.0098 0.000
0.00 0.2173 1.00 1273.00 0.96 8 0.0107 0.000
0.00 0.2117 1.00 1273.00 1.14 8 0.0116 0.000



RBRH, Porto Alegre, v. 28, e19, 202312/12

Evaluation of  shear rate formulations through steady uniform non-Newtonian fluid flows in the context of  shallow-water equations

SUPPLEMENTARY MATERIAL

Supplementary material accompanies this paper.
Data used for numerical simulations are available in form of  spreadsheet in the following URL: https://osf.io/nuz7s/?view_on
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