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ABSTRACT - A program to determine optimum contribution selection using differential evolution was developed. The
objective function to be optimized was composed by the expected merit of the future progeny and the coancestry among selected
parents. Simulated and real datasets of populations with overlapping generations were used to validate and test the performance
of the program. The program was computationally efficient and feasible for practical applications. The expected consequences
of using the program, in contrast to empirical procedures to control inbreeding and/or to selection based exclusively on expected
genetic merit, would be the improvement of the selection response and a more effective control of inbreeding.
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Aplicação da evolução diferencial para a definição da contribuição genética ótima

RESUMO - Um programa baseado na técnica de evolução diferencial foi desenvolvido para a definição da contribuição
genética ótima na seleção de candidatos a reprodução. A função-objetivo a ser otimizada foi composta pelo mérito genético
esperado da futura progênie e pela coascendência média dos animais em reprodução. Conjuntos de dados reais e simulados de
populações com gerações sobrepostas foram usados para validar e testar o desempenho do programa desenvolvido. O programa
se mostrou computacionalmente eficiente e viável para ser aplicado na prática e as consequências esperadas de sua aplicação,
em comparação a procedimentos empíricos de controle da endogamia e/ou com a seleção baseada apenas no valor genético
esperado, seriam a melhora da resposta genética futura e limitação mais efetiva da taxa de endogamia.
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Introduction

Selection based on optimum genetic contribution
(Woolliams & Thompson, 1994; Meuwissen, 1997) aims to
restrict the inbreeding level of a population and to maximize
the genetic progress in the long term. Under the same level
of inbreeding, optimum contribution selection can provide
higher genetic gain when compared to selection based
exclusively on expected breeding value (Meuwissen &
Sonesson, 1998).

The expected merit of the future progeny and the
coancestry among selected parents are the usual
components considered in the index (objective function) to
be optimized in the optimum contribution selection
definition. A negative weight is used for coancestry, aiming
to control inbreeding in the long term. With overlapping
generations, a more proper genetic contribution seems to

be obtained when the juveniles (animals not yet available
for reproduction) are also considered in the optimization
process or when coancestry computation take in to
account previous contributions. However, the advantage
of considering these changes to perform optimum
contribution selection is not so evident in the literature.

The objective function for optimum contribution
selection can be optimized using, for example, Lagrange
multipliers (Meuwissen & Sonesson, 1998), semidefinite
programming (Pong-Wong & Woolliams, 2007) or
evolutionary algorithms (Sorensen et al., 2006). Semidefinite
programming is advantageous when the components and
the contrasts (restrictions) of the objective function are
convex, as the case of the usual objective function mentioned
above. Evolutionary algorithms are, however, more flexible
regarding the components and the contrasts that can be
considered. Differential evolution (Storn & Price, 1995)
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is a type of evolutionary algorithm, very powerful to
optimize diverse objective functions studied in the
literature (Price et al., 2005). Despite of the potential of the
method, it seems that the feasibility of using Differential
evolution for optimum contribution selection has not been
investigated so far.

The objectives of this study were the following: to develop
a program based on differential evolution to determine
optimum genetic contributions; to validate and test its
performance using simulated and real data sets and different
parameters of the Differential evolution algorithm; to
empirically evaluate the consequences of applying different
approaches to perform optimum contribution  selection in
schemes with overlapping generations.

Material and Methods

The optimum genetic contribution was defined with
the optimization of the following objective function
(OF): OF = w1*x’EBV/2N + w2*x’Ax/4N2, where x = the
vector of genetic contributions (number of mates for each
candidate) to be optimized, EBV =  the vector containing the
expected breeding values, A = the numerator relationship
matrix, w1 and w2 =  the weights for the expected merit of the
future progeny (x’EBV/2N) and the average coancestry
among selected parents (x’Ax/4N2), respectively, and N =
the number of required matings. In order to optimize this
objective function, the following program based on
differential evolution was developed.

The differential evolution algorithm applied consisted
in randomly generating an initial ‘population’ of possible
solutions, composed by the number of mates for each
candidate. Each ‘individual’ of the ‘population’ is considered
a ‘chromosome’ with n ‘loci’, where n is the number of
candidates for selection. The ‘alleles’ are random values
ranging from 0 to the maximum allowed number of mates for
each candidate. The ‘fitness’ of each ‘individual’, determined
by the value of the objective function described above, is
calculated according to the value (‘allele’) of each ‘locus’.
Once the initial ‘population’ is established, several ‘generations’
are simulated. In each ‘generation’, a ‘challenger’ is
constructed for each ‘population member’. If this ‘challenger’
has superior ‘fitness’, it will replace the ‘population member’
in the next ‘generation’. To build this ‘challenger’, three
other ‘individuals’ are chosen at random. We can label
these as A, B and C. Each ‘allele’ is then addressed in turn.
With a probability equal to the ‘crossover rate’ (CR), the
‘allele’ is simply adopted from the ‘population member’ that
the ‘challenger’ is challenging. Otherwise, a new ‘allele’
value is constructed as the value for ‘member’ A plus the

‘mutation factor’ (F) times the difference between the values
for B and C. Successful ‘challengers’ replace their respective
‘population members’ and, together with ‘surviving
members’, constitute a new ‘generation’ with higher mean
‘fitness’. The process continues over enough ‘generations’
to achieve convergence close to an optimal solution, with
the ‘fittest’ solution being chosen (Price & Storn, 1997).

The differential evolution algorithm was originally
designed to work with continuous variables. The approach
proposed by Lampinen & Zelinka (1999) was used to provide
integer solutions for x (number of mates per candidate). The
method consists in letting differential evolution work
internally with continuous floating-point values and
converting them to integers to calculate the ‘fitness’.
According to these authors, this is essential to maintain the
diversity of the ‘population’ and the robustness of the
algorithm. To enhance the speed of the differential evolution
for the optimum contribution selection application, the
Colleau (2002) indirect approach to compute coancestry
was adopted, and linked lists (Knuth, 1975) were used for
the storage and calculations involving sparse matrices. The
differential evolution developed program was written in
FORTRAN language.

Simulated datasets were used to validate and to evaluate
the performance of the differential evolution program
(Experiment 1). Phenotypes of a hypothetical trait, with
heritability equal to 0.4, were simulated according to the
infinitesimal model: yij = bi + aij + eij , in which yij = the
phenotype of the animal j in the contemporary group (CG) i,
bi = the effect of the CG i, aij =  the breeding value of the
animal j in the CG i and eij =  the random error. Firstly, a base
population of six sires and 120 dams, which were assumed
to be unrelated, unselected and randomly sampled from a
conceptually infinite population, was generated. Each sire
was randomly mated to 20 dams. Following a pregnancy rate
of 80%, each dam could generate an offspring with  randomly
defined sex. Ten years (mating seasons) were simulated.
For each year, those sires used in two consecutive years
and the failed dams were culled, resulting in a replacement
rate of 50 and 20% for sires and dams, respectively. For the
first ten years, selection for replacement was based on
breeding values. Following this structure, 20 replications
were simulated. In all these replicates, the differential
evolution program was then applied to determine the
optimum contribution selection for what would be the
eleventh mating season.

It was considered as candidates for selection, the six
sires used in the tenth mating season plus the 12 best male
juveniles. Females available for reproduction were the 96
dams that conceived in the last simulated year plus the 24
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best female juveniles. It was assumed that each available
female would produce one offspring, i.e. the female
contribution was not optimized in the optimum contribution
selection process. The maximal number of allowed mates
per male was equal to 40.

The allele values of the initial population were randomly
generated from a uniform distribution ranging from 0 to 40.
Two distinct ways to constrain the number of mates to be
equal to the number of available females (120) were
investigated: 1) scaling the allele values, forcing them to
sum to number of mates, ‘internally’ in the differential
evolution algorithm; or 2) using an auxiliary vector to scale
the allele values just when they were converted to integers,
in the subroutine to evaluate the ‘fitness’.

Runs of the differential evolution program were carried
out using the following sets of operational parameters:
size of the population equal to 36 (twice the number of
candidates for selection); crossover rate (CR) equal to 0.5 or
0.7; mutation factor (F) equal to 0.9 or randomly sampled
from a uniform distribution (ranging from 0.2 to 0.9) for
each locus.

For each of the eight possible combinations compromising
the type of constraint, the crossover rate (CR) and the
mutation factor (F) adopted, four applications of the
differential evolution program were performed, varying the
weights of the objective function for the genetic merit (w1)
and the coancestry (w2). A first application optimizing just
the genetic merit (w1=1; w2=0) was applied to validate the
program, as the correct solution is known in this case. Two
distinct ways to control coancestry were then tested:
imposing a negative weight (w1=1; w2=-5); and imposing a
restriction (w1=1; w2= ‘r’), forcing the average coancestry
of the selected parents to be equal to the application which
considered w2=-5 (this restriction was guaranteed with a
‘death’ penalty for ‘members’ of the evolutionary process
that broke the constrain). The fourth application, tested
the performance of the differential evolution program to
optimize an objective function considering just the
coancestry (w1=0; w2=-1).

For each set of weights of the objective function and
constrain on the number of mates a modified version of the
differential evolution algorithm proposed by Gondro &
Kinghorn (2008) was also applied, aiming to improve speed
and robustness of convergence. The method basically
presents three differences from the differential evolution
previously described (adopted values are included in
parenthesis): i) low mutation factor (F) for most generations
and a high mutation factor (F) for every few generations
(F=0.1; F=1.0 every four generations); ii) lower crossover

rate (CR) for latter generations (CR=0.5; CR=0.1 if
generation>5,000); iii) perform proportional and absolute
mutation (Gondro & Kinghorn, 2008) on every few loci (~3%).

Convergence of the evolutionary process was assumed
when the range and the mean absolute deviation of the
‘fitness’, considering all the ‘individuals’ of a ‘generation’,
were lower than 1x10-6.

In order to test the viability of the differential evolution
developed program for practical applications, a real data set
of a Nelore herd was used (experiment 2). The full pedigree
contained 4,763 animals, which were born from 1967 to 2006.
Candidates for selection were chosen based on the selection
index used by the farm, composed by expected breeding
values for different pre-weaning and yearling traits. The
candidate sires were those ranked as top 30% and used in
the last three mating seasons (from 2004 to 2006), and the
top 20% juveniles (males born in 2004 and 2005), totalizing
a number of candidates equal to 100. The females available
for reproduction were those which were pregnant in the last
mating season and the top 20% heifers (females born in
2005), totalizing 500 females to be mated. As in the previous
experiment, it was assumed that each available female
would produce a fixed number of one offspring, i.e. the
female contribution was not optimized in the optimum
contribution selection process.

The optimum genetic contribution for each available
sire was defined accordingly to the objective function and
the differential evolution program described above. The
operational parameters of the differential evolution
algorithm were: ‘population’ size = 200 (twice the number of
candidates); crossover rate (CR) = 0.5 (or CR = 0.1 if
generation>5,000); and mutation factor (F) = 0.1 (or F=1.0
every 4 generations). As proposed by Gondro & Kinghorn
(2008), proportional and absolute mutation was performed
for approximately 3% of the ‘loci’. Convergence of the
evolutionary process was assumed when the range and the
mean absolute deviation of the ‘fitness’, considering all the
‘individuals’ of a ‘generation’, were lower than 1x10-4, or
the ‘fittest’ solution of the ‘generation’ 5x106.

Different weights of the objective function for the
genetic merit (w1) and the coancestry (w2) were empirically
defined to evaluate the consequences of applying the
optimum contribution selection in contrast to the selection
based exclusively on expected breeding values. The four
sets of adopted weights were: w1=1 and w2=-1 (OC_1);
w1=1 and w2=-10 (OC_10); w1=1 and w2=-20 (OC_20); w1=0
and w2=-1 (OC_100).

The importance of considering juveniles in the objective
function or previous contributions to compute coancestry,
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in populations with overlapping generations, was
empirically evaluated with simulated data (Experiment 3).
The same model and structure of the population described
in the experiment 1 were used in the simulation of the first
10 years. Other 10 years were simulated, following four
selection strategies: 1) selection based on best linear
unbiased prediction (BLUP) of the breeding values, with
a replacement rate of 50 and 20% for sires and dams,
respectively, each sire mated randomly to 20 dams; 2) OC
– optimum genetic contribution  selection considering the
actual available candidates (described latter); 3) OCf –
optimum genetic contribution selection considering the
actual and the future (juveniles – animals younger than
two years of age) available candidates; and 4) OCg –
optimum genetic contribution selection using the approach
proposed by Grundy et al. (2000), which adopts an
augmented numerator relationship matrix (A*) and a vector
of committed future contributions (f) to compute coancestry
((x+f)’A*(x+f)).

For the three optimum genetic contribution selection
strategies, males considered as candidates for selection
were the sires used in the previous mating season and the
steers (two years old males) ranked as top 30%. As in the
first experiment, failed dams were automatically replaced by
the top 20% heifers, and it was assumed that each available
female would be mated once per season. Random matings
were performed conditionally on the optimum contribution
solutions of the sires, with a maximum number of allowed
mates per sire equal to 40. Following each strategy and
mating season, 20 replicates were simulated.

The optimum genetic contribution for each available
sire was defined accordingly to the objective function and
the differential evolution program described in the beginning
of this section. The operational parameters of the differential
evolution algorithm and the convergence criteria were the
same as those adopted in experiment 2.

For the optimum contribution strategy considering
juveniles (OCf), the estimated contributions of the future
candidates were also considered in the optimization process
to avoid restriction of the future use of good juveniles due
to previous intensive use of their parents, i.e. aiming to
attain a better balance of using actual and future good
candidates.

The weight for the average coancestry among parents
was empirically defined forcing optimum genetic
contribution strategies (OC, OCf and OCg) to present the
same inbreeding rate as the BLUP strategy, allowing the
comparison of the genetic progresses under the same level
of inbreeding.

Results and Discussion

The assumed convergence of the differential evolution
program was attained very fast (Table 1). The minimum,
mean and maximum central processing unit (CPU) time, over
the 20 replicates, were equal to 0.2, 3.5 and 17.3 seconds,
respectively. For a mate selection application, Abbass
(2000) stated that the generation of the numerator
relationship matrix made the optimization problem very
computationally expensive. This demand was drastically
reduced in the present application with the adoption of the
indirect approach to compute coancestry (Colleau, 2002),
contributing for the efficiency of the program. It is important
to note that although the number of candidates (18) was
small for the optimum genetic contribution selection, the
coancestry computations also involved the available females
and their ascendants, with a total number of animals ranging
from 203 to 241, depending on the replication.

The expected merit of the future progeny with BLUP
selection (three best sires mated to 40 dams each) would be
equal to 0.6100. The optimum genetic contribution selection
applications maximizing only the genetic merit (w1=1 and
w2=0), used to validate the differential evolution program,
presented solutions very close or equal to the optimum
solution. The expected merits ranged from 0.6075 to 0.6100,
varying with the operational parameters. Only the
application that considered the modified differential
evolution and adopted an auxiliary vector to constrain the
number of mates provided the optimum solution. The
others presented a different solution because, for some
replications, one or even two mates were recommended for
the fourth best sire, which had an index value very close to
the third best ranked sire (data not shown).

Considering the speed of the optimization process, the
applications with a ‘light’ penalty for coancestry (w2=-5)
outperformed those with a ‘death’ penalty for ‘individuals’
presenting average coancestry greater than 0.0857 (“w2=r”).
Both strategies presented almost the same solutions, however.

Scaling the allele values and forcing them to sum to
number of mates, slowed down the efficiency of the
differential evolution  algorithm, in comparison with the
applications that used an auxiliary vector to scale the
allele values just for evaluating the ‘fitness’ (Table 1).
This result is in agreement with the statement of Price et al.
(2005) that the shrinkage of the boundaries of the allele
values could negatively impact on the ability of the
differential evolution to converge.

Using a random mutation factor (F~u[0.2;0.9])
accelerated the convergence process, in contrast to a fixed
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mutation factor equal to 0.9. Applications using crossover
rates equal to 0.5 or 0.7 presented similar results, i.e. there
were no evidences that the use of a higher crossover rate
resulted in premature convergence. It is important to
emphasize that these operational parameters of the
differential evolution are sensitive case, i.e. the best
mutation factor and crossover rate for a problem will not
necessary be the best for other cases. The adoption of the
modified differential evolution attained its objectives of
improving speed and robustness of convergence.

The optimization of the objective function considering
only the coancestry (w1=0 and w2=-1), resulted in different
solutions being obtained for the expected merit of the
future progeny, probably because of the presence of
diverse global optima.

Results from Experiment 2, showed that the proportion
of inbreed animals observed in the real data set and their
average inbreeding coefficient were equal to 33% and 0.037,
respectively. The CPU time of the differential evolution
convergence ranged from 15.8 (OC_10) to 120.4 seconds

Weight 1 Weight 2
a N=120b Mutation Factorc Crossover rate CPU timed n_gen xEBV xAx

1 0 fitness 0 .9 0 .5 2 .6 24,210 0.6088 0.0963
1 0 fitness 0 .9 0 .7 2 .8 40,294 0.6086 0.0962
1 0 fitness u[0.2;0.9] 0 .5 1 .0 4,119 0.6084 0.0963
1 0 fitness u[0.2;0.9] 0 .7 0 .8 4,150 0.6075 0.0959
1 0 fitness * * 0 .2 2 1 0 0.6100 0.0970
1 0 differential evolution 0 .9 0 .5 9 .4 62,028 0.6090 0.0963
1 0 differential evolution 0 .9 0 .7 14.2 98,678 0.6084 0.0962
1 0 differential evolution u[0.2;0.9] 0 .5 2 .2 11,392 0.6078 0.0960
1 0 differential evolution u[0.2;0.9] 0 .7 2 .1 11,165 0.6081 0.0956
1 0 differential evolution * * 0 .6 2,082 0.6095 0.0968
1 -5 fitness 0 .9 0 .5 2 .5 19,760 0.5790 0.0856
1 -5 fitness 0 .9 0 .7 2 .9 35,443 0.5790 0.0856
1 -5 fitness u[0.2;0.9] 0 .5 0 .9 3,326 0.5788 0.0856
1 -5 fitness u[0.2;0.9] 0 .7 0 .8 3,478 0.5787 0.0855
1 -5 fitness * * 0 .3 3 2 9 0.5796 0.0857
1 -5 differential evolution 0 .9 0 .5 7 .1 46,144 0.5792 0.0856
1 -5 differential evolution 0 .9 0 .7 11.4 78,637 0.5788 0.0856
1 -5 differential evolution u[0.2;0.9] 0 .5 1 .8 8,913 0.5793 0.0856
1 -5 differential evolution u[0.2;0.9] 0 .7 1 .8 9,207 0.5781 0.0855
1 -5 differential evolution * * 0 .5 1,973 0.5788 0.0856
1 r fitness 0 .9 0 .5 7 .9 59,457 0.5785 0.0856
1 r fitness 0 .9 0 .7 4 .6 53,988 0.5781 0.0855
1 r fitness u[0.2;0.9] 0 .5 2 .3 8,408 0.5782 0.0855
1 r fitness u[0.2;0.9] 0 .7 1 .5 6,760 0.5775 0.0855
1 r fitness * * 0 .6 6 7 2 0.5787 0.0857
1 r differential evolution 0 .9 0 .5 15.9 98,626 0.5785 0.0856
1 r differential evolution 0 .9 0 .7 17.3 118,639 0.5783 0.0856
1 r differential evolution u[0.2;0.9] 0 .5 3 .3 16,179 0.5780 0.0855
1 r differential evolution u[0.2;0.9] 0 .7 2 .5 12,835 0.5771 0.0855
1 r differential evolution * * 0 .8 2,628 0.5757 0.0855
0 -1 fitness 0 .9 0 .5 2 .5 6,032 -0.0391 0.0503
0 -1 fitness 0 .9 0 .7 2 .7 9,254 -0.0390 0.0503
0 -1 fitness u[0.2;0.9] 0 .5 0 .5 9 4 6 -0.0394 0.0503
0 -1 fitness u[0.2;0.9] 0 .7 0 .5 1,046 -0.0390 0.0503
0 -1 fitness * * 0 .3 3 1 1 -0.0363 0.0503
0 -1 differential evolution 0 .9 0 .5 2 .7 15,098 -0.0395 0.0503
0 -1 differential evolution 0 .9 0 .7 4 .4 25,399 -0.0390 0.0503
0 -1 differential evolution u[0.2;0.9] 0 .5 0 .8 3,301 -0.0391 0.0503
0 -1 differential evolution u[0.2;0.9] 0 .7 0 .8 3,570 -0.0393 0.0503
0 -1 differential evolution * * 0 .4 1,204 -0.0398 0.0503

a r: differential evolution maximizing xEBV under the restriction xAx <= xAx when w2 = -5 was applied.
b Constrain imposed internally in the differential evolution algorithm (DE) or while evaluating the ‘fitness’.
c Mutation factor = 0.9 or randomly chosen from ~ unif. [0.2;0.9], for each locus.
d Time in seconds, in a PC with a Pentium D 3.4GHz processor and 3 GB RAM.
* Using the modified differential evolution proposed by Gondro & Kinghorn (2008).

Table 1 - Average values, over 20 replicates, of the CPU time, number of generations of the evolutionary process (n_gen), expected merit
of the future progeny (xEBV) and average coancestry of selected parents (xAx), according to applications of the differential
evolution varying: the weights of the objective function (w1 and w2); the constrain on the number of mates (N=120); the
mutation factor (F); and the crossover rate (CR)
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(OC_100). The convergence criteria that the range and the
mean absolute deviation of the ‘fitness’ were lower than
1x10-4, were attained for all the optimum genetic contribution
selection applications with fewer than 10,000 generations
of the evolutionary process.

The random mating of the 100 sire candidates with the
500 available dams resulted in an expected merit of the
future progeny equal to 0.813 standard deviation units and
an average coancestry equal to 0.024 (Table 2). As expected,
the BLUP (index) selection was the strategy that provided
the highest expected merit (in the short term), also presenting
an expressive increase in the average coancestry, in
comparison to the random strategy. The expected
consequences of a higher coancestry are the increase of the
inbreeding, the reduction of the genetic variability and the
genetic response in the medium/long term, and possibly
some indirect undesirable responses, too (Weigel, 2001).

The empirical attempt to control inbreeding by
selecting the best 13 sires which presented F<0.012
(average inbreeding of the herd), reduced coancestry  by
12.5% and the expected merit by 6.0%, in comparison to the
index strategy. The same reduction in coancestry was
observed by applying OC_1, without reduction of the
expected merit, highlighting the inefficiency of empirical
attempts to control inbreeding.

The optimum contribution selection strategies resulted,
as expected, in more sires being selected, reduction in
coancestry and in the expected merit of the future progeny,
in comparison with the index strategy. As an example, the
optimization of the objective function with  weight equal to
-10 for coancestry (OC_10), resulted in 23.1% more sires
being selected, a reduction equal to 18.8% for coancestry
and equal to 0.6% for the expected merit.

Results from experiment three showed that, as it was
desired, the average inbreeding rates were almost the same

for all the adopted selection strategies (Figure 1). The
average inbreeding coefficient in the year 20 was equal to
0.12 (an annual rate equal to 0.008, in the last 10 years).

BLUP selection resulted in an achieved genetic gain
equal to 1.64 phenotypic standard deviation units (sp),
after 20 years of selection (Figure 2). Optimum contribution
selection strategies presented higher genetic response
than BLUP selection, in agreement with the results from
literature (Meuwissen & Sonesson, 1998; Grundy et al. 2000).
In the 20th year, the superiority of optimum genetic
contribution strategies (OC, OCg and OCf) over BLUP
selection were, respectively, equal to 16.4, 18.2 and 19.1%.
An almost  same response to selection was observed for
the different optimum genetic contribution selection
approaches. The importance of changing coancestry
computation in schemes with overlapping generations
seems to be more related to constraining inbreeding to a
predefined level than to maximizing response. As

Selection strategya xAx xEBV n. sires Average F

Random 0.024 0.813 1 0 0 0.012
Index 0.032 1.279 13 0.021
F<0.012 0.028 1.202 13 0.002
OC_1 0.028 1.279 13 0.009
OC_10 0.026 1.271 16 0.009
OC_20 0.024 1.238 24 0.011
OC_100 0.017 0.834 4 5 0.012
a All the candidates randomly used (random); BLUP (index) selection of the 13

best sires; BLUP selection of the 13 best sires with F<0.012; optimum
contribution selection considering the expected merit of the future progeny and
the following weights for coancestry: -1 (OC_1), -10 (OC_10), -20 (OC_20), or
considering only the coancestry in the objective function (OC_100).

Table 2 - Average coancestry (xAx), expected merit of the future
progeny (xEBV), number of selected sires and their
average inbreeding (F), according to each selection
strategy

Figure 2 - Average true breeding values  in standard units, per
year and strategy of adopted selection.

Figure 1 - Average inbreeding coefficient per year and strategy
of adopted selection.
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previously described,  constrained inbreeding level was
attained in the present study by using different weights on
coancestry for each optimum genetic contribution selection
approach, forcing them to present the same inbreeding rate
as the BLUP  strategy.

Meuwissen & Sonesson (1998) observed a superiority
of optimum genetic contribution selection over BLUP
selection, under a similar level of inbreeding of the present
study, ranging from 16 to 36%. This superiority was even
greater for populations with lower inbreeding rate. Results
of the present study are not directly comparable to those
by  Meuwissen & Sonesson (1998) due to differences in
the structure of the simulated population, in the number
of years that optimum genetic contribution selection was
applied, in the optimization method, and in the selection
approach for females.

It is important to emphasize that the proper definition
of the weight for coancestry in the objective function
depends on the time horizon being considered; on the level
of allowed reduction in the short term genetic progress;
and on the average coancestry of the population under
investigation. It should be noted that the values used for
weighting coancestry in the present study were
empirically defined just to test the differential evolution
program, i.e. they were not optimized, and more favorable
results of optimum contribution selection can undoubtedly
be achieved.

For all the experiments of this study, the female
contribution was not optimized in the optimum genetic
contribution selection process. This is justified just for
practical circumstances where low selection pressure
is applied over the females (e.g. beef cows without
embryo transfer application), i.e. when it is not expected
that the optimum genetic contribution selection, also
considering the optimization of the female contributions
would present a significant superiority over the optimum
genetic contribution selection optimizing only the male
contributions.

After defining the optimum genetic contribution, the
natural next step should be defining the matings. Another
approach not investigated in the present study is to
perform simultaneously the selection and mating
decisions (mate selection). This one step approach seems
to provide better control over the inbreeding and higher
genetic response (Kinghorn et al., 1999). New studies are
planned to be made trying to make the proper adaptations
in the DE developed program, allowing its application for
mate selection purpose.

Conclusions

It is possible to use differential evolution as an
optimization method to perform optimum contribution
selection. The differential evolution developed program is
computationally efficient and feasible for practical
applications. The expected consequences of using the
program, in contrast with empirical attempts to control
inbreeding and/or selection based exclusively on BLUP, is
to improve the selection response and to control inbreeding
more effectively.

References

ABBASS,  H.  Computational  intel l igence techniques for
decision making with applications to the dairy industry.
275f .  2000.  Thesis  (Ph.D in  Informat ion Technology)  -
Queensland University of Technology, Queensland.

COLLEAU, J.J. An indirect approach to the extensive calculation
of relationship coefficients. Genetics Selection Evolution,
v.34, p.409-421, 2002.

GONDRO, C.; KINGHORN, B.P. Application of evolutionary
algorithms to solve complex problems in quantitative
genetics and bioinformatics. Guelph: University of Guelph,
2008. 96p. (course notes).

GRUNDY, B.; VILLANUEVA, B.; WOOLLIAMS, J.A. Dynamic
selection for maximizing response with constrained inbreeding
in schemes with overlapping generations. Animal Science ,
v.70, p.373-382, 2000.

KINGHORN, B.P.; SHEPHERD, R.K.; WOOLLIAMS, J.A. An index
of estimated breeding value, parental coancestry and progeny
inbreeding to help maximize genetic gains. In: ASSOCIATION
FOR THE ADVANCEMENT OF ANIMAL BREEDING AND
GENETICS, 1., 1999, Mandurah. Proceedings... Mandurah:
1999. p.412-415.

KNUTH, D.E. The art of computer programming. 2.ed. Reading,
Massachusetts: Addison-Wesley, 1975. v.1, 634p.

LAMPINEN, J.; ZELINKA, I. Mixed variable non-linear optimization
by differential evolution. In:  Nostradamus’99, INTERNATIONAL
PREDICTION CONFERENCE, 2., Czech Republic, 1999.
Proceedings... Czech Republic, 1999. p.45-55.

MEUWISSEN, T.H.E. Maximizing the response of selection with a
predefined rate of inbreeding. Journal of Animal Science ,
v.75 p.934-940, 1997.

MEUWISSEN, T.H.E.; SONESSON, A.K. Maximizing the response of
selection with a predefined rate of inbreeding: overlapping
generations Journal of Animal Science, v.76, p.2575-2583, 1998.

PONG-WONG, R.; WOOLLIAMS, J.A. Optimization of contribution
of candidate parents to maximise genetic gain and restricting
inbreeding using semidefinite programming. Genetics Selection
Evolution , v.39, p.3-25, 2007.

PRICE, K.; STORN, R. Differential evolution– A simple evolution
strategy for fast optimization. Dr. Dobb’s Journal,  v.264,
p.18-24, 1997.

PRICE, K.; STORN, R.; LAMPINEN, J. Differential evolution
– A practical approach to global pptimization. Berlin: Springer,
2005. 538p.

SORENSEN, M.K.; SORENSEN, A.C.; BORCHENSEN, S. et al.
Consequences of using EVA software as a tool for optimal genetic
contribution selection in Danish Holstein.  In:  WORD
CONGRESS ON GENETICS APPLIED TO LIVESTOCK



Carvalheiro et al.1436

R. Bras. Zootec., v.39, n.7, p.1429-1436, 2010

PRODUCTION, 8., 2006, Belo Horizonte. Proceedings… Belo
Horizonte: 2006. (CD-ROM).

STORN, R.; PRICE, K. Differential evolution - a simple and
efficient adaptive scheme for global optimization over
continuous spaces. Technical Report TR-95-012, ICSI, March
1995. Disponível em: <ftp.icsi.berkeley.edu/pub/techreports/
1995/tr-95-012.ps.Z>. Acesso em: 25/5/2010.

WEIGEL,  K.A.  Control l ing inbreeding in  modern breeding
programs.  Journal  of  Dairy Science ,  v.84(E.  Suppl . ) ,
p.E177-E184, 2001.

WOOLLIAMS, J .A. ;  THOMPSON, R.  A theory of  genet ic
contr ibut ions .  In:  WORLD CONGRESS ON GENETICS
APPLIED TO LIVESTOCK PRODUCTION, 5., 1994, Guelph.
Proceedings...  Guelph, 1994. v.25, p.127-134.


